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Abstract 
 

Vibration has always been an important subject of great interest to 
shipbuilders and marine engineers, because of its adverse effects both on 
the ship’s structure and on the comfort of the crew. With the increase in 
complexity of vibration, the problem of avoiding vibration seems to be 
getting more rather than less difficult. Vibration is also a problem which 
is more amenable to mathematical analysis than are many of those 
connected with ships. Since many possible sources of vibration may exist 
on board, we are still far from the complete solution of all problems in 
ship hull vibration. 
 
In warships, the addition of sensitive equipment such as radar and sonar 
has given a request for reducing the vibration to an absolute minimum in 
order to allow such devices to operate effectively.  With the increasing 
importance of vibration in warships for reasons of defense and offence, 
more time is being devoted to the subject by the navies of the world. The 
dangers from acoustic and pressure operated offensive weapons have 
also focused attention on hull vibration in general and on the noise 
emitted by hulls, appendages and propellers, which in many cases is 
associated with some form of hull vibration. As a result, the hull girder 
vibration is an important problem in all maritime countries. 
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GEMİ TEKNE TİTREŞİMİ 
 

Özetçe 
 

Titreşim, gemi yapısı ve personel konforu üzerinde yaratabileceği 
olumsuz etkileri nedeniyle gemi inşa mühendisleri için önemli bir ilgi 
alanı olmuştur. Titreşimin kompleksliğinin artmasıyla titreşimden 
kaçınma problemi gittikçe daha da zor hale gelmektedir ve gemi tekne 
titreşimi gemilerle ilişkili birçok alandan daha çok analitik ve nümerik 
analizlere tabidir. Ayrıca gemi bünyesinde birçok olası titreşim 
kaynakları olması nedeniyle gemi tekne titreşimindeki tüm problemlerin 
çözümünün tamamında hala uzağız.   
 
Harp gemilerinde radar ve sonar gibi hassas donanımların olması ve bu 
cihazların efektif olarak çalışması için titreşimin minimuma indirgenmesi 
ihtiyacı doğmuştur. Dolayısıyla, harp gemilerinde titreşim öneminin 
artmasıyla birlikte dünya donanmaları tarafından bu konuya daha fazla 
zaman ayrılmaya başlanmıştır. Ayrıca, akustik ve basınç tahrikli 
silahların yarattığı tehlikeler, tekne titreşimi, pervane ve  diğer 
donanımların yaydığı yapısal titreşim kaynaklı gürültü üzerine daha fazla 
odaklanmasına neden olmuştur. Sonuç olarak, tüm denizci ülkelerde 
tekne titreşimi önemli bir problemdir.  
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1. INTRODUCTION 

 
 The vibration experienced on board ships can be divided into two 
classes. In the first type, the whole hull girder is thrown into a state of 
vibration at certain revolutions of the main engines, the auxiliary machinery, 
the propeller and the sea. In this case, the movement of the hull can be 
clearly seen by sighting along the length of the ship and it can reach an 
amplitude of as much as an inch at the bow and stern. This kind of vibration 
depends on the revolutions at which it occurs in relation to those required to 
be used in long without loosening rivets. Such vibration, affecting the whole 
structure, is known as synchronous or resonant vibration.  
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 In the second type, isolated parts of the ship or certain fittings such 
as a mast or a plate panel, are set into a state of vibration which can be very 
annoying to crew but not be very dangerous to the ship. However it may be 
the most important vibration in warships for preventing the proper use of 
navigational instruments, radar and sonar devices, gun directors and similar 
equipment.  Such vibration is usually termed local vibration. 
 
 Once a ship is built, it is impossible to eliminate such resonant 
vibration by adding material to the hull with a view to strengthening it. So 
the source of the disturbing forces should be taken into consideration. Some 
of these disturbing forces are purely mechanical and can either be 
eliminated or reduced to unimportant dimensions, but others are in part of 
hydrodynamic origin and cannot be completely avoided [1]. 
 

2. HULL GIRDER VIBRATION 
 

 Structural vibrations occur when ships are subjected to periodic or 
time-varying loads. If the frequencies of the disturbing forces are close to 
one of the natural frequencies of the ship, the permissible vibration levels 
may be exceeded. This high vibration may occur in the following places. 
 

1. The hull girder 
2. The stern and the superstructures 
3. Transverse frames, plate panels and plate elements 
4. The propeller shaft 
5. The main engine 
 

 The most relevant global vibration modes are depicted in Figure 1. 
The two-noded vertical vibration mode has normally the lowest natural 
frequency. Typically, the vibration modes shown in the Figure 1, correspond 
to natural frequencies in the range of 0.6-6 Hz. [2] 
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Figure 1. Beam vibration modes for a ship’s hull 
 

 Simple beam models with good accuracy can often be used in order 
to determine the lowest natural frequencies of the hull girder. Timoshenko 
beam theory can be used for determination of the natural frequencies for 
continuous systems.  
 
 The following data must be known in order to determine the global 
vibrations of the hull girder. 
 

1. Time-varying loads on the hull girder 
2. The distribution of stiffness and mass of the hull girder 
3. Structural and hydrodynamic damping 
 

 The vibration level is determined as a solution to a forced vibration 
problem. An efficient method is modal superposition where the solution is 
expressed as a linear combination of relevant natural vibration modes. 
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3. TIMOSHENKO BEAM THEORY 
 
 Timoshenko's theory of beams constitutes an improvement over the 
Euler-Bernoulli theory, in that it incorporates shear and rotational inertia 
effects. The plane cross-sections remain orthogonal to the neutral axis of the 
beam is replaced by the assumption that the angle between the neutral axis 
and the normal of the cross section is proportional to the shear force. 
 
 This modification of the Bernoulli-Euler beam theory is needed for 
calculation of the higher hull girder modes, where the distance between the 
nodes cannot be considered to be large in relation to the cross-sectional 
dimensions of the hull girder. [3] 
 
 Consider a beam with length L, modulus of elasticity E, shear 
modulus G, the mass per unit length m, the moment of inertia I(x), the cross-
sectional area A(x) and the mass moment of inertia mr2(x)  
 

 
Figure 2. Timoshenko beam element [3] 
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 Let ψ be the angle which the cross-section of the beam forms with 

the y-axis, when only bending is considered, then 



x
w due to the 

assumption in the Bernoulli beam theory. Here W is the transverse 
displacement of the neutral line at a distance X from the left end of the beam 
at time T. Due to the effect of shear, the original rectangular element 
changes its shape to somewhat like a parallelogram with its sides slightly 
curved. The shear angle υ (or loss of slope) is now equal to the slope of 
bending ψ less slope of centerline WX in the form 
 υ = ψ − WX                                       (1) 

and the shear force Q is against the internal shear loading in the form 
Q = −kAG υ = −kAG(ψ −WX)                     (2) 

Similarly, the bending moment M is against the internal elastic inertia in the 
form 

M = −EI ψx =
x
wEI



                                   (3) 

 
 The difference between the Euler-Bernoulli beam theory and 
Timoshenko beam theory can be summarized as follows [2]. 
 
 Timoshenko Beam Theory   Euler-Bernoulli Beam Theory 

 
 We equate the transverse force and rotary inertia of the element to 
form the following four simultaneous pdes. 
 

  M + EI ψx = 0   (4a) 
  Q + kAG(ψ −Wx) = 0  (4b) 
  MX − Q + ρIψTT = 0   (4c) 
  QX − ρAWTT = 0  (4d) 
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 Further, Equations (4a) and (4c) involve rotational motion while 
Equations (4b) and (4d) involve transverse motion of the element. 
Eliminating M and Q from (4) yields two simultaneous PDEs in W and ψ : 
 
  ρAWTT + (kAG(ψ −WX))X = 0                        (5a) 
  ρITT − (EI ψx)X + kAG(ψ −WX) = 0                        (5b) 
 
 Equation (5a) is an equilibrium of translational force per unit length 
against the internal shear force gradient while Equation (5b) is an 
equilibrium of rotational torque per unit length equating to the gradient of 
internal bending moment against the internal shear force. This form is 
convenient for finding the normal modes and frequency of free vibration 
and the solution is in the form of (W, ψ). [3] 
 
 In the case of a uniform beam, ψ can be eliminated from the above 
two equations to form a single equation. 
 
 

0WW
kGA

IW1
kG
E

A
IW

A
EI

TTTTTTXXTTXXXX 








 


              (6) 

 
 This equation has four terms in the unit of force per unit mass or 
acceleration. They are the terms involving bending moment, shear force, 
rotational motion and translational motion respectively. When the shear and 
rotational terms are small and disregarded, the equation will be that of the 
Euler-Bernoulli beam. 
 
 The standard homogeneous boundary conditions for this system of 
equations are as follows. 
 
 Hinged type   :W = 0 ,  M = EI ψx = 0  
 Clamped type  :W = 0 ,  ψ = 0 ; 
 Free type   :Q = kAG(ψ −WX) = 0 ,  M = EI ψx = 0  
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 The solutions to the system of equations with a sst of homogeneous 
boundary conditions will have this form; 
 

   
)tsin()x()t,x(
)tsin()x(u)t,x(W




              (7) 

 
 This solution can be inserted in Eq.(5) in order to determine the 
ordinary differential equations. For example, the natural frequency of a 
uniform, homogeneous, simply supported beam is determined as follows. 
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       (8) 

including the solution n=0.  
 
 It is seen that, for each value of n, two different 2

n  are obtained. 
The vibration modes therefore can be sketched as in Figure 3. 
 
 

 
 
Figure 3. Lowest natural vibration modes for a uniform, homogeneous Timoshenko beam, 

simply supported at the ends [2]. 
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4. TIME-VARYING LOADS ON THE HULL GIRDER 
 

 The most common source for the generation of hull vibrations is 
propeller-induced forces. Formerly, the main engines were also a 
considerable source of vibration problems, but better balancing of the 
movable parts in the large diesel engines has reduced significantly the 
magnitude of unbalanced vibratory forces and moments. Wave-induced 
forces may also cause hull girder vibrations. 
 
 4.1.  Propeller Induced Forces 

 
 When the propeller of the ship rotates in the inhomogeneous wake 
field, periodic forces will arise in the stern. These hydrodynamic forces will 
act partly on the propeller and be transferred to the hull girder via the 
bearings of the propeller axis and on the plating of the stern, as shown in 
Figure 4. It is very difficult to calculate these forces by theoretical methods 
because of the complicated hydrodynamic flow conditions around the 
propeller. Therefore, it is often necessary to use model experiments and 
empirical formulas [2]. 
 

 
Figure 4. Propeller-induced periodic forces 
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 The magnitude of the periodic forces and moments can be 
determined by calculating the hydrodynamic lift L on each propeller blade. 
The lift is a function of the position of the blade, given by the angle   
relative to a vertical position of the propeller blade, as shown in Figure 5. 
 

 For each blade, the lift Lj can be divided into two force components. 
The blade thrust Tj( ) and the resistance Pj(  ), having effect in 
respectively the direction of the propeller axis and perpendicularly to the 
axis of the propeller blade. Tj and Pj can be expanded in Fourier series 
 

                                 (9) 
 
 As a consequence, the resulting load components on the propeller 
axis at the propeller can be determined by adding up the loads Tj and Pj 
from the total of Z similar propeller blades [2]. 
 

                (10) 
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 It is seen from the results that all load components are periodic with 
the period 2π/Z, because the same propeller configuration occurs each time 
a new blade gets in the same position as the preceding blade. If the propeller 
axis rotates with the constant frequency Ω then t and blade frequency 
is ZΩ. 
 The most important components in relation to generation of the hull 
vibrations are the terms which vary with the blade frequency. If only these 
terms are kept, the result is as follows; 
 

 

 

 

  tZsinaaZ
2
rM

tZcosbbZ
2
1F

tZcosaaZ
2
rM

tZsinbbZ
2
1F

tZcosrZbQ
tZcosZaT

1Z1Z1H

1Z1Z1H

1Z1Z1V

1Z1Z1V

z1

z1


















                                (11) 

 

 
 

Figure 5. Resulting forces and moments on the propeller [2] 
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 For conventional ships, the size of the time-varying loads T1, Q1 and 
the others are of the order of magnitude of 5-20 % of respectively the mean 
propeller thrust and moment. 
 
 The significance of the time-varying loads on the propeller is mainly 
that they may cause too large vibrations of the propeller axis. Their 
contribution to the generation of hull girder vibrations is normally smaller 
than the contribution from the pulsating hydrodynamic forces induced on 
the stern as a consequence of the inhomogeneous wake field. If the propeller 
cavitates, this effect strongly enhances the latter load but does not increase 
the forces on the propeller. 
 

4.2.  Unbalanced Forces from Diesel Engine 
 

 A schematic cross-section of a cylinder in a diesel engine and forces 
are shown in Figure 6. It is seen from the figure that the vertical motion x of 
the piston can be written 
 
       coscosrrx                                   (12) 
 
where r is the radius of the crank motion and  is the length of the 
connecting rod. From the definition of the angles, it is seen that 

 sinrsin and t  where   is the frequency of revolutions of the 
engine. If   is eliminated, the result is 
 

  





 




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









 tsinr

2
1tcos1rsinr11cos1r)t(x 22

2


  (13) 

 
 If the above expression is differentiated twice with respect to time, 
the acceleration and therefore the resulting D’Alembert force F1 is obtained.
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     (positively upwards)     (14) 
 
 The centrifugal force F2 as a result of the circular motion of the 
crank must be added to the force F1. The resolved centrifugal forces in the 
vertical (F2V) and the horizontal (F2H) direction are as follows; 
 

    
tsinrmF

tcosrmF
2

2H2

2
2V2




            (15) 

where m2 is the part which follows the motion of the crank shaft. 
 

The resulting mass forces are F1+F2V in the vertical direction and F2H 
in the horizontal direction. In order to balance these forces and moments for 
the engine as a whole, the phase shift between the ignition for the single 
cylinders can be chosen in an appropriate way and rotating masses can be 
added to the crankshaft. The engine manufacturers provide very accurate 
balanced engines today by using various correction procedures. 

 
Figure 6. Schematic cross-section of a cylinder [2] 
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4.3.  Wave Induced Loads 
 
 The wave-induced load per unit length along the hull girder (the x-
axis) can be written as a sum of the harmonic components. 

   



n

1j
qjjj,ejqj )x(tcos),x(a)t,x(q            (16) 

where aj is the wave amplitude for the wave component which has the 
frequency j  and where ),x( jq  is the amplitude of the function, defined 
as the amplitude of the load in the position x=x. 
 The linear response of the ship becomes statistically normally 
distributed with a mean value of zero and a variance equal to the sum of the 
variances for the response calculated for each load components. The 
response of the ship for each individual component can thus be considered 
separately without accounting for the stochastic phase angle qj , which does 
not enter into the variance. 
 Wave-induced vibrations of the hull girder only occur in relatively 
rare cases. The reason is that the wave amplitude is normally negligible 
small for frequencies of encounter j,e  of the order of the lowest natural 
frequency of the hull girder [4]. 
 

5. STIFFNESS DISTRIBUTION OF THE HULL GIRDER 
 
 It is necessary to know the stiffness and mass distribution of the hull 
girder in order to determine the natural frequencies and natural vibration 
modes of the hull girder. 
 
 The relevant stiffness parameters for vertical and horizontal 
vibration modes are the bending stiffness (EIy(x) for the vertical vibrations 
and EIz(x) for horizontal vibrations) and the shear stiffness (kzGA(x) and 
kyGA(x)).  
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 The effectiveness of longitudinal elements which do not extend 
along the whole length of the ship is important. The hatched areas, as shown 
in Figure 7, are ineffective to the bending stiffness of the hull girder. A 
reasonable value for the angle θ is 15o. 
 
 It is also important to define the shear stiffness, kGA. While the 
cross-sectional area A is easy to calculate, the calculation of the 
dimensionless constant k depends on some assumptions which can 
approximately the real three-dimensional deformation pattern with relevant 
beam deformation measures. Therefore, several calculation methods for the 
constant k are found. The most consistent procedure for determination of k 
has been given by Cowper (1966). The reduction of the three-dimensional 
elasticity theory to a beam theory given there is relatively complicated and 
here only the result for a cross-section built up of thin-walled elements is 
presented, assuming the same modulus of elasticity E throughout. [2] 
 

 

  







hdsAII
2

I12
k

0yz

y             (17) 

where Iy and Iz : the moments of inertia about respectively the y- and the z- 
axis 
 
 0 : the unit shear stress distribution 
  : Poisson ratio 
 
The function   is given by; 

      


 sinyz2cosyz
2

sI12 22
0y           (18) 

where   is the angle between the plate element at s=s and the z-axis. 
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Figure 7. Efficiency of longitudinal elements [2] 
  

 From the equation above, it is understood that if the shear stress 
distribution 0  is known, the shear coefficient k can be determined. For 
realistic hull cross-sections the shear area kA will be of the order of 
magnitude of 50-90 % of the projected area.  
 
 The importance of the shear stiffness kGA compared with the 
bending stiffness EI grows with the number of nodes in the natural vibration 
mode. For the two-noded vertical natural vibration mode, the bending 
stiffness is normally dominant; but the shear stiffness contributes to the 
deformation in all other vertical and horizontal natural vibration modes. 
While both the magnitude of the bending and the shear stiffnesses are of 
importance to the natural vibration modes, their variation along the hull 
girder will often be of less importance. Therefore, it is usually enough to 
calculate these stiffnesses for a few cross-sections along the hull girder and 
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use interpolation between these values. Figure 8 shows the three lowest 
natural vibration modes corresponding to horizontal bending-torsion for a 
container ship 
 

 
 

Figure 8. The three lowest natural vibration modes corresponding to horizontal bending-
torsion models for a container ship [Pedersen (1983)] 

 
6. MASS DISTRIBUTION OF THE HULL GIRDER 

 
 When the hull girder vibrates, the surrounding water will be forced 
to follow the motions of the ship. The motion of the water will be the same 
as the motion of the hull when it is close to the hull. At a larger distance 
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from the hull, the amplitude of the water will quickly decrease while the 
frequency remains unchanged.  
 The relevant mass date used in the calculation of the natural 
vibrations of the hull must therefore contain both the mass distribution of 
the hull girder, including the mass of the cargo, and a contribution which 
reflects the associated motion of the water. [2] 
 
 The determination of the mass distribution ms(x) of the hull girder 
can be made from the knowledge of the steel weight of the ship and the 
equipment weight. In addition to the mass ms per unit length, the associated 
mass radii of gyration ry(x) and rz(x) for vibrations in respectively the 
horizontal and the vertical plane should be determined. The added mass of 
water per unit length mw(x) by a vertical motion of a hull section can be 
written as 

)x(A)x(CJ)n,x(m mnw              (19) 
 

where   : the density of the water 
 
 Cm : the dimensionless coefficient depending on the shape of cross-
section 
 A(x) : the submerged area of the section 
 Jn : the three-dimensional reduction factor for the three-dimensional 
flow around the hull girder where n is the number of nodes in the 
vibration mode. 
 J factor is determined by two different methods, Townsin and 
Kumai. Figure 9 shows a comparison of the two methods. 
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Figure 9. Three-dimensional vertical reduction factor Jn for a 340,000 dwt tanker [2] 

 
 It is seen from Figure 9 that at the two-noded vibration mode the J 
factor represents a reduction of 30 % of the two-dimensional mass of water. 
As the added mass of water is of the same order of magnitude as the mass of 
the ship, this reduction has a considerably influence on the natural 
frequency. 
 

7. DAMPING 
 

 A classical mass-spring-damper system is illustrated in Figure 10 
which exhibits a vibrating concentrated mass m, held by a spring with the 
stiffness k and a viscous damper with the damping b. 

 
Figure 10. Natural vibrations of 
damped system with one degree 
of freedom 
 
Equation of motion:  

 
Solution for underdamped case: 

 tAtAt ddnex  sincos 21   

Townsin 

Kumai 
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Natural frequency of damped system: nd  21  

Natural frequency of undamped system: 
m
k

n   

Damping ratio: 
0b

b
km2
bζ   

Logarithmic decrement : 21/2   
 
 It is seen from Figure 10 that if the damping b is much smaller than 
the critical damping b0, the natural frequency d  for the damped system 
will coincide with the natural frequency n  of the undamped system. So the 
damping ratio   is a somewhat inconvenient quantity. Therefore, the 
logarithmic decrement  , defined as the natural logarithm to the relation 
between two successive maxima in x, is often used. 
 
 While the damping in slightly damped vibrations may be neglected 
in the determination of the natural frequencies of the system, the damping 
will have a significant influence on the vibration amplitude around the 
natural frequencies. For the system shown in Figure 10, the dynamic 
amplification factor Q is given by 
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
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







           (20) 

 The dynamic amplification factor Q determines the motion 
amplitude of the mass m when this is subjected to a periodic force F0 cosωt.  
 
 If ship hull vibrations are considered, damping will mainly be due to 
structural damping from hysteresis effects in the steel, especially as a 
consequence of welding. Damping also takes place in cargoes of grain and 
the like, as well as through hydrodynamic damping. However all these 
effects are usually so small that they can be neglected in relation to the 
internal structural damping in the welded steel structure in the frequency 
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range of interest. Calculation of the magnitude of damping in hulls is not 
possible because the theoretical damping mechanisms cannot today be 
calculated for so complex structures as ships. Therefore, calculation of the 
forced hull vibrations must be based on the empirical formulas. A number of 
these formulas are shown in Figure 11. 
 

 
  1 nn 0073.0    4   4/3

2nn /L/5.3   
  2 nn    5 nn /  
  3 nn 2   6 2/1

nn 01065.0   
Figure 11. Examples of published values for the logarithmic decrement   as a function of 

frequency for a 340,000 dwt tanker [Jensen and Madsen (1977)] 
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