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1. INTRODUCTION 

“ 

Lifetime distributions are statistical models used in describing the length of life of a system or a device. 

Most well-known lifetime distributions which include; the exponential, Weibull, Lindley and gamma 

distributions are widely used in both reliability theory and survival analysis. However, the classical lifetime 

distributions have a limited range of behavior and cannot represent all situations in applications. For 

example, the one parameter exponential distribution has been widely applied to model survival data set in 

the last decades, but one of the major disadvantages of the exponential distribution is that it has a constant 

hazard rate property. Moreover, the probability density function (pdf) of the exponential distribution is a 

decreasing function. Due to this reason, several generalizations of the exponential distribution have been 

suggested in the literature. The Weibull, gamma, generalized exponential distributions are different 

extensions of the exponential distribution, which contain exponential distribution as a special case. All the 

three distributions can have increasing, decreasing or unimodal density functions and monotone (increasing 

or decreasing) hazard rate properties.”Unfortunately, none of the distributions exhibits a non-monotone 

(bathtub or inverted bathtub) hazard rate properties. The limitations of these classical distributions often 

arouse the interest of researchers in finding new distributions by extending existing ones. 

“ 

In recent years, several ways of generating new distributions from classic ones have been introduced in 

literature. [1] introduced the family of Weibull distributions with exponential distribution as sub-model. 

The model was constructed by taking power of exponentially distributed random variables. [2] introduced 

a new method of adding a parameter into a family of distributions which they called the Marshall-Olkin 

extended family of distributions.”[3] introduced the beta-generated family of distributions and most 

recently, [4] introduced the T-R{Y} framework for generalizing existing classical distributions. Many 
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generalized distributions arising from the Marshall-Olkin extended family of distributions are found in [5-

11]. 

“ 

Suppose the survival function of a known probability distribution is defined by �̅�(𝑥), [2] defined the 

survival function of the Marshall-Olkin extended family of distributions as 

 

�̅�(𝑥, 𝛼) =  
𝛼�̅�(𝑥)

1−�̅��̅�(𝑥)
=

𝛼�̅�(𝑥)

𝐹(𝑥)+𝛼�̅�(𝑥)
,       − ∞ < 𝑥 < ∞,   0 < 𝛼 < ∞.                   (1) 

 

If 𝐹(𝑥) is a cumulative distribution function with a density function 𝑓(𝑥), then 𝐺(𝑥) has a density function 

given as 

 

𝑔(𝑥, 𝛼) =  
𝛼𝑓(𝑥)

{1−�̅��̅�(𝑥)}2 ,                        (2) 

 

where �̅� = 1 − 𝛼  is called a “tilt parameter”, since the hazard ℎ(𝑥) of the transformed distribution is shifted 

below (𝛼 ≥ 1) or above (0 < 𝛼 ≤ 1) from the hazard 𝑟(𝑥) of the baseline distribution. In fact, for all 𝑥 ≥
0, ℎ(𝑥) ≤ 𝑟(𝑥) when 𝛼 ≥ 1, and ℎ(𝑥) ≥ 𝑟(𝑥) when 0 < 𝛼 ≤ 1. A unique characteristic of the Marshall-

Olkin extended family of distributions is the property of allowing the random variable of the transformed 

distribution to follow the same support with the baseline distribution.” 

 

In this paper, we introduce a new Marshall-Olkin Extended Topp Leone (MOETL) distribution by taking 

the baseline distribution defined in Equation (1) as the survival function of the one parameter Topp Leone 

distribution reported in [12]. 

 

[12] defined a one-parameter Topp-Leone distribution with bounded support, which is a sub-model of the 

two-parameter Topp-Leone distribution introduced by [13]. The survival function and the probability 

density function (pdf) of the one-parameter Topp Leone distribution are defined as 

 

�̅�(𝑥) = 1 − (1 − (1 − 𝑥)2)𝜆               (3) 

and  

  𝑓(𝑥) = 2𝜆 (1 − 𝑥)(1 − (1 − 𝑥)2)𝜆−1.                    (4) 

“ 

The rest Sections of this paper are organized as follows: Section 2 presents some mathematical properties 

of the proposed distribution which include; the survival function, cumulative distribution function, 

probability density function, Hazard rate function, Quantile function, Median, Moments and Renyi entropy. 

The parameter estimation and simulation study on the maximum likelihood estimates of the proposed 

distribution are given in Section 3. Finally, in Section 4, we applied the proposed distribution to two real 

data sets and compared its fit alongside with some existing distributions defined on a unit interval.” 

 

2. MATHEMATICAL PROPERTIES OF THE MOETL DISTRIBUTION 

 

2.1. Survival, Cumulative Distribution, Density and Hazard Functions of the MOETL Distribution  

 

Let X be a random variable. Then, the survival function of the MOETL distribution can be obtained as 

�̅�(𝑥) =
𝛼{1−(1−(1−𝑥)2)

𝜆
}

1−�̅�{1−(1−(1−𝑥)2)𝜆}
 =   

𝛼{1−(1−(1−𝑥)2)
𝜆

}

𝛼+�̅�(1−(1−𝑥)2)𝜆 .                     (5) 

 

The cumulative distribution function of the MOETL distribution can be obtained as  

 

 𝐺(𝑥) = 1 − �̅�(𝑥) =  
{1−(1−(1−𝑥)2)

𝜆
}

1−�̅�{1−(1−(1−𝑥)2)𝜆}
 =   

(1−(1−𝑥)2)
𝜆

𝛼+�̅�(1−(1−𝑥)2)𝜆 .                   (6) 
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“The corresponding density function of the MOETL distribution is obtained as 

 

𝑔(𝑥) =  
2𝛼𝜆(1−𝑥)[1−(1−𝑥)2]

𝜆−1

[1−�̅�{1−(1−(1−𝑥)2)𝜆}]
2   

=  2𝛼𝜆(1 − 𝑥)[1 − (1 − 𝑥)2]𝜆−1[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}]
−2

.                 (7) 

 

[14] reported that for any positive real numbers and |𝑧| < 1, a generalized binomial expansion is given by 

 

 (1 + 𝑧)−𝑠 =  ∑ (
𝑠 + 𝑘 − 1

𝑘
) (−1)𝑘𝑧𝑘∞

𝑘=0 .                    (8) 

 

Now, using Equation (8) in (7), the density function of the MOETL distribution can be expressed in series 

representation as follows; 

 

[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}]
−2

=  ∑ (
𝑖 + 1

𝑖
)

∞

𝑖=0

�̅�𝑖{1 − (1 − (1 − 𝑥)2)𝜆}
𝑖
 

[1 − (1 − (1 − 𝑥)2)𝜆]
𝑖

=  ∑ (
𝑖
𝑗
)

𝑖

𝑗=0

(−1)𝑗(1 − (1 − 𝑥)2)𝜆𝑗 

[1 − (1 − 𝑥)2]𝜆(𝑗+1)−1 =  ∑ (
𝜆(𝑗 + 1) − 1

𝑘
)

𝜆(𝑗+1)−1

𝑘=0

(−1)𝑘(1 − 𝑥)2𝑘  

(1 − 𝑥)2𝑘+1 =  ∑ (
2𝑘 + 1

𝑚
)

2𝑘+1

𝑚=0

(−1)𝑚𝑥𝑚 

so that Equation (7) becomes 

 

𝑔(𝑥) = 2𝛼𝜆 ∑ ∑ ∑ ∑ (
𝑖 + 1

𝑖
)

2𝑘+1

𝑚=0

(
𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

) (
2𝑘 + 1

𝑚
)

𝜆(𝑗+1)−1

𝑘=0

𝑖

𝑗=0

∞

𝑖=0

 

       ×    (−1)𝑗+𝑘+𝑚(1 − 𝛼)𝑖𝑥𝑚 .                  (9) 

 

The graphical plots of the density function of the MOETL distribution is displayed in Figure 1.” 

 
Figure 1. Probability Density Function of the MOETL distribution  
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The graphical plots in Figure 1 indicates that the density function of the MOETL distribution exhibits a 

decreasing (reversed-J), left-skewed, right-skewed and symmetric shapes. “  

The hazard rate function of a continuous random variable 𝑋 is defined by 

 

ℎ(𝑥) =  
𝑔(𝑥)

1−𝐺(𝑥)
 =  

𝑔(𝑥)

�̅�(𝑥)
 .              (10) 

 

Thus, hazard rate function of the MOETL distribution is obtained as 

 

 ℎ(𝑥) =  
2𝛼𝜆(1−𝑥)[1−(1−𝑥)2]

𝜆−1

[1−�̅�{1−(1−(1−𝑥)2)𝜆}]
2    × 

1−�̅�{1−(1−(1−𝑥)2)
𝜆

}

𝛼{1−(1−(1−𝑥)2)𝜆}
 

  =  
2𝜆(1−𝑥)[1−(1−𝑥)2]

𝜆−1

[1−�̅�{1−(1−(1−𝑥)2)𝜆}]{1−(1−(1−𝑥)2)𝜆}
 .             (11) 

 

The graphical plots of the hazard rate function of the MOETL distribution is shown in Figure 2.” 

 

 
 Figure 2. Hazard Rate Function of the MOETL distribution  

 

The graphical plots in Figure 2 reveals that the hazard rate function of the MOETL distribution exhibits an 

increasing, bathtub and inverted bathtub shaped property. “ 

 

2.2. The Quantile Function of the MOETL Distribution   

 

Given the cumulative distribution function 𝐺(𝑥) defined by Equation (6), the quantile function of the 

MOETL distribution can be obtain as 𝑄𝑋(𝑝) =  𝐺−1(𝑝). 

The 
thp  quantile function is obtained by solving 𝐺(𝑥) = 𝑝 i.e., 

 
{1−(1−(1−𝑥)2)

𝜆
}

1−�̅�{1−(1−(1−𝑥)2)𝜆}
 = 𝑝 

  (1 − (1 − 𝑥)2)𝜆 = 𝑝[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}] 

 (1 − (1 − 𝑥)2)𝜆 − 𝑝�̅�(1 − (1 − 𝑥)2)𝜆  =  𝑝𝛼 

 (1 − 𝑝�̅�)[(1 − (1 − 𝑥)2)𝜆]  =  𝑝𝛼 

 (1 − (1 − 𝑥)2)𝜆   =   
𝑝𝛼

(1−𝑝+𝑝𝛼)
 

 (1 − 𝑥)2  =  1 −  [
𝑝𝛼

(1−𝑝+𝑝𝛼)
]

1
𝜆⁄
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 𝑥 = 1 − [1 −  [
𝑝𝛼

(1−𝑝+𝑝𝛼)
]

1
𝜆⁄

]

1
2⁄

 .             (12) 

 

The median of the MOETL distribution is obtained by substituting for 2
1=p  in Equation (12) which 

yields, 

𝑚𝑒𝑑𝑖𝑎𝑛 = 1 − [1 − [
0.5𝛼

(0.5+0.5𝛼)
]

1
𝜆⁄

]

1
2⁄

  .                        (13) 

 

2.3. The 𝒓𝒕𝒉 Moments of the MOETL Distribution” 

 

Let 𝑋 be a continuous random variable with probability density function 𝑔(𝑥), then the 
thr  moment about 

the origin of 𝑋 is defined by, 

 𝜇𝑟
′   =    𝐸(𝑋𝑟)   =    ∫ 𝑥𝑟𝑔(𝑥)𝑑𝑥

∞

−∞
.                       “(14) 

 

The moments of the MOETL distribution cannot be expressed in a closed form, hence, we consider the 

series representation of the density function of the MOETL distribution defined in Equation (9) to obtain 

the 𝑟𝑡ℎ moment of the distribution in terms of infinite series. By substituting Equation (9) into (14), we 

define the  𝑟𝑡ℎ moment of the MOETL distribution as “ 

 

𝜇𝑟
′  = 𝐸(𝑋𝑟) =  ∫ 𝑥𝑟2𝛼𝜆 ∑ ∑ ∑ ∑ (

𝑖 + 1
𝑖

)

2𝑘+1

𝑚=0

(
𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

)

𝜆(𝑗+1)−1

𝑘=0

𝑖

𝑗=0

∞

𝑖=0

1

0

 

×    (
2𝑘 + 1

𝑚
) (−1)𝑗+𝑘+𝑚(1 − 𝛼)𝑖𝑥𝑚 𝑑𝑥        (15) 

 

=  2𝛼𝜆 ∑ ∑ ∑ ∑ (
𝑖 + 1

𝑖
)

2𝑘+1

𝑚=0

(
𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

)

𝜆(𝑗+1)−1

𝑘=0

𝑖

𝑗=0

∞

𝑖=0

 

                                × (
2𝑘 + 1

𝑚
) (−1)𝑗+𝑘+𝑚(1 − 𝛼)𝑖 ∫ 𝑥𝑟+𝑚 𝑑𝑥

1

0
 .                       (16) 

Evaluating the integral part of the expression in Equation (16), we have 

 

   ∫ 𝑥𝑟+𝑚 𝑑𝑥
1

0
 =   

𝑥𝑟+𝑚+1

𝑟+𝑚+1
|

0

1

 =  
1

𝑟+𝑚+1
 . 

 

Equation (16) can further be simplified as 

 

𝜇𝑟
′ =  2𝛼𝜆 ∑ ∑ ∑ ∑ (

𝑖 + 1
𝑖

)2𝑘+1
𝑚=0 (

𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

)
𝜆(𝑗+1)−1
𝑘=0

𝑖
𝑗=0

∞
𝑖=0 (

2𝑘 + 1
𝑚

) (−1)𝑗+𝑘+𝑚 (1−𝛼)𝑖

𝑟+𝑚+1
 .         (17) 

 

The first four  𝑟𝑡ℎ moments of the MOETL distribution in terms of infinite series are obtained from 

Equation (17) as; 

 

𝜇1
′ = 𝜇 =  2𝛼𝜆 ∑ ∑ ∑ ∑ (

𝑖 + 1
𝑖

)

2𝑘+1

𝑚=0

(
𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

)

𝜆(𝑗+1)−1

𝑘=0

𝑖

𝑗=0

∞

𝑖=0

(
2𝑘 + 1

𝑚
) (−1)𝑗+𝑘+𝑚

(1 − 𝛼)𝑖

𝑚 + 2
 

𝜇2
′ =  2𝛼𝜆 ∑ ∑ ∑ ∑ (

𝑖 + 1
𝑖

)

2𝑘+1

𝑚=0

(
𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

)

𝜆(𝑗+1)−1

𝑘=0

𝑖

𝑗=0

∞

𝑖=0

(
2𝑘 + 1

𝑚
) (−1)𝑗+𝑘+𝑚

(1 − 𝛼)𝑖

𝑚 + 3
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𝜇3
′ =  2𝛼𝜆 ∑ ∑ ∑ ∑ (

𝑖 + 1
𝑖

)

2𝑘+1

𝑚=0

(
𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

)

𝜆(𝑗+1)−1

𝑘=0

𝑖

𝑗=0

∞

𝑖=0

(
2𝑘 + 1

𝑚
) (−1)𝑗+𝑘+𝑚

(1 − 𝛼)𝑖

𝑚 + 4
 

 

𝜇4
′ =  2𝛼𝜆 ∑ ∑ ∑ ∑ (

𝑖 + 1
𝑖

)

2𝑘+1

𝑚=0

(
𝑖
𝑗
) (

𝜆(𝑗 + 1) − 1
𝑘

)

𝜆(𝑗+1)−1

𝑘=0

𝑖

𝑗=0

∞

𝑖=0

(
2𝑘 + 1

𝑚
) (−1)𝑗+𝑘+𝑚

(1 − 𝛼)𝑖

𝑚 + 5
 . 

” 

Furthermore, the variance, measures of skewness and kurtosis of the MOETL distribution can be derived 

by substituting the values of the 𝑟𝑡ℎ moments into the expressions reported in [15]; 

 

Variance (𝜇2)  =  (𝜇2
′ − 𝜇2),   Skewness (𝑆𝑘)  =  

𝜇3
′ −3𝜇2

′ 𝜇+2𝜇3

(𝜇2
′ −𝜇2)

3
2⁄

 , 

 

Kurtosis (𝐾𝑠)  =  
𝜇4

′ −4𝜇3
′ 𝜇+6𝜇2

′ 𝜇2−3𝜇4

(𝜇2
′ −𝜇2)2  . 

“ 

Numerical computations of the theoretical moments of the MOETL distribution for selected values of the 

parameters are shown in Tables 1 and 2.” 

 

Table 1. Theoretical Moments of MOETL distribution (𝛼 = 2) 
'

r  𝜆 = 0.5 𝜆 = 1 𝜆 = 3 

'

1  0.3048 0.4292 0.6222 

'

2   0.1548   0.2447  0.4259 

'

3   0.0944  0.1589 0.3099 

'

4   0.0637  0.1115 0.2354 

2  0.0619 0.0605 0.0388 

kS  0.6159 0.1312 -0.4366 

sK  2.3496 2.0104 2.5140 

 

Table 2. Theoretical Moments of MOETL distribution (𝛼 = 4) 
'

r  𝜆 = 0.5 𝜆 = 3 𝜆 = 6 

'

1  0.4061 0.6965 0.7784 

'

2  0.2331  0.5188  0.6259 

'

3  0.1526  0.4032 0.5155 

'

4   0.1079  0.3230 0.4324 

2  0.0682 0.0337 0.0200 

kS  0.1437 -0.8220 -0.9993 

sK  1.9515 3.2936 3.4810 

 

From Tables 1 and 2 we observed that the MOETL distribution exhibits a right-skewed ( 0kS ), left-

skewed )0( kS  and approximately symmetric )0( kS  shapes. On the other hand, the MOETL 

distribution can be leptokurtic )3( sK , platykurtic )3( sK  and mesokurtic )3( sK . This claim 

supports the graphical illustration of the density function of the MOETL distribution in Figure 1. 
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2.4. The Renyi Entropy of the MOETL Distribution 

“ 

[16] defined an entropy of a random variable X  as a measure of randomness associated with the random 

variable X . The Renyi entropy of X  with density function )(xf , is defined by, 

 𝜏𝑅(𝜉) =  
1

1−𝜉
𝑙𝑜𝑔𝑒 ∫ 𝑓𝜉(𝑥)𝑑𝑥 ,                 𝜉 > 0,     𝜉 ≠ 1 .               (18) 

It is observed from the density function of the MOETL distribution that the mathematical expression of the 

Renyi entropy cannot be expressed in a closed form. Hence, we also consider the Renyi entropy of the 

distribution in terms of infinite series by substituting Equation (9) into (18), to obtain the Renyi entropy of 

the random variable X following the MOETL distribution as 

 

𝜏𝑅(𝜉) =  
1

1−𝜉
𝑙𝑜𝑔𝑒 ∫ [2𝛼𝜆(1 − 𝑥)[1 − (1 − 𝑥)2]𝜆−1[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}]

−2
]

𝜉
𝑑𝑥 .                     (19) 

 

Again, using the binomial expansion in Equation (8), we have  

 

[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}]
−2𝜉

=  ∑ (
𝑖 + 𝜉

𝑖
)

∞

𝑖=0

�̅�𝑖𝜉{1 − (1 − (1 − 𝑥)2)𝜆}
𝑖𝜉

 

[1 − (1 − (1 − 𝑥)2)𝜆]
𝑖𝜉

=  ∑ (
𝑖𝜉
𝑗

)

𝑖𝜉

𝑗=0

(−1)𝑗(1 − (1 − 𝑥)2)𝜉𝜆𝑗 

[1 − (1 − 𝑥)2]𝜉𝜆(𝑗+1)−𝜉 =  ∑ (
𝜉𝜆(𝑗 + 1) − 𝜉

𝑘
)

𝜉𝜆(𝑗+1)−𝜉

𝑘=0

(−1)𝑘(1 − 𝑥)2𝜉𝑘  

(1 − 𝑥)2𝜉𝑘+1 =  ∑ (
2𝜉𝑘 + 1

𝑚
)

2𝜉𝑘+1

𝑚=0

(−1)𝑚𝑥𝜉𝑚 . 

 

Substituting these expressions into Equation (19), we have 

 

𝜏𝑅(𝜉) =
1

(1−𝜉)
𝑙𝑜𝑔𝑒 [∑ ∑ ∑ ∑ (

𝑖 + 𝜉
𝑖

)
2𝜉𝑘+1
𝑚=0 (

𝑖𝜉
𝑗

) (
𝜉𝜆(𝑗 + 1) − 𝜉

𝑘
)

𝜉𝜆(𝑗+1)−𝜉
𝑘=0

𝑖𝜉
𝑗=0

∞
𝑖=0 (

2𝜉𝑘 + 1
𝑚

) (−1)𝑗+𝑘+𝑚 (1−𝛼)𝑖𝜉(2𝛼𝜆)𝜉

(𝜉𝑚 + 1)
] .            (20) 

 

[17] provided some important properties of the measure given by Equation (18):” 

 

(i) The Renyi entropy can be negative; “ 

(ii) For any 𝜉1 <  𝜉2 , 𝑅 𝜉2
≤  𝑅 𝜉1

 and equality holds if and only if 𝑋 is a uniform random variable. 

 

According to [18], the Renyi entropy is more or less sensitive to the shape of the probability distribution 

due to the parameter 𝜉. For large values of 𝜉, the measure given in Equation (18) is more sensitive to events 

that occur often, while for small values of 𝜉, it is more sensitive to event which rarely occur. For instance, 

[19] reported that an application of Equation (18) in speech recognition, different values of 𝜉 determines 

different concepts of noisiness. Basically, small values of 𝜉 tend to emphasize the noise content of the 

signal, while large values of 𝜉 tend to emphasize the harmonic content of the signal.”Numerical 

computations of the Renyi entropy of the TLPLD for varying values of parameter 𝜉 is shown in Table 3. 
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Table 3. Numerical Computation of the Renyi Entropy of the MOETLD 

𝜉 𝜆 = 1, 𝛼 = 3 𝜆 = 1, 𝛼 = 5 𝜆 = 3, 𝛼 = 3 𝜆 = 3, 𝛼 = 5 

0.01 -0.0011 -0.0013 -0.0066 -0.0086 

0.03 -0.0032  -0.0039 -0.0193 -0.0251 

0.5 -0.0404 -0.0564 -0.2158 -0.2887 

0.7 -0.0519 -0.0755 -0.2672 -0.3591 

2 -0.1018 -0.1704 -0.4466 -0.5994 

4 -0.1464 -0.2558 -0.5543 -0.7331 

7 -0.1861 -0.3202 -0.6231 -0.8133 

9 -0.2034 -0.3449 -0.6484 -0.8418 

 

From Table 3, we clearly observe that for any two consecutive values of parameter 𝜉𝑖 , Say ( 𝜉1and 𝜉2), the 

Renyi entropy 𝑅𝑖, Say (𝑅1 and 𝑅2), satisfies the condition 𝜉1< 𝜉2,  𝑅𝜉2
 ≤ 𝑅𝜉1

 as suggested by [17]. 

 

 

3. PARAMETER ESTIMATION OF THE MOETL DISTRIBUTION   

 

3.1. Maximum Likelihood Estimation 

 

Suppose (𝑥1, 𝑥2, … , 𝑥𝑛) are random samples from a known probability density function 𝑓(𝑥), then the 

likelihood function associated with the random variable 𝑋 is defined by 

𝐿(𝑥) =  ∏ 𝑓(𝑥𝑖)𝑛
𝑖=0 .             (21)

  

The corresponding log-likelihood function of Equation (21) is given by 

 

   ℓ(𝑥, 𝜑) =  ∑ 𝑙𝑜𝑔[𝑓(𝑥𝑖 , 𝜑)].𝑛
𝑖=0                 (22) 

“ 

From Equation (22), we define the log-likelihood function of the MOETL distribution as  

 

ℓ(𝑥, 𝜑) =  ∑ 𝑙𝑜𝑔 [ 
2𝛼𝜆(1−𝑥)[1−(1−𝑥)2]

𝜆−1

[1−�̅�{1−(1−(1−𝑥)2)𝜆}]
2 ] ,         𝜑 = (𝛼, 𝜆)  𝑛

𝑖=0   

= 𝑛𝑙𝑜𝑔(2𝛼𝜆) + ∑ 𝑙𝑜𝑔(1 − 𝑥𝑖)

𝑛

𝑖=0

+ (𝜆 − 1) ∑[1 − (1 − 𝑥𝑖)2]

𝑛

𝑖=0

 

−2 ∑ 𝑙𝑜𝑔[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}]𝑛
𝑖=0 .             (23) 

 

Taking partial derivative of Equation (23) with respect to the parameters, we obtain the score function as; 

ℓ(𝑥, 𝜑)

𝑑𝛼
=  

𝑛

𝛼
− ∑

2{1 − (1 − (1 − 𝑥)2)𝜆}

[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}]

𝑛

𝑖=0

 

ℓ(𝑥, 𝜑)

𝑑𝜆
=  

𝑛

𝜆
+ ∑ 𝑙𝑜𝑔(1 − (1 − 𝑥)2)

𝑛

𝑖=0

+ ∑
2�̅�(1 − (1 − 𝑥)2)𝑙𝑜𝑔(1 − (1 − 𝑥)2)

[1 − �̅�{1 − (1 − (1 − 𝑥)2)𝜆}]
 .

𝑛

𝑖=0

 

The maximum likelihood estimator �̂� of 𝜑 can be obtained by solving the system of equation 
ℓ(𝑥,𝜑)

𝑑𝜑
= 0.” 

This equation cannot be solved analytically, hence, we use the “bbmle” in R statistical package to evaluate 

the maximum likelihood estimates of the parameters of the MOETL distribution. 

 

 

 

 

“ 
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3.2. Interval Estimate 

 

The asymptotic confidence intervals (CIs) for the parameters of MOETLD (𝛼, 𝜆) is obtained according to 

the asymptotic distribution of the maximum likelihood estimates of the parameters. Suppose �̂� = (�̂�, , �̂�, ) 

be MLE of  𝜑, then the estimators are approximately bi-variate normal with mean (𝛼, 𝜆) and
 
the Fisher 

information matrix is given by: 

 

𝐼(𝜑𝑘) =  −𝐸(𝐻(𝜑𝑘)).                 (24) 

The approximate (1-)100 CIs for the parameters 𝛼 and 𝜆 respectively, are 

  �̂� ±  𝑍𝛿
2⁄ √𝑣𝑎𝑟(�̂�) and �̂� ±  𝑍𝛿

2⁄
√𝑣𝑎𝑟(�̂�)  

 

where 𝑣𝑎𝑟(�̂�) and 𝑣𝑎𝑟(�̂�) are the variance of 𝛼 and 𝜆 which are given by the diagonal elements of the 

variance-covariance matrix 𝐼−1(𝜑𝑘) and 
2

Z  is the upper ( 2
 ) percentile of the standard normal 

distribution.  

 

3.3. Simulation Study 

 

In this section, we investigate the asymptotic behaviour of the maximum likelihood estimate of the 

parameters of the Marshall Olkin Extended Topp-Leone distribution (MOETLD) through a simulation 

study. A Monte Carlo simulation study is repeated 1000 times for different sample sizes n = 30, 50, 75, 100 

and parameter values (𝛼 = 1.5, 𝜆 = 1), (𝛼 = 1.5, 𝜆 =  2) and (𝛼 = 0.3, 𝜆 =  2). An algorithm for the 

simulation study is given by the following steps; 

 

1. Choose the value N (i.e. number of Monte Carlo simulation); 

2. Choose the values 𝜑0 = (𝛼0, 𝜆0) corresponding to the parameters of the MOETLD (𝛼, 𝜆); 

3. Generate a sample of size n from MOETLD; 

4. Compute the maximum likelihood estimates �̂�𝑘 of 𝜑𝑘; 

5. Repeat steps (3-4), N-times;   

6. Compute the: 

(i)  Average Bias = 
1

𝑁
∑ (�̂�𝑘 − 𝜑𝑘)𝑁

𝑘=0 ; 

(ii)  Mean Square Error (MSE) =  
1

𝑁
∑ (�̂�𝑘 − 𝜑𝑘)2𝑁

𝑘=0    and 

(iii) Coverage Probability of the 95% confidence interval of the estimates �̂�𝑘 given by” 

𝐶𝑃(𝜑0) =  
1

𝑁
∑ 𝐼 (�̂�𝑘 −  𝑍𝛿

2⁄
√𝑣𝑎𝑟(�̂�) <  𝜑0 <  �̂�𝑘 +   𝑍𝛿

2⁄
√𝑣𝑎𝑟(�̂�))

𝑁

𝑘=1

 

where I(·) is an indicator function and √𝑣𝑎𝑟(�̂�) is the standard error of the estimate 𝜑𝑘. The coverage 

probability computes the proportion of times the confidence interval contains the true value of the 

parameter 𝜑0. 
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Table 4. Simulation Results for Average Bias, MSE and CP of Parameter α 

Parameter N Average Bias (α) MSE(α) CP(α) 
 30 0.1229 1.4792 0.8380 

 = 1.5 50 0.0895 0.7595 0.8840 

λ = 1.0 75 0.0723 0.4478 0.8860 

 100 0.0469 0.3258 0.9200 

     

 = 1.5 30 0.1759 1.4817 0.8340 

λ = 2.0 50 0.0911 0.8222 0.8600 

 75 0.0175 0.4866 0.8840 

 100 0.0115 0.2943 0.9000 

     

 = 0.3 30 0.0343 0.0508 0.8580 

λ = 2.0 50 0.0135 0.0195 0.9180 

 75 0.0088 0.0153 0.9000 

 100 0.0060 0.0113 0.9200 

 

 

Table 5. Simulation Results for Average Bias, MSE and CP of Parameter λ 

Parameter N Average Bias (α) MSE(α) CP(α) 
 30 0.1768 0.2642 0.9500 

 = 1.5 50 0.0882 0.1229 0.9560 

λ = 1.0 75 0.0516 0.0813 0.9540 

 100 0.0417 0.0553 0.9640 

     

 = 1.5 30 0.3003 1.0841 0.9340 

λ = 2.0 50 0.2298 0.6365 0.9300 

 75 0.1610 0.3376 0.9520 

 100 0.1248 0.2374 0.9540 

     

 = 0.3 30 0.1283 0.3170 0.9640 

λ = 2.0 50 0.0646 0.1491 0.9660 

 75 0.0552 0.1143 0.9500 

 100 0.0447 0.0886 0.9460 

 

Tables 4 and 5 present the simulation results for the average bias, mean square error and coverage 

probability of the 95% confidence interval of the parameter estimates of the MOETLD at different choice 

of parameter values. Clearly from the Tables, we observed that both parameters α and λ are positively 

biased, and the value of the biasness and mean square error of the parameter estimates decreases (tends to 

zero) are the value of the sample size n increases. Also, we observed that the coverage probabilities of the 

CIs of the parameter estimates are close to the nominal level of 95%. 

 

4. APPLICATION OF THE PROPOSED MOETL DISTRIBUTION 

In this section, the MOETL distribution is applied to two real data sets defined on a unit interval. Some 

well-known lifetime distributions whose support lies on a unit interval will also be used to fit the data sets. 

These distributions with their density function include; 

1. Marshall-Olkin Extended Kumaraswamy Distribution (MOEKD); 

𝑓(𝑥) =  
𝛼𝑎𝑏𝑥𝑎−1(1−𝑥𝑎)𝑏−1

[1−�̅�(1−𝑥𝑎)𝑏]
2  ,  
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2. Kumaraswamy Distribution; 

  𝑓(𝑥) =  𝑎𝑏𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1, 

3. Beta Distribution; 

 𝑓(𝑥) =  
𝑥𝑎−1(1−𝑥)𝑏−1

𝐵(𝑎,𝑏)
,     𝐵(𝑎, 𝑏) =  

Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
 . 

“ 

Dataset 1: The first data set consist of 48 rock samples from a petroleum reservoir reported in [20]. The 

data set is defined on a unit interval which is positively (right) skewed with skewness value (𝑆𝑘 = 1.1330) 

and leptokurtic with kurtosis value (𝐾𝑠 = 3.9404). The data set include; 

0.0903296, 0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940, 0.2627270, 

0.1794550, 0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250, 

0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950, 0.1138520, 

0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 0.2910290, 0.3412730, 0.4387120, 0.2626510, 

0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530, 0.1641270, 0.1534810, 0.1618650, 

0.2760160, 0.2538320, 0.2004470. 

Dataset 2: The second data set represents 20 observations of the maximum flood level (in millions 

of cubic feet per second) for Susquehanna River at Harrisburg, Pennsylvania and is reported in 

[21]. The data set is positively skewed with skewness value (𝑆𝑘 = 0.9940) and leptokurtic with kurtosis 

value (𝐾𝑠 = 3.3054).The data set include; 0.26, 0.27, 0.30, 0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 

0.41, 0.42, 0.42, 0.42, 0.45, 0.48, 0.49, 0.61, 0.65, 0.74. 
 

The parameter estimates of the distributions, Log-likelihood, Akaike Information Criterion (AIC), 

Kolmogorov-Smirnov Statistic )( SK −  and Crammer-von Mises test statistic (W*) with their respective 

p-values will be employed to compare the fitness of the distributions to the two data sets under study. 

 

Table 6. Summary Statistics for the Rock Samples from a Petroleum Reservoir Data Set 

Distributions Parameter 

Estimates 

Log-Lik AIC K-S 

(p-value) 

W* 

(p-value) 

MOETLD 𝛼 = 0.0034
𝜆 = 5.5834

 57.6628 −111.3256 0.0832
(𝟎. 𝟖𝟗𝟑𝟖)

 
0.0388

(𝟎. 𝟗𝟒𝟏𝟐)
 

      

MOEKD 𝛼 = 0.0214
𝑎 = 4.8120

𝑏 = 46.3554
 

57.7042 −109.4082 0.0911
(𝟎. 𝟖𝟐𝟎𝟏)

 
0.0462

    (𝟎. 𝟗𝟎𝟏𝟑)
 

      

Kumaraswamy 𝑎 = 2.7189
𝑏 = 44.6737

 52.4915 −100.9831 0.1533
(𝟎. 𝟐𝟎𝟗𝟒)

 
0.2059

(𝟎. 𝟐𝟓𝟔𝟖)
 

      

Beta 𝑎 = 5.9416
𝑏 = 21.2079

 55.6002 −107.2004 0.1427
(𝟎. 𝟐𝟖𝟐𝟖)

 
0.1298

(𝟎. 𝟒𝟓𝟖𝟖)
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Table 7. Summary Statistics for the Maximum Flood Level Data Set 
Distributions Parameter 

Estimates 

Log-Lik AIC K-S 

(p-value) 

W* 

(p-value) 

MOETLD 𝛼 = 0.0216
𝜆 = 8.6519

 16.1644 −28.3289 0.1214
(𝟎. 𝟗𝟐𝟗𝟖)

 
0.0387

(𝟎. 𝟗𝟒𝟑𝟗)
 

      

MOEKD 𝛼 = 0.0153
𝑎 = 6.4543
𝑏 = 5.4128

 
15.9235 −25.8471 0.1297

(𝟎. 𝟖𝟖𝟗𝟗)
 

0.0411
    (𝟎. 𝟗𝟑𝟐𝟎)

 

      

Kumaraswamy 𝑎 = 3.3773
𝑏 = 12.0005

 12.9733 −21.9465 0.2176
(𝟎. 𝟑𝟎𝟎𝟐)

 
0.1654

(𝟎. 𝟑𝟒𝟕𝟗)
 

      

Beta 𝑎 = 5.8307
𝑏 = 9.2364

 14.1836 −24.3671 0.2062
(𝟎. 𝟑𝟔𝟐𝟕)

 
0.1242

(𝟎. 𝟒𝟖𝟐𝟑)
 

 

Tables 6 and 7 reveal the summary statistics for the rock samples from a petroleum reservoir and the 

maximum flood level data sets. The parameter estimates, log-likelihood, Akaike Information Criterion 

(AIC), Kolmogorov-Smirnov Statistic )( SK −  and Crammer-von Mises test statistic (W*) with their 

respective p-values of the distributions were estimated for the two data sets. The Tables indicates that the 

proposed Marshall-Olkin Topp Leone distribution, having the least value in terms of AIC, )( SK −  and 

W* test statistics with the highest corresponding p-values, outperforms the Marshall-Olkin Kumaraswamy 

distribution, Kumaraswamy distribution and the Beta distribution in analyzing the data set under study. 

Furthermore, Figures 3-6 respectively showing the graphical illustration of the density and cumulative 

distribution fit and the Probability-Probability (P-P) plots of the distributions for the two data sets validate 

the claim of the superiority of the proposed MOETL distribution over the competing distributions under 

study.” 

 

Figure 3. Density and Cumulative Distribution fit of the Distributions for the Dataset 1 
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Figure 4. Probability-Probability (P-P) plots of the Distributions for the Dataset 1 

 

 

Figure 5. Density and Cumulative Distribution fit of the Distributions for the Dataset 2 
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Figure 6. Probability-Probability (P-P) plots of the Distributions for the Dataset 2 

 

5. CONCLUSION 

This study proposed a new Marshall Olkin extended family of distributions which we called the Marshall 

Olkin extended Topp-Leone distribution (MOETLD). The mathematical properties of the proposed 

distribution were derived.“Numerical computations of the moments as well as the Renyi entropy were 

established and the method of maximum likelihood estimation was used in estimating the parameters of the 

proposed distribution. Finally, an application of the proposed MOETL distribution to two real data sets, 

revealed its superiority over the existing Marshall-Olkin Kumaraswamy distribution (MOEKD), 

Kumaraswamy distribution and the Beta distribution, in modeling the two data sets under study.” 
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