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Abstract 

In this study, two conventional (mean and median) and three robust (20% trimmed mean, one-step M-
estimator and modified one-step M-estimator) measures of location are compared in terms of their 
asymptotic relative efficiencies and mean squared error when the underlying distribution is contaminated 
normal. When n=20, one-step M-estimator was best in five, modified one-step M-estimator was best in 
three and 20% trimmed mean was best in one situation, when n=40, one-step M-estimator and modified 
one-step M-estimator were best in four, 20% trimmed mean was best in one sampling situation covered.  

Keywords: Contaminated normal distribution; Trimmed mean; One-step M-estimator; Modified one-step 
M-estimator; Asymptotic relative efficiency; Mean squared error. 

 
Özet 

Normal dağılımdan daha ağır kuyruklara sahip dağılımlarda  
konum ölçülerinin karşılaştırılması

Bu çalışmada iki geleneksel (aritmetik ortalama ve ortanca) ve üç dayanıklı (%20’lik budanmış ortalama, 
tek-adım M-tahmincisi, düzeltilmiş tek-adım M-tahmincisi) konum ölçüsü, bozulmuş normal dağılım’dan 
türetilen veriler kullanılarak asimptotik göreli etkinlik ve hata kareler ortalaması bakımından 
karşılaştırılmıştır. n=20 iken tek-adım M-tahmincisi beş defa, düzeltilmiş tek-adım M-tahmincisi üç defa ve 
%20’lik budanmış ortalama bir defa, n=40 iken tek-adım M-tahmincisi ve düzeltilmiş tek-adım M-
tahmincisi dört defa, %20’lik budanmış ortalama bir defa en iyi konum ölçüsü olarak gözlenmiştir.  

Anahtar sözcükler: Bozulmuş normal dağılım; Budanmış ortalama; Tek-adım M-tahmincisi; Düzeltilmiş
tek-adım M-tahmincisi; Asimptotik göreli etkinlik; Hata kareler ortalaması.

1. Introduction 

Standard methods for analyzing data and comparing groups are based on the assumption that observations 
are randomly sampled from a normally distributed population. When the normality assumption is violated 
and the null hypothesis 0H is true, the most commonly used methods in statistics based on sample means 
seem to perform quite well in most situations. But if the alternative hypothesis 1H is likely to be true, 
there are situations where violating the normality assumptions can still be ignored, but there are also 
situations where violating the normality assumption can be very serious because of loss of power.  

The normal distribution is the most important distribution in all of statistics. But it can fail in terms of 
approximating the distribution of any continuous distribution. An aphorism given by Cramer has stated 
that “Everyone believes in the normal law of errors, the experimenters because they think it is a 
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mathematical theorem, the mathematicians because they think it is an experimental fact” [2]. The normal 
distribution implies that only two numbers are required to tell us everything about the probabilities 
associated with a random variable: the population mean µ and population variance 2σ . Moreover, an 
assumption of normality implies that distributions must be symmetric. 

Normal distribution may provide good approximation to most distributions that arise in practice. But 
unfortunately, empirical investigations indicate that departures from normality, that have practical 
importance, are rather common in applied work [4, 6, 9, 12]. In particular, distributions can be highly 
skewed, they can have heavy tails and random samples often have outliers. Outliers and heavy tailed 
distributions are serious practical problems because they inflate the standard error of the sample mean and 
the power can be relatively low when comparing groups.  

Tukey argued that heavy tailed distributions are likely to occur in practice and understanding the 
implications of heavy tailed distributions has great practical utility [11]  and, investigations into the 
characteristics of actual distributions support Tukey’s view [1, 3, 6, 10, 12, 14]. 

There is only one simulation study containing modified one-step M-estimator in the literature. Wilcox 
(2005) compared these 5 estimators in terms of their sampling variances when n=10 and the data were 
generated from Normal, Lognormal, One-Wild and Slash distributions. Variance of the mean is minimum 
under normality but when data come from lognormal distribution variance of the median and when the 
data come from One-Wild and Slash distribution variance of the modified one-step m-estimator is 
minimum in Wilcox’s study. 

The rest of this article is organized as follows. Section 2 provides a description of these three robust 
measures of location and contaminated normal distribution. Section 3 reports the results of simulation 
study between two conventional (mean and median) and three robust (trimmed mean, one-step M-
estimator and modified one-step M-estimator) measures of location. Section 4 gives some concluding 
remarks. 

2. Three robust measures of location 

One basic problem with the mean is that the tails of a distribution can dominate its value. If a measure of 
location is intended to reflect the typical subject of the population, the mean might fail because its value 
can be inordinately influenced by a very small proportion of the subjects who fall in the tails of a 
distribution. One strategy for reducing the effects of the tails of a distribution is simply to remove them, 
and this is the strategy employed by the trimmed mean. Other strategy is first empirically determine the 
amount of trimming then remove, this is the strategy employed by one-step M-estimator and modified 
one-step M-estimator. 

2.1 The trimmed mean 

The γ -trimmed mean is  

( )∫
−

−
=

γ

γ
γ

µ
1

21
1 x

x
t xxdF . (1) 

where γx and γ−1x are the gamma  and 1-gamma quintiles ( )5.00 <≤ γ .
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Estimator of population trimmed mean tµ is computed as follows. Let nXX ,...,1 be a random sample 
and let ( ) ( ) ( )nXXX ≤≤≤ ...21 be the observations written in ascending order. Let [ ]ng γ= , where 

[ ]nγ is the value of nγ rounded down to the nearest integer. The sample trimmed mean is [15]. 

( ) ( )
gn

XX
X gng

t 2
...1

−

++
= −+ (2) 

 2.2 One-step M-estimator 

Let ( )mX µξ − be some function that measures the distance between X and some unknown constant 

mµ , and let ψ be its derivative with respect to mµ . Attention is restricted to those functions for 
which ( )[ ]mXE µξ − , viewed as a function of mµ , has a derivative. 

A general approach to defining a measure of location is to take  mµ to be the value that minimizes 
( )mX µξ − . So in general, mµ satisfies  

( )[ ] 0=− mXE µψ (3) 

When ( ) ( )2
mm XX µµξ −=− , ( )[ ] 0=− mXE µψ and mµ = µ , the population mean. Various choices 

for ξ andψ have been proposed. Here, the focus is on Huber’s well known choice for ψ [5] 

( ) ( ){ }xkkx ,min,max −=ψ (4) 

Huber’s M-measure of location is usually estimated with an iterative estimation procedure such as the 
Newton-Raphson method. Even with only a single iteration, the resulting estimator has good asymptotic 
properties [7]. One iteration of this procedure yields one-step M-estimator of location. As an example, 
one-step M-estimator of location of the series 3, 4, 8, 16, 24, 53 can be computed as follows: 

1. Let 1i be the number of observations iX such that  28.1
6745.0

−<
−

MAD
MX i where M is median 

of the given series and { }MXMXMXMEDMAD n −−−= ,...,, 21 is median absolute 
deviation. In this inequality, 1.28 is a constant given by Huber and 0.6745 is also a constant used 
for to make the denominator an unbiased estimator of population standard deviationσ for normal 
distribution[15] 

2. Let 2i be the number of observations iX such that 28.1
6745.0

>
−

MAD
MX i

3. The one-step M-estimator of location in [13] is  
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A fundamental difference between the one-step M-estimator and trimmed mean is that an M-estimator 
empirically determines the amount of trimming whereas a trimmed mean is based on a predetermined 
amount of trimming.  A natural appeal of the one-step M-estimator is that if sampling is from a light tailed 
distribution, it might be reasonable to trim very few observations or none at all. If a distribution is skewed 
to the right, a natural reaction is to trim more observations from the right versus the left tail of the 
distribution. 

2.3 Modified one-step M-estimator 

When testing hypothesis, a slight variation has practical value. The term ( )( )12675.028.1 iiMAD − in 
Eq. (5) arises for technical reasons [8]. Ignoring it yields the modified one-step M estimator (MOM). This 
modified one-step M-estimator simply averages values not declared outliers; but to get reasonably good 
efficiency under normality, the outlier detection rule used by the one-step M-estimator is modified  

21

2

11

iin

X
ˆ

in

ii
)i(

mom −−
=µ
∑
−

+=
(6) 

where 1i is the number of observations for which ( ) 24.2/ −<− MADNMX i , and 2i is the number for which 
( ) 24.2>− MADNMXi (Hampel identifier) [15]. 

2.4 Contaminated normal distribution 

Contaminated normal distributions are mixtures of two normal distributions. Generating an observation 
from a contaminated normal distribution means that an observation is randomly sampled from a standard 
normal distribution with probability ε−1 , where ε can be any number between 0 and 1 otherwise, an 
observation is randomly sampled from a normal distribution with mean 0 and standard deviation K. Let 

( ) ( )xXPx ≤=Φ be the standard normal distribution. The contaminated normal distribution is  

( ) ( ) ( ) ( )K
xxxH Φ+Φ−= 1 εε (7) 

which has mean 0 and variance 21 Kεε +− [15]. A common choice for ε and K is 0.1 and 10, 
respectively, in which case 

( ) ( ) ( )101.09.0 xxxH Φ+Φ= (8) 

which has mean 0 and variance 10.9. Figure 1 shows the standard normal and the contaminated normal 
probability density function corresponding to Eq. (8). 
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Figure 1. Probability density functions of standard normal and contaminated normal distribution 
corresponding to Eq. (8). 

It can easily be observed that the tails of the contaminated normal are heavier than the standard normal 
and there is a large difference between variances of these two distributions. The reason for this large 
difference is that 2σ is very sensitive to the tails of a distribution. In other words, a small proportion of the 
population of subjects can have an extremely large effect on its value [15].  

3. Simulation study 

In this simulation study, mean, median, 20% trimmed mean, one-step M-estimator and modified one-step 
M-estimator are compared in terms of their asymptotic relative efficiency values and mean squared error 

of θ̂ ( )( )θ̂MSE . The asymptotic relative efficiency of estimator 2θ̂ with respect to 1̂θ is defined as  

( ) ( )
( )2

1
12 ˆ

ˆˆ,ˆ
θ
θθθ

Var
VarEFF = (9) 

and if this ratio is less than 1, it can be said that 1̂θ is asymptotically more efficient than 2θ̂ . Asymptotic 
relative efficiency is a useful concept in that it allows us to make comparisons of competing estimators 
which are generally valid for sample sizes as low as 20 [8]. Mean squared error of an estimator is defined 
as  

 ( ) ( ) ( )[ ]2ˆˆˆ θθθ BiasVarMSE +=  (10) 

 where ( ) ( ) θθθ −= ˆˆ EBias  

To generate data from the contaminated normal distribution ( )KCN ,ε , three different contamination 
probabilities ( ) ( ) ( )2.0,1.0,05.0=ε and three different standard deviations 20,10,5=σ were used with 
sample sizes 40 ,20=n . 10000 executions are made for each case by using the statistical software 
MINITAB 14. The MSE of all measures of location were reported in Table 1 and 2 for 40,20=n
respectively. 
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Table 1. Mean squared error of mean, median, 20% trimmed mean, one-step M-estimator and modified 
one-step M-estimator when sample size n=20. 

 

Table 2. Mean squared error of mean, median, 20% trimmed mean, one-step M-estimator and modified 
one-step M-estimator when sample size n=40. 

 

Let Eff1, Eff2, Eff3 and Eff4  denote the asymptotic relative efficiencies of median(med),  trimmed mean 
(tmean), one-step M-estimator(osmest) and modified one-step M-estimator (mosmest) with respect to 
mean; similarly Eff 5, Eff 6 and Eff7 denote the asymptotic relative efficiencies of trimmed mean, one-
step M-estimator, modified one-step M-estimator with respect to median; Eff 8 and  Eff 9 denote the 
asymptotic relative efficiency of one-step M-estimator and modified one-step M-estimator with respect to 
trimmed mean; and Eff 10 denote the asymptotic relative efficiency of modified one-step M-estimator 
with respect to one-step M-estimator. These values can be found in Table 3 and Table 4, for 

40 ,20=n respectively. 

 

Distribution MSE 
mean 

MSE 
median 

MSE 
20%tmean 

MSE 
osmest 

MSE 
mosmest 

N(0,1) 0.04921 0.07444 0.05721 0.05296 0.06235 
CN(0.05,5) 0.15721 0.15504 0.12216 0.11667 0.12993 

CN(0.05,10) 0.35165 0.15510 0.12066 0.11736 0.13027 
CN(0.05,20) 1.16489 0.15379 0.12311 0.1182 0.13028 
CN(0.1,5) 0.22618 0.16127 0.12658 0.12354 0.13307 
CN(0.1,10) 0.61629 0.16986 0.13354 0.13134 0.13187 
CN(0.1,20) 2.27206 0.16976 0.13696 0.13565 0.13218 
CN(0.2,5) 0.36353 0.17781 0.15334 0.15645 0.15337 
CN(0.2,10) 1.25135 0.19355 0.19458 0.18401 0.14886 
CN(0.2,20) 4.69487 0.19599 0.28074 0.21287 0.14027 

Distribution MSE 
mean 

MSE 
median 

MSE 
20%tmean 

MSE 
osmest 

MSE 
mosmest 

N(0,1) 0.02446 0.02920 0.02652 0.03799 0.03082 
CN(0.05,5) 0.13175 0.11606 0.09195 0.08776 0.09925 

CN(0.05,10) 0.32835 0.11875 0.09237 0.08902 0.09543 
CN(0.05,20) 1.09971 0.11720 0.09311 0.08817 0.09655 
CN(0.1,5) 0.20362 0.12351 0.09863 0.09679 0.10193 
CN(0.1,10) 0.58318 0.12458 0.10522 0.10378 0.10098 
CN(0.1,20) 2.13737 0.12919 0.10684 0.10680 0.09631 
CN(0.2,5) 0.32275 0.14203 0.12160 0.12794 0.12177 
CN(0.2,10) 1.17398 0.15117 0.16048 0.15127 0.11844 
CN(0.2,20) 4.41400 0.15921 0.24414 0.17591 0.10789 
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Table 3. Asymptotic relative efficiencies of mean, median, trimmed mean, one-step M-estimator and 
modified one-step M-estimator for different CN distributions for 20=n (wrt: with respect to). 

 
ε σ

Eff1 
med 
wrt 

mean 

Eff2 
tmean 

wrt 
mean 

Eff3 
osmest 

wrt 
mean 

Eff4 
mosmest 

wrt  
mean 

Eff5 
tmean 

wrt 
med 

Eff6 
osmest 

wrt 
med 

Eff7 
mosmest 

wrt  
med 

Eff8 
osmest 

wrt 
tmean 

Eff9 
mosmest 

wrt 
tmean 

Eff10 
mosmest 

wrt 
osmest 

 
Choice 

N(0,1) 0.661 0.860 0.929 0.789 1.301 1.405 1.193 1.080 0.917 0.849 
1.mean 
2.osmest 
3.tmean 

5 1.014 1.286 1.347 1.209 1.268 1.328 1.192 1.047 0.940 0.897 
1.osmest. 
2.tmean 
3.mosmest 

10 2.270 2.913 2.995 2.698 1.283 1.319 1.188 1.028 0.926 0.900 
1.osmest. 
2.tmean 
3.mosmest 

0.05 

20 7.574 9.461 9.854 8.942 1.249 1.301 1.180 1.041 0.945 0.907 
1.osmest. 
2.tmean 
3.mosmest 

5 1.402 1.786 1.830 1.699 1.273 1.305 1.211 1.024 0.951 0.928 
1.osmest. 
2.tmean 
3.mosmest 

10 3.628 4.614 4.691 4.672 1.271 1.293 1.288 1.016 1.012 0.995 
1.osmest. 
2.mosmest 
3.tmean 

0.1 

20 13.379 16.583 16.743 17.190 1.239 1.251 1.284 1.009 1.036 1.026 
1.mosmest. 
2.osmest 
3.tmean 

5 2.045 2.370 2.323 2.370 1.159 1.136 1.159 0.980 0.999 1.020 
1.tmean 
2.mosmest 
3.osmest 

10 
6.464 6.430 6.800 8.407 0.994 1.051 1.300 1.057 1.307 1.236 

1.mosmest. 
2.osmest 
3.med

0.2 

20 23.961 16.729 22.054 33.467 0.698 0.920 1.396 1.318 2.000 1.517 
1.mosmest. 
2.med 
3.osmest 
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Table 4. Asymptotic relative efficiencies of mean, median, trimmed mean, one-step M-estimator and 
modified one-step M-estimator for different CN distributions for 40=n (wrt: with respect to). 

4. Conclusion 

In Table 3, when the samples are taken from standard normal distribution, all asymptotic relative 
efficiencies with respect to mean is less than 1. This means that sample mean is more efficient than all 
other measures of location. This is the reason that the first choice is the mean in this row. When the 
asymptotic relative efficiencies with respect to median is controlled, it can be seen that all are greater than 
1 and which means median should not be the second choice. Remaining part of standard normal row of  
Table 3  tells us that the second most efficient measure of location should be one-step M-estimator and the 
third one should be  20% trimmed mean with respect to their asymptotic relative efficiencies values. All 
rows of both Table 3 and Table 4 are commented in the same manner and the orders of choices are 
determined. 

When n=20, one-step M-estimator is preferred 5 times, modified one-step M-estimator is preferred 3 times 
and 20% trimmed mean is preferred 1 time out of 9 situations covered in terms of asymptotic relative 
efficiency  

When n=40, one-step M-estimator is preferred 4 times, modified one-step M-estimator is preferred 4 times 
and %20 trimmed mean is preferred 1 time out of 9 situations covered in terms of asymptotic relative 
efficiency. 

ε σ
Eff1 
med  
wrt 

mean 

Eff2 
tmean 

wrt 
mean 

Eff3 
osmest 

wrt 
mean 

Eff4 
mosmest 

wrt 
mean 

Eff5 
tmean 

wrt 
med 

Eff6 
osmest 

wrt 
med 

Eff7 
mosmest 

wrt  
med 

Eff8 
osmest 

wrt 
tmean 

Eff9 
mosmest 

wrt 
tmean 

Eff10 
mosmest 

wrt 
osmest 

 
Choice 

N(0,1) 0.644 0.837 0.992 0.793 1.300 1.432 1.232 1.101 0.947 0.860 
1.mean. 
2.osmest 
3.tmean 

5 1.135 1.432 1.501 1.327 1.261 1.322 1.168 1.047 0.926 0.884 
1.osmest. 
2.tmean 
3.mosmest 

10 2.764 3.555 3.688 3.440 1.285 1.334 1.244 1.037 0.967 0.932 
1.osmest. 
2.tmean 
3.mosmest 

0.05 

20 9.378 11.807 12.468 11.383 1.258 1.329 1.213 1.056 0.964 0.913 
1.osmest. 
2.tmean 
3.mosmest 

5 1.648 2.064 2.103 1.998 1.252 1.275 1.211 1.018 0.967 0.949 
1.osmest. 
2.tmean 
3.mosmest 

10 4.683 5.543 5.619 5.775 1.183 1.199 1.233 1.013 1.041 1.027 
1.mosmest 
2.osmest 
3.tmean 

0.1 

20 16.543 20.003 20.014 22.191 1.209 1.209 1.341 1.000 1.109 1.108 
1.mosmest 
2.osmest 
2.tmean 

5 2.272 2.653 2.522 2.650 1.167 1.110 1.166 0.950 0.998 1.050 
1.tmean. 
2.mosmest 
3.osmest 

10 7.766 7.316 7.761 9.912 0.942 0.999 1.276 1.060 1.354 1.277 
1.mosmest 
2.med 
3.osmest 

0.2 

20 27.721 18.079 25.090 40.914 0.652 0.905 1.475 1.387 2.263 1.630 
1.mosmest 
2.med 
3.osmest 
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When we look at the order of choices in the Table 3 and 4, it is observed that the first choices have always 
the smallest MSE value that’s why it can be said that two criterions have confirmed each other in all 
sampling situations. 

When the sample is taken from N (0, 1), mean is clearly the best choice with the smallest MSE value. But 
when the underlying distribution has some heavier tails than normal, mean is the worst choice in all of the 
sampling situations covered in terms of both asymptotic relative efficiency and MSE criterions. 

Heavy tailed distributions like contaminated normal are very common in applied work. It is known that 
these heavy tails are likely to create outlying observations which substantially inflate the sample mean and 
variance and reduce the power of the tests that utilize them.   

The use of one-step M-estimator modified one-step M-estimator and trimmed mean and the use of 
statistical tests that utilize these robust location estimators should be considered as an alternative approach 
when the underlying distribution has heavier tails than normal. Some bootstrap techniques such as 
percentile bootstrap and bootstrap-t make it possible to use these three robust estimators for inferential 
purposes. 
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