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Abstract

In the present paper we determine necessary and sufficient conditions for the Pascal distribution series to be
in the subclasses S(k, A) and C(k, A) of analytic functions. Further, we consider an integral operator related
to Pascal distribution series. Some interesting special cases of our main results are also considered.
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1. Introduction and definitions

Let A denote the class of the normalized functions of the form
f(z) = z+Zanz", (1)
n=2

which are analytic in the open unit disk U= {z € C: |z| < 1}. Further, let 7 be a subclass of A consisting
of functions of the form

f(2)=2z=lan| " (2)
n=2

A function f of the form is in S(k, A\) if it satisfies the condition

zf'(2) -1

(17)\)f(z/)+)\zf ) <k (0<k<1,0<A<1,z€l)
2f'(2) +1

(I=N)f(z)+Azf'(2)
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and f € C(k,\) if and only if zf’ € S(k, A).The class S(k, \) was studied by Frasin et al. [7].
We note that S(k,0) = S(k) and C(k,0) = C(k), where the classes S(k) and C(k) were introduced and
studied by Padmanabhan [17] (see also, [11], [16]) .
A function f € A is said to be in the class R7(A4, B),7 € C\{0}, —1 < B < A < 1, if it satisfies the
inequality
f'(z) -1
(A—B)T = B[f'(2) - 1]

<1, =ze€Ul.

This class was introduced by Dixit and Pal [3].
A variable X is said to be Pascal distribution if it takes the values 0,1,2,3,... with probabilities

m(l—q)™ ¢>m(m —)™ ¢@*mim m —q)™
(1 gm. @ (11' Q" am( +21|)(1 Rt +1)(3!+2)(1 9)

are called the parameters, and thus

, ..., respectively, where ¢ and m

r+m-—1
m—1

PX=r)= ( )qr(l—q)m, (m>1,0<¢<1,r=0,1,2,3,....).

Very recently, El-Deeb et al.[5] (see also, [14)1]) introduced a power series whose coefficients are probabilities
of Pascal distribution, that is

— (n+m—2\ ,
O Y (g Vi B LS

where m > 1, 0 < g < 1, and we note that, by ratio test the radius of convergence of above series is infinity.
We also define the series

m m = n+m—2 n— m_n
q)q(z)::2z—\11q(z):z—z< S >q Y1 —gmz", z€U. (3)
n=2

Let consider the linear operator Z;" : A — A defined by the convolution or Hadamard product

TOf(s) = W) % f(z) =2+ 3 < >q"1<1 g, ze U,

where m > 1and 0 < ¢g <1.

Motivated by several earlier results on connections between various subclasses of analytic and univalent
functions, by using hypergeometric functions (see for example, [2] [7, 10, 19, 20]) and by using various
distributions such as Yule-Simon distribution, Logarithmic distribution, Poisson distribution, Binomial dis-
tribution, Beta-Binomial distribution, Zeta distribution, Geometric distribution and Bernoulli distribution
(see for example, [4] (6, [8 9], 12, 13| 18], 15]), in this paper, we determine the necessary and sufficient condi-

tions for ®'(2) to be in our classes S(k,\) and C(k, A) and connections of these subclasses with R7(A4, B).
z 25" (t)
0 ¢

Finally, we give conditions for the integral operator G;*(m, z) = dt belonging to the above classes.

2. Preliminary lemmas
To establish our main results, we need the following Lemmas.

Lemma 2.1. [7/A function f of the form (@ is in S(k,\) if and only if it satisfies

o0

Y (L= A) + k(L +A) = (=N (1 = k)] |ax| < 2k (4)

n=2
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where 0 < k<1 and 0 < XA < 1. The result is sharp.
Lemma 2.2. [7/A function f of the form (3) is in C(k, \) if and only if it satisfies

doan((L =) + k(1 +X) = (1= A)(1 k)] |an| < 2k ()

n=2

where 0 < k<1 and 0< X< 1. The result is sharp.

Lemma 2.3. [3/ If f € R7(A, B) is of the form , then

|an| S(A—B)T, neN-—{1}.
The result is sharp for the function
z Ttn_l

3. Necessary and sufficient conditions

For convenience throughout in the sequel, we use the following identities that hold at least for m > 2
and 0 < ¢ < 1:

3 G Tyt T o Ui T e

n=0 n=0
i n+my ., 1 i n+m+1\ , 1
Z\ m T = a_gm 2\ m+1 T = a—gm+2

By simple calculations we derive the following relations:

i n+m—2 n_lfi n+m-—1\ , 1 1 1
m-1 )T = m—1 )1 C(l—qm 7

n=2 n=0
(e 9] o0

n+m—2 1 n+m qm
Z(n—1)< m— 1 )q” =qu< m >Q”=(1_)m+1,
n=2 n=0 q

and

ad n+m-—2\ , 9 = (n+m+1\ ,
S bin G m<m+1>n§:jo( AT
@?m(m+1)
(1 _ q)m+2 ’

Unless otherwise mentioned, we shall assume in this paper that 0 < £ <1,0< A< 1, while m > 1 and
0<qg<l

Firstly, we obtain the necessary and sufficient conditions for ®¢* to be in the class S (k, N).

Theorem 3.1. We have @ € S(k, \), if and only if

(1= X) +k(1+ A))% < k. (6)
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Proof. Since

in view of Lemma [2.1] it suffices to show that

D (=X +EA+A) = (1= M\)(1 k)] (n+m_ 2
n=2
Writing
n=Mn-1)+1
in ) we have

D (1= A) + k(1 + ) _(1_)\)(1_k)](n+m—2

n=2

> <n+m2

)q”‘l(l —q"

m—1

= 1)((1 = A) + k(1 + X)) + 2k]

n=2

>q”1(1 —q)"

m—1

= [A=X+EA+N]D (n—1)

n=2

> n+m—2
m—1

)t

m

- ((1—)\)+k(1+)\))1q—+2k(1—(1—q)m).

But this last expression is bounded above by 2k if and only if (@ holds. O
Theorem 3.2. We have @7 € C(k, \) if and only if

q® m(m+1)
(1 _ q)m+2

+(1 =N 2+ k) +3k(1+N)]

[(1—=X)+E1+N)

% < 2k. (9)

Proof. In view of Lemma [2.2] we must show that

Zn[n((l—)\)—l—k(l—i—/\))_(1_)\)(1_k)]<n+m2

n=2

>q"1(1 —q)™ < 2. (10)

m—1

Writing
n*=m-1)(n-2)+3n-1)+1 and n=(n—-1)+1,

we get
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= n+m-—2\ ,_ m
Sonfn((1 =0+ K1+ — == )"0
n=2 m=
= n+m-—2\ , 4
= [(1- —1)(n—-2) n=l(1 _ g™
{ P30 -2)(" ")
FI(1 = N2+ k) + 3k(1+ N\ i(n— (T R gt — gy
- m—1
> (n+m—2 1
2k )
w3 (")
2
+1
= (1= N+ H)}M
(1—-q)?
+[(1—)\)(2+k)+3k¢(1+)\)]( ) +2k(1—(1—q)™).
Therefore, we see that the last expression is bounded above by 2k if @D is satisfied. O

4. Inclusion Properties

Making use of Lemma we will study the action of the Pascal distribution series on the classes S(k, \)

and C(k, \).
Theorem 4.1. Letm > 1. If f € R™(A,B), then T;" € S(k, \) if
(A=B)lr[[[A =X +EA+X)] (1= (1-q)")

(1 — )‘)(1 — k) m m
S AEE g - - 07— atm - 01 - 0]
< 2k.
Proof. In view of Lemma [2.] it suffices to show that
ST = A) R +A) — (1= 21— k)] <” + " N 2>q"1(1 —q)™ |an| < 2k.
n=2
Since f € R7(A, B), then by Lemma we have
(A—B)|7|
an < 2
Thus, we have
Sl =2+ k) = (= 0= B) (" T - 07 ol
n=2
< G-pl | Sla-n e (") o
n=2

Zi[uxxlk)](”;’f]2>q"—l<1q>m]
= A-B)FIL-N+kA+N] 1= (1= ™)

(1—)\)(1—16‘) m m
DD 0y - - atm - 01 - 0"

But this last expression is bounded by 2k, if holds, which completes the proof of Theorem .

O
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Applying Lemma [2.2] and using the same technique as in the proof of Theorem we have the following
result:

Theorem 4.2. Letm > 1. If f € R"(A,B), then Ij* € C(k, \) if
qm m
(A=B)|r| [((1T=X)+Ek(1+ )\))iq +2k(1—(1—q)™)| <2k. (13)
5. An integral operator
Theorem 5.1. If m > 1, then the integral operator
Z oM (t
o7 (m.2) = [ 200, (14)
0 t
is in C(k, \) if and only if inequality (6) is satisfied.
Proof. According to ((14]) ) it follows that
> (n+m—2 -1 2"
m — n 1 — o)™
Gy (m, 2) = z Z( )q (1—g)™=

m—1
n=2

then by Lemma [2.2] we need only to show that

o0

;n[n((l — N EI+N) = (1= A)(1—k)] x i(” ‘;”_”” N 2) N1 — g™ < 2k,
or, equivalently
;[n((l — N+ E(LHN) — (1= N (1~ k)] (” ;”_1 N 2) "1 q)" < 2k. (15)

The remaining part of the proof of Theorem [5.1] is similar to that of Theorem [3.I] and so we omit the
details. O

Theorem 5.2. If m > 1, then the integral operator G;*(m, z)given by () is in S(k,\) if and only if
[(T=N)+EA+M]A-(1=9™)
(1=XN)(1-k)
————[(1-q) -1 —=¢)" —qm —1)(1 —q)™
T — 1) (1-q)—(1—q) ( )1 —q)"]
< 2k.
The proof of Theorem is lines similar to the proof of Theorem [5.1] so we omitted the proof of this
theorem.
6. Corollaries and consequences

By specializing the parameter A = 0 in the above theorems we obtain the following corollaries.

Corollary 6.1. We have @' € S(k), if and only if

W < 92k. (16)
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Corollary 6.2. We have @' € C(k) if and only if

@ m(m+1)(1+k) . 2q m(1 + 2k)

gz Ao g = "
Corollary 6.3. Let m > 1. If f € R"(A,B), then T;" € S(k) if
(A=B)|r[[[(1+k)(1-(1—-q™)
(1 — k) m m
B 1m0 - - — glm— 0 - 0]
< 2. (18)
Corollary 6.4. Let m > 1. If f € R™(A,B), then I;' f € C(k) if
(A B)|7| (1+k)%+2k(1— (1—q)m)} < k. (19)

Corollary 6.5. If m > 1, then the integral operator G7*(m, z) given by is in C(k) if and only if
inequality is satisfied.

If m > 1, then the integral operator G;"(m, z) given by is in S(k) if and only if
(I+E)(1-(1-9")
1-k m m
~ OBy (g g - 1 g

q(m —1)
< 2k
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