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Abstract
Let DPn and ODPn be the semigroups of all isometries and of all order-preserving isometries on Xn,
respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup
DPn,r = {α ∈ DPn : |im (α)| ≤ r} (similarly of the subsemigroup ODPn,r = {α ∈ ODPn : |im (α)| ≤ r})
for 2 ≤ r ≤ n− 1.
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1. Introduction
Let In be the symmetric inverse semigroup on the finite chain Xn = {1, . . . , n}, and let α ∈ In. If (∀x ∈ dom (α))

xα = x then α is called the partial identity map on U = dom (α) ⊆ Xn, denoted by id U . If (∀x, y ∈ dom (α))
x ≤ y ⇒ xα ≤ yα (x ≤ y ⇒ xα ≥ yα) then α is called an order-preserving map (an order-reversing map), and if
(∀x, y ∈ dom (α)) |x− y| = |xα− yα| then α is called an isometry (or distance-preserving map) on Xn, under its natural
order. Then the subset of all isometries and the subset of all order-preserving isometries, denoted by DPn and
ODPn respectively, that is,

DPn = {α ∈ In : (∀x, y ∈ dom (α)) |x− y| = |xα− yα| } and
ODPn = {α ∈ DPn : (∀x, y ∈ dom (α)) x ≤ y ⇒ xα ≤ yα },

are clearly subsemigroups of In and ODPn ⊆ DPn ⊆ In. Moreover, for 2 ≤ r ≤ n− 1, let

DPn,r = {α ∈ DPn : |im (α)| ≤ r} and
ODPn,r = {α ∈ ODPn : |im (α)| ≤ r}

which are clearly subsemigroups of DPn and ODPn, respectively.
Let S be any semigroup, and let W be any non-empty subset of S. Then the subsemigroup generated by W , that

is, the smallest subsemigroup of S containing W , is denoted by 〈W 〉. The rank of a finitely generated semigroup S,
i.e., a semigroup generated by a finite subset, is defined by

rank (S) = min{ |W | : 〈W 〉 = S}.

Moreover, the generating set of S with cardinality rank (S) is called a minimal generating set of S.
Al-Kharousi, Kehinde and Umar showed in [1, Theorems 3.1, 3.4 and 3.5] that

rank (ODPn,n−1) = n, rank (ODPn) = n+ 1,

rank (DPn,n−1) = n, and rank (DPn) = bn+ 3
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Then, in [2], we introduced some properties of DPn,r and ODPn,r, and also showed that

rank (DPn,r) =

(
n

r

)
and rank (ODPn,r) =

(
n

r

)
.

However, there were no results about the structure of any minimal generating set of DPn,r ( ODPn,r) and no
method for whether an arbitrary non-empty subset X of DPn,r (ODPn,r) is a minimal generating set of DPn,r

(ODPn,r), or not for 2 ≤ r ≤ n− 1. Thereby, in this study we improve a useful method to respond this lack.

2. Preliminaries
In this section we remind some definitions and properties given also in [2], and without otherwise stated we

take 2 ≤ r ≤ n− 1.
Let α ∈ DPn, and let dom (α) = {a1 < · · · < ap}with 2 ≤ p ≤ n. Then the gap and the reverse-gap of α, denoted

by g (α) and g R(α), are defined by

g (α) = (d1, . . . , dp−1) and g R(α) = (dp−1, . . . , d1),

respectively, where di = a(i+1) − ai for each 1 ≤ i ≤ p− 1. It is easy to see that p− 1 ≤
∑p−1

i=1 di ≤ n− 1 for any gap
(d1, . . . , dp−1). Moreover, for any ordered (p− 1)-tuple (d1, . . . , dp−1), if

(d1, . . . , dp−1) = (dp−1, . . . , d1),

then (d1, . . . , dp−1) is called symmetric (otherwise, asymmetric) ordered (p− 1)-tuple.
From [1, Lemma 1.2] we know that each element of DPn is either order-preserving or order-reversing map. Let

α ∈ DPn such that dom (α) = A = {a1 < · · · < ap} and im (α) = B = {b1 < · · · < bp} for 2 ≤ p ≤ n. If α is an
order-preserving map, then ai+1 − ai = bi+1 − bi for each 1 ≤ i ≤ p− 1 ≤ n− 1 and α has the following tabular
form:

α =

(
a1 a2 · · · ap
b1 b2 · · · bp

)
, or shortly α =

(
A
B

)
.

If α ∈ DPn is an order-reversing map, then ai+1 − ai = bp−i+1 − bp−i for each 1 ≤ i ≤ p− 1 ≤ n− 1 and α has the
following tabular form:

α =

(
a1 a2 · · · ap
bp bp−1 · · · b1

)
, or shortly α =

(
A
BR

)
.

From the definitions of the Green’s equivalences we clearly have

(i) αRβ ⇔ dom (α) = dom (β),

(ii) αLβ ⇔ im (α) = im (β) and

(iii) αHβ ⇔ dom (α) = dom (β) and im (α) = im (β)

for α, β ∈ DPn,r or α, β ∈ ODPn,r, and we have

(iv) αDβ ⇔ g (α) = g (β) or g (α) = g R(β) for α, β ∈ DPn,r and

(v) αDβ ⇔ g (α) = g (β) for α, β ∈ ODPn,r.

(For the definitions of Green’s equivalences and for the other terms in semigroup theory, which are not explained
here, we refer to [3, 4]).

Let Kp = {α ∈ DPn : |im (α)| = p} and let Lp = {α ∈ ODPn : |im (α)| = p} for 0 ≤ p ≤ n. Then Kp (Lp)
is disjoint union of some D-classes since |im (α)| = |im (β)| for (α, β) ∈ D, and there exist

(
n
p

)
R-classes and

(
n
p

)
L-classes in Kp (Lp). Moreover, DPn,r (ODPn,r) is the disjoint union of K0,K1, . . . ,Kr (L0, L1, . . . , Lr).

For 2 ≤ p ≤ n let (d1, . . . , dp−1) be a possible gap. Then, let D(d1,...,dp−1) denotes the D-class which consists of
the elements with gap or reverse-gap (d1, . . . , dp−1) in Kp, and similarly denotes the D-class which consists of the
elements with gap (d1, . . . , dp−1) in Lp. Notice that all the subsets of Xn with the gap (d1, . . . , dp−1) are

Ak = {k, k + d1, k + d1 + d2, . . . , k + t} for 1 ≤ k ≤ n− t
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and with the reverse-gap (d1, . . . , dp−1) are

Bk = {k, k + dp−1, k + dp−1 + dp−2, . . . , k + t} for 1 ≤ k ≤ n− t

where t =
∑p−1

i=1 di. If (d1, . . . , dp−1) is symmetric then, sinceAk = Bk for each 1 ≤ k ≤ n−t, theD-classD(d1,...,dp−1)

in Kp has the following egg box form:

Ds : R1

Rn−t

L1 Ln−t(
A1

A1

)
,

(
A1

AR
1

)
· · ·

(
A1

An−t

)
,

(
A1

AR
n−t

)
. . .(

An−t
A1

)
,

(
An−t
AR

1

)
· · ·

(
An−t
An−t

)
,

(
An−t
AR

n−t

) .

If (d1, . . . , dp−1) is asymmetric, then the D-class D(d1,...,dp−1) in Kp has the following egg box form:

Das : R1

Rn−t

Rn−t+1

R2(n−t)

L1 Ln−t Ln−t+1 L2(n−t)(
A1

A1

)
· · ·

(
A1

An−t

) (
A1

BR
1

)
· · ·

(
A1

BR
n−t

)
. . . . . .(

An−t
A1

)
· · ·

(
An−t
An−t

) (
An−t
BR

1

)
· · ·

(
An−t
BR

n−t

)
(

B1

AR
1

)
· · ·

(
B1

AR
n−t

) (
B1

B1

)
· · ·

(
B1

Bn−t

)
. . . . . .(

Bn−t
AR

1

)
· · ·

(
Bn−t
AR

n−t

) (
Bn−t
B1

)
· · ·

(
Bn−t
Bn−t

)
.

Similarly, the D-class D(d1,...,dp−1) in Lp has the following egg box form:

Do : R1

Rn−t

L1 Ln−t(
A1

A1

)
· · ·

(
A1

An−t

)
. . .(

An−t
A1

)
· · ·

(
An−t
An−t

) .

Recall from [2], as a result of [2] Lemmas 1 and 2, that a non-empty subset W of Kr (Lr) is a generating set of
DPn,r (ODPn,r) if and only if Kr ⊆ 〈W 〉 (Lr ⊆ 〈W 〉). Moreover, recall that

(I) Let α1, . . . , αk be some elements of Kp (Lp) for k ≥ 2 and 1 ≤ p ≤ n − 1. Then α1 · · ·αk = γ is also an
element of Kp (Lp) if and only if αiαi+1 is element of Kp (Lp), equivalently, im (αi) = dom (αi+1) for each
1 ≤ i ≤ k − 1.

(II) Let D be a D-class in DPn,r (ODPn,r) for 2 ≤ r ≤ n− 1, and let α1, . . . , αk ∈ D for k ≥ 2. Then α1 · · ·αk ∈ D
if and only if αiαi+1 ∈ D, equivalently, im (αi) = dom (αi+1) for each 1 ≤ i ≤ k − 1.

(III) For 2 ≤ r ≤ n − 1, a non-empty subset W of Kr (Lr) is a generating set of DPn,r (ODPn,r) if and only if
D ⊆ 〈W ∩D〉 for each D-class D in Kr (Lr).

As a final of this section we give some definitions about digraphs. Let Π = (V (Π),
−→
E (Π)) be a digraph where

V (Π) is the set of vertices and
−→
E (Π) ⊆ V (Π)× V (Π) is the list of directed edges. For any u1, . . . , uk ∈ V (Π) (k ≥ 2)

(they have not to be distinct) if (u1, u2), (u2, u3), . . . , (uk−1, uk) ∈
−→
E (Π), then u1 → u2 → · · · → uk is called a walk

from u1 to uk. In particular, for distinct vertices u1, . . . , uk ∈ V (Π) where k ≥ 1, the closed walk u1 → · · · → uk → u1
is called a cycle, and the cycle consists of a unique vertex is called loop. Also, for any vertices u, v ∈ V (Π) if u = v or
there exists a walk from u to v we say u is connected to v, and respectively, the vertex u = v or the walk u→ · · · → v
is also called connection from u to v. Let WD be a non-empty subset of any D-class D in Kr (Lr). Then we define the
digraph ΓWD

as follows:
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• the vertex set of ΓWD
, denoted by V = V (ΓWD

), is WD; and

• the directed edge set of ΓWD
, denoted by

−→
E =

−→
E (ΓWD

), is

−→
E = {(α, β) ∈ V × V : αβ ∈ D}.

(For unexplained terms about digraphs, see [5].)

Theorem 2.1. [[2] Theorem 3] Let D be a D-class in Kp for 2 ≤ p ≤ n− 1, and let ∅ 6= WD ⊆ D. Then D ⊆ 〈WD〉 if and
only if

(i) for each order-preserving map γ ∈ D \WD there exist α, β ∈WD such that dom (α) = dom (γ) and im (β) = im (γ),
and at least one walk ρ, from α to β in ΓWD

such that the number of order-reversing maps in ρ is even, and

(ii) for each order-reversing map γ′ ∈ D \WD there exist α′, β′ ∈ WD such that dom (α′) = dom (γ′) and im (β′) =
im (γ′), and at least one walk ρ′, from α′ to β′ in ΓWD

such that the number of order-reversing maps in ρ′ is odd.

Theorem 2.2. [[2] Theorem 4] For 2 ≤ r ≤ n− 1 rank (DPn,r) =
(
n
r

)
.

Theorem 2.3. [[2] Theorem 5] Let D be a D-class in Lp for 2 ≤ p ≤ n− 1, and let ∅ 6= WD ⊆ D. Then D ⊆ 〈WD〉 if and
only if, for each γ ∈ D \WD there exist α, β ∈WD such that dom (α) = dom (γ) and im (β) = im (γ), and there exists at
least one walk from α to β in ΓWD

.

Theorem 2.4. [[2] Theorem 6] For 2 ≤ r ≤ n− 1 rank (ODPn,r) =
(
n
r

)
.

3. Minimal generating sets of DPn,r

Lemma 3.1. Let D be a D-class in Kp, for 1 ≤ p ≤ n− 1, and let ∅ 6= WD ⊆ D. For any possible subset A of Xn let RA

and LA be theR-class and L-class, which contain id A, in D, respectively. Moreover, let HA = RA ∩ LA.

(i) If RA ∩WD ⊆ HA, then RA ∩ 〈WD〉 ⊆ HA.

(ii) If LA ∩WD ⊆ HA, then LA ∩ 〈WD〉 ⊆ HA.

Proof. Let D = D(d1,...,dp−1) be a D-class in Kp, and then notice that

HA =


{
(
A
A

)
,

(
A
AR

)
} if the gap (d1, . . . , dp−1) is symmetric,

{
(
A
A

)
} if the gap (d1, . . . , dp−1) is asymmetric.

(i) If RA ∩WD = ∅ then RA ∩ 〈WD〉 = ∅ since dom (β) 6= A for each β ∈ 〈WD〉. Now let ∅ 6= RA ∩WD ⊆ HA,
and let β ∈ RA ∩ 〈WD〉. Then there exist β1, . . . , βk ∈WD such that β = β1 · · ·βk (k ∈ Z+). It follows from (II) that
im (βi) = dom (βi+1) for each 1 ≤ i ≤ k − 1, and so dom (β) = dom (β1). Thus β1 ∈ RA, and so β1 ∈ RA ∩WD.
Then, from the assumption, we have β1 ∈ HA. Similarly, since dom (βi+1) = im (βi) = A for each 1 ≤ i ≤ k − 1, it
follows that β1, . . . , βk ∈ HA, and so β ∈ HA, as required.

(ii) It can be proved similarly.

Lemma 3.2. Let D = D(d1,...,dp−1) be a D-class in Kp for 2 ≤ p ≤ n− 1, such that (d1, . . . , dp−1) is asymmetric, and let
∅ 6= WD ⊆ D. If WD contains at least one order-reversing map, and if ΓWD

is a cycle then the number of order-reversing
maps in WD is a positive even number.

Proof. Notice that D has the form as Das given above. Then, with the same notations, the set of all order-reversing
maps with gap (d1, . . . , dp−1), and the set of all order-reversing maps with reverse-gap (d1, . . . , dp−1) are

U = {
(

A1

BR
1

)
, . . . ,

(
A1

BR
n−t

)
, . . . ,

(
An−t
BR

1

)
, . . . ,

(
An−t
BR

n−t

)
} and

V = {
(

B1

AR
1

)
, . . . ,

(
B1

AR
n−t

)
, . . . ,

(
Bn−t
AR

1

)
, . . . ,

(
Bn−t
AR

n−t

)
}
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where t =
∑p−1

i=1 di, respectively.
First of all, let µ1 → · · · → µl be any walk in ΓWD

, for any l ≥ 3, such that µ1, µl ∈ U and µ2, . . . , µl−1 /∈ U . Then
it is clear that, since im (µi) = dom (µi+1) for each 1 ≤ i ≤ l− 1, there exists a unique 2 ≤ j ≤ l− 1 such that µj ∈ V .
That is, there exists a unique order-reversing map with reverse-gap (d1, . . . , dp−1) between two order-reversing
maps with gap (d1, . . . , dp−1) in ΓWD

. Similarly, there exists a unique order-reversing map with gap (d1, . . . , dp−1)
between two order-reversing maps with reverse-gap (d1, . . . , dp−1) in ΓWD

.
Now, without loss of generality, suppose that WD = {λ1, . . . , λs} for any s ≥ 2. If s = 2, since WD contains at

least one order-reversing map and ΓWD
is a cycle, then it is clear that, without loss of generality, λ1 has a form(

A
BR

)
and λ2 has a form

(
B
AR

)
, as required, where A ∈ {A1, . . . , An−t} and B ∈ {B1, . . . , Bn−t}. Now let

s ≥ 3, and suppose that there exist only k ≥ 1 order-reversing maps with gap (d1, . . . , dp−1) in WD, say λi1 , . . . , λik .
Then, since ΓWD

is a cycle, without loss of generality ΓWD
has the form

λi1 → · · · → λi2 → · · · → λik → · · · → λi1 .

Since there exists a unique order-reversing map with reverse-gap (d1, . . . , dp−1) between two order-reversing maps
with gap (d1, . . . , dp−1) in ΓWD

, also there exist only k order-reversing maps with reverse-gap (d1, . . . , dp−1) in WD,
and so the number of order-reversing maps in WD is 2k, as required.

Theorem 3.1. For 2 ≤ r ≤ n− 1, let W be a non-empty subset of Kr with cardinality
(
n
r

)
. Then W is a minimal generating

set of DPn,r if and only if the following conditions are satisfied for each D-class D = D(d1,...,dr−1) in Kr.

(i) |R ∩W | = |L ∩W | = 1 for eachR-class R and L-class L in D.

(ii) • If (d1, . . . , dr−1) is symmetric, then the digraph ΓW∩D is a cycle with n − t vertices and the number of order-
reversing maps in W ∩D is an odd number.

• If (d1, . . . , dr−1) is asymmetric, then the digraph ΓW∩D is a cycle with 2(n − t) vertices and the number of
order-reversing maps in W ∩D is a positive even number

where t =
∑r−1

i=1 di.

Proof. (⇒) Suppose that ∅ 6= W ⊆ Kr is a minimal generating set of DPn,r with cardinality
(
n
r

)
. Then, from (III),

D ⊆ 〈W ∩D〉 for each D-class D in Kr. Now let D = D(d1,...,dr−1) be any D-class in Kr and let t =
∑r−1

i=1 di.
(i) The claim is provided from (III), Theorems 2.1 and 2.2.
(ii) Case 1. Suppose that (d1, . . . , dr−1) is symmetric. Then D has the form as Ds and it is clear that |W ∩D| =

n− t ≥ 1 since the condition (i) is satisfied. If |W ∩D| = 1 then we have

D : R1

L1(
A
A

)
,

(
A
AR

)
where A is the unique subset of Xn with symmetric gap (d1, . . . , dr−1). It is clear that D ⊆ 〈W ∩D〉 if and only

if W ∩D = {α =

(
A
AR

)
}, and so ΓW∩D is a cycle with a unique vertex α, which is an order-reversing map, as

required.
If |W ∩D| ≥ 2 then, from the first condition and Lemma 3.1, there is no element in W ∩D which has a form(
A
A

)
or
(

A
AR

)
for any possible non-empty subset A of Xn. Hence there is no loop in ΓW∩D. Now let α and

β be two distinct elements of W ∩D. Then consider any (order-preserving or order-reversing) map γ ∈ D such
that dom (γ) = dom (α) and im (γ) = im (β). Notice that α and β are not in the same R-class and not in the same
L-class in D, from the first condition, and so α 6= γ, β 6= γ, and moreover γ /∈ W ∩ D. Since W is a generating
set of DPn,r, from (III), there exist λ1, . . . , λk ∈ W ∩D such that λ1 · · ·λk = γ for k ≥ 2. Then, from (II), we have
dom (λ1) = dom (γ) = dom (α) and im (λk) = im (γ) = im (β), and so λ1Rα and λkLβ. From the first condition
λ1 = α and λk = β, and so there exists a walk from α to β in the digraph ΓW∩D. Moreover, for any α ∈ W ∩D,
there exists a unique λ ∈ (W ∩ D)\{α} such that im (α) = dom (λ) and a unique µ ∈ (W ∩ D)\{α} such that
dom (α) = im (µ) from the first condition. That is, there exists a unique edge from α and a unique edge to α in
ΓW∩D. Therefore, ΓW∩D is a cycle with n− t vertices.
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Now let W ∩D = {µ1, . . . , µn−t} and without loss of generality suppose that the cycle ΓW∩D is µ1 → · · · →
µn−t → µ1. Since any product of some order-preserving maps is also an order-preserving map, it is clear that W ∩D
must contain at least one order-reversing map. Now consider the map

δ =


(

A
BR

)
if µ1 =

(
A
B

)
,(

A
B

)
if µ1 =

(
A
BR

)
for two possible different subsets A and B with symmetric gap (d1, . . . , dr−1). It is easy to see from (II) that, to
generate the map δ we have to use the walk µ1 → · · · → µn−t → µ1 in ΓW∩D, and δ can be written only as the
product (µ1 · · ·µn−t)

kµ1 for some k ≥ 1. If the number of order-reversing maps in W ∩D is even, then µ1 · · ·µn−t
is the partial identity map with domain set dom (µ1), and so (µ1 · · ·µn−t)

kµ1 = µ1 for each k ≥ 1. Thus we have
δ /∈ 〈W ∩D〉, which is a contradiction, and so the number of order-reversing maps in W ∩D is odd.

Case 2. Suppose that (d1, . . . , dr−1) is asymmetric. Then D has the form as Das and it is clear that |W ∩D| =
2(n− t) ≥ 2 since the condition (i) is satisfied. Similarly we can show that ΓW∩D is a cycle with 2(n− t) vertices
and W ∩D must contain at least one order-reversing map. Then, from Lemma 3.2, the result is clear.

(⇐) Suppose that the conditions are satisfied. Now let D = D(d1,...,dr−1) be any D-class in Kr and let γ ∈ D.
Then, from the first condition, there exist a unique α ∈W ∩D and a unique β ∈W ∩D such that dom (γ) = dom (α)
and im (γ) = im (β).

Case 1. Suppose that (d1, . . . , dr−1) is symmetric and recall that |W ∩D| = n− t ≥ 1. From the second condition
ΓW∩D is a cycle with n− t vertices and the number of order-reversing maps in W ∩D is odd. Now suppose that
|W ∩D| = 1. Then we similarly have

D : R1

L1(
A
A

)
,

(
A
AR

)

and W ∩D = {α = β =

(
A
AR

)
}. Notice that γ = α or γ = α2, and so D ⊆ 〈W ∩D〉, as required.

Next suppose that |W ∩D| = n − t ≥ 2. If γ ∈ W ∩D then γ = α = β, as required. If γ /∈ W ∩D and α = β,
then dom (γ) = dom (α), im (γ) = im (α) and γ 6= α, that is H \ {α} = {γ} where H is theH-class contains α. Then,
without loss of generality, suppose that W ∩D = {α, λ1, . . . , λn−t−1} and that ΓW∩D has a form

α→ λ1 → · · · → λn−t−1 → α.

It is clear that αλ1 · · ·λn−t−1 is an order-reversing map, and so

γ = αλ1 · · ·λn−t−1α ∈ 〈W ∩D〉.

Finally, if γ /∈W ∩D and α 6= β, then, without loss of generality, suppose that W ∩D = {α, λ1, . . . , λk, β, µ1, . . . , µl}
for k, l ≥ 0 (notice that k + l + 2 = n− t), and that ΓW∩D has a form

α→ λ1 → · · · → λk → β → µ1 → · · · → µl → α.

If the number of order-reversing maps in {α, λ1, . . . , λk, β} is even, then

γ =

{
αλ1 · · ·λkβ if α is an order-preserving map,

αλ1 · · ·λkβµ1 · · ·µlαλ1 · · ·λkβ if α is an order-reversing map,

and so γ ∈ 〈W ∩D〉. If the number of order-reversing maps in {α, λ1, . . . , λk, β} is odd, then

γ =

{
αλ1 · · ·λkβµ1 · · ·µlαλ1 · · ·λkβ if α is an order-preserving map,

αλ1 · · ·λkβ if α is an order-reversing map,

and so γ ∈ 〈W ∩D〉. Thus D ⊆ 〈W ∩D〉, as required.
Case 2. Suppose that (d1, . . . , dr−1) is asymmetric, and recall that |W ∩D| = 2(n− t) ≥ 2. If γ ∈ W ∩D then

γ = α = β, as required. If γ /∈ W ∩D then, since each H-class in D consist of a unique element, we have α 6= β,
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otherwise γ = α ∈W ∩D which is a contradiction. Since ΓW∩D is a cycle, from the second condition, there exists a
unique shortest walk ρ in ΓW∩D from α to β. Then it is easy to see that γ = ξ ∈ 〈W ∩D〉 where ξ is the consecutive
product of all elements of ρ. Thus D ⊆ 〈W ∩D〉, as required.

Notice that |W | =
(
n
r

)
from the first condition. Therefore, it follows from (III) and Theorem 2.2 that W is a

minimal generating set of DPn,r.

Corollary 3.1. Let W is a minimal generating set of DPn,r for 2 ≤ r ≤ n− 1, and let D = D(d1,...,dr−1) be a D-class in Kr.

(i) If (d1, . . . , dr−1) is symmetric and |W ∩ D| ≥ 2, then W ∩ D does not contain any partial map which has a form(
A
A

)
or
(

A
AR

)
for any possible subset A of Xn.

(ii) If (d1, . . . , dr−1) is symmetric and |W ∩D| = 1, or if (d1, . . . , dr−1) is asymmetric, then W ∩D does not contain any
partial identity map. �

4. Minimal generating sets of ODPn,r

Lemma 4.1. Let D be a D-class in Lp for 1 ≤ p ≤ n− 1, and let ∅ 6= WD ⊆ D. For any possible subset A of Xn let RA and
LA be theR-class and L-class, which contain id A, in D, respectively. Moreover, let HA = RA ∩ LA, that is HA = {id A}.

(i) If RA ∩WD ⊆ HA, then RA ∩ 〈WD〉 ⊆ HA.

(ii) If LA ∩WD ⊆ HA, then LA ∩ 〈WD〉 ⊆ HA.

Proof. The proof is similar to the proof of Lemma 3.1.

Theorem 4.1. For 2 ≤ r ≤ n− 1, let W be a non-empty subset of Lr with cardinality
(
n
r

)
. Then W is a minimal generating

set of ODPn,r if and only if

(i) |R ∩W | = |L ∩W | = 1 for eachR-class R and L-class L in Lr, and

(ii) for each D-class D in Lr, the digraph ΓW∩D is a cycle.

Proof. The proof is similar to the proof of Theorem 3.1, by using the fact that, |H| = 1 for each H-class H in
ODPn,r.

Corollary 4.1. For 2 ≤ r ≤ n− 1, any minimal generating set of ODPn,r does not contain any partial identity map except
partial identities of singleton D-classes in Lr. �
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