On Minimal Generating Sets of Certain Subsemigroups of Isometries

Leyla Bugay* and Melek Yağcı

Abstract

Let DP_n and ODP_n be the semigroups of all isometries and of all order-preserving isometries on X_n , respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup $DP_{n,r} = \{\alpha \in DP_n : |\operatorname{im} (\alpha)| \le r\}$ (similarly of the subsemigroup $ODP_{n,r} = \{\alpha \in ODP_n : |\operatorname{im} (\alpha)| \le r\}$) for $2 \le r \le n - 1$.

Keywords: Isometry; order-preserving /order-reversing map; (minimal) generating set.

AMS Subject Classification (2020): 20M20.

*Corresponding author

1. Introduction

Let I_n be the symmetric inverse semigroup on the finite chain $X_n = \{1, ..., n\}$, and let $\alpha \in I_n$. If $(\forall x \in \text{dom} (\alpha))$ $x\alpha = x$ then α is called the *partial identity map* on $U = \text{dom} (\alpha) \subseteq X_n$, denoted by id_U . If $(\forall x, y \in \text{dom} (\alpha))$ $x \leq y \Rightarrow x\alpha \leq y\alpha$ ($x \leq y \Rightarrow x\alpha \geq y\alpha$) then α is called an *order-preserving map* (an *order-reversing map*), and if $(\forall x, y \in \text{dom} (\alpha)) |x - y| = |x\alpha - y\alpha|$ then α is called an *isometry* (or *distance-preserving map*) on X_n , under its natural order. Then the subset of all isometries and the subset of all order-preserving isometries, denoted by DP_n and ODP_n respectively, that is,

$$DP_n = \{ \alpha \in I_n : (\forall x, y \in \text{dom}(\alpha)) | x - y| = |x\alpha - y\alpha| \} \text{ and} \\ ODP_n = \{ \alpha \in DP_n : (\forall x, y \in \text{dom}(\alpha)) | x \le y \Rightarrow x\alpha \le y\alpha \},$$

are clearly subsemigroups of I_n and $ODP_n \subseteq DP_n \subseteq I_n$. Moreover, for $2 \leq r \leq n-1$, let

$$DP_{n,r} = \{ \alpha \in DP_n : |\operatorname{im} (\alpha)| \le r \} \text{ and}$$

$$ODP_{n,r} = \{ \alpha \in ODP_n : |\operatorname{im} (\alpha)| \le r \}$$

which are clearly subsemigroups of DP_n and ODP_n , respectively.

Let *S* be any semigroup, and let *W* be any non-empty subset of *S*. Then the subsemigroup generated by *W*, that is, the smallest subsemigroup of *S* containing *W*, is denoted by $\langle W \rangle$. The *rank* of a finitely generated semigroup *S*, i.e., a semigroup generated by a finite subset, is defined by

$$\operatorname{rank}(S) = \min\{|W| : \langle W \rangle = S\}$$

Moreover, the generating set of S with cardinality rank (S) is called a *minimal generating set* of S.

Al-Kharousi, Kehinde and Umar showed in [1, Theorems 3.1, 3.4 and 3.5] that

$$\operatorname{rank} (ODP_{n,n-1}) = n, \quad \operatorname{rank} (ODP_n) = n+1,$$
$$\operatorname{rank} (DP_{n,n-1}) = n, \text{ and } \operatorname{rank} (DP_n) = \lfloor \frac{n+3}{2} \rfloor.$$

Received: 19-04-2020, Accepted: 22-06-2020

Then, in [2], we introduced some properties of $DP_{n,r}$ and $ODP_{n,r}$, and also showed that

rank
$$(DP_{n,r}) = \binom{n}{r}$$
 and rank $(ODP_{n,r}) = \binom{n}{r}$.

However, there were no results about the structure of any minimal generating set of $DP_{n,r}$ ($ODP_{n,r}$) and no method for whether an arbitrary non-empty subset X of $DP_{n,r}$ ($ODP_{n,r}$) is a minimal generating set of $DP_{n,r}$ ($ODP_{n,r}$), or not for $2 \le r \le n-1$. Thereby, in this study we improve a useful method to respond this lack.

2. Preliminaries

In this section we remind some definitions and properties given also in [2], and without otherwise stated we take $2 \le r \le n-1$.

Let $\alpha \in DP_n$, and let dom $(\alpha) = \{a_1 < \cdots < a_p\}$ with $2 \le p \le n$. Then the *gap* and the *reverse-gap* of α , denoted by g (α) and g $R(\alpha)$, are defined by

$$g(\alpha) = (d_1, \dots, d_{p-1})$$
 and $g^R(\alpha) = (d_{p-1}, \dots, d_1),$

respectively, where $d_i = a_{(i+1)} - a_i$ for each $1 \le i \le p-1$. It is easy to see that $p-1 \le \sum_{i=1}^{p-1} d_i \le n-1$ for any gap (d_1, \ldots, d_{p-1}) . Moreover, for any ordered (p-1)-tuple (d_1, \ldots, d_{p-1}) , if

$$(d_1, \ldots, d_{p-1}) = (d_{p-1}, \ldots, d_1)_{p-1}$$

then (d_1, \ldots, d_{p-1}) is called *symmetric* (otherwise, *asymmetric*) ordered (p-1)-tuple.

From [1, Lemma 1.2] we know that each element of DP_n is either order-preserving or order-reversing map. Let $\alpha \in DP_n$ such that dom $(\alpha) = A = \{a_1 < \cdots < a_p\}$ and im $(\alpha) = B = \{b_1 < \cdots < b_p\}$ for $2 \le p \le n$. If α is an order-preserving map, then $a_{i+1} - a_i = b_{i+1} - b_i$ for each $1 \le i \le p - 1 \le n - 1$ and α has the following tabular form:

$$\alpha = \begin{pmatrix} a_1 & a_2 & \cdots & a_p \\ b_1 & b_2 & \cdots & b_p \end{pmatrix}, \text{ or shortly } \alpha = \begin{pmatrix} A \\ B \end{pmatrix}.$$

If $\alpha \in DP_n$ is an order-reversing map, then $a_{i+1} - a_i = b_{p-i+1} - b_{p-i}$ for each $1 \le i \le p-1 \le n-1$ and α has the following tabular form:

$$\alpha = \begin{pmatrix} a_1 & a_2 & \cdots & a_p \\ b_p & b_{p-1} & \cdots & b_1 \end{pmatrix}, \text{ or shortly } \alpha = \begin{pmatrix} A \\ B^R \end{pmatrix}.$$

From the definitions of the Green's equivalences we clearly have

- (i) $\alpha \mathcal{R}\beta \Leftrightarrow \operatorname{dom}(\alpha) = \operatorname{dom}(\beta)$,
- (*ii*) $\alpha \mathcal{L}\beta \Leftrightarrow \operatorname{im}(\alpha) = \operatorname{im}(\beta)$ and
- (*iii*) $\alpha \mathcal{H}\beta \Leftrightarrow \operatorname{dom}(\alpha) = \operatorname{dom}(\beta)$ and $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$

for $\alpha, \beta \in DP_{n,r}$ or $\alpha, \beta \in ODP_{n,r}$, and we have

- $(iv) \ \alpha \mathcal{D}\beta \Leftrightarrow g(\alpha) = g(\beta) \text{ or } g(\alpha) = g^{R}(\beta) \text{ for } \alpha, \beta \in DP_{n,r} \text{ and}$
- (v) $\alpha \mathcal{D}\beta \Leftrightarrow g(\alpha) = g(\beta)$ for $\alpha, \beta \in ODP_{n,r}$.

(For the definitions of Green's equivalences and for the other terms in semigroup theory, which are not explained here, we refer to [3, 4]).

Let $K_p = \{\alpha \in DP_n : |\operatorname{im} (\alpha)| = p\}$ and let $L_p = \{\alpha \in ODP_n : |\operatorname{im} (\alpha)| = p\}$ for $0 \le p \le n$. Then $K_p (L_p)$ is disjoint union of some \mathcal{D} -classes since $|\operatorname{im} (\alpha)| = |\operatorname{im} (\beta)|$ for $(\alpha, \beta) \in \mathcal{D}$, and there exist $\binom{n}{p} \mathcal{R}$ -classes and $\binom{n}{p}$ \mathcal{L} -classes in $K_p (L_p)$. Moreover, $DP_{n,r} (ODP_{n,r})$ is the disjoint union of $K_0, K_1, \ldots, K_r (L_0, L_1, \ldots, L_r)$.

For $2 \le p \le n$ let (d_1, \ldots, d_{p-1}) be a possible gap. Then, let $D_{(d_1, \ldots, d_{p-1})}$ denotes the \mathcal{D} -class which consists of the elements with gap or reverse-gap (d_1, \ldots, d_{p-1}) in K_p , and similarly denotes the \mathcal{D} -class which consists of the elements with gap (d_1, \ldots, d_{p-1}) in L_p . Notice that all the subsets of X_n with the gap (d_1, \ldots, d_{p-1}) are

$$A_k = \{k, k+d_1, k+d_1+d_2, \dots, k+t\} \text{ for } 1 \le k \le n-t$$

and with the reverse-gap (d_1, \ldots, d_{p-1}) are

$$B_k = \{k, k + d_{p-1}, k + d_{p-1} + d_{p-2}, \dots, k+t\} \text{ for } 1 \le k \le n-t$$

where $t = \sum_{i=1}^{p-1} d_i$. If (d_1, \ldots, d_{p-1}) is symmetric then, since $A_k = B_k$ for each $1 \le k \le n-t$, the \mathcal{D} -class $D_{(d_1, \ldots, d_{p-1})}$ in K_p has the following egg box form:

$$D_s: R_1 \begin{array}{c|c} L_1 & & L_{n-t} \\ \hline \begin{pmatrix} A_1 \\ A_1 \end{pmatrix}, \begin{pmatrix} A_1 \\ A_1^R \end{pmatrix} & \cdots & \begin{pmatrix} A_1 \\ A_{n-t} \end{pmatrix}, \begin{pmatrix} A_1 \\ A_{n-t} \end{pmatrix} \\ \hline & \ddots & \\ \hline & \\ R_{n-t} & \hline \begin{pmatrix} A_{n-t} \\ A_1 \end{pmatrix}, \begin{pmatrix} A_{n-t} \\ A_1^R \end{pmatrix} & \cdots & \begin{pmatrix} A_{n-t} \\ A_{n-t} \end{pmatrix}, \begin{pmatrix} A_{n-t} \\ A_{n-t} \end{pmatrix} \\ \end{array}$$

If (d_1, \ldots, d_{p-1}) is asymmetric, then the \mathcal{D} -class $D_{(d_1, \ldots, d_{p-1})}$ in K_p has the following egg box form:

	L_1		L_{n-t}	L_{n-t+1}		$L_{2(n-t)}$
$D_{as}: R_1$	$\left(\begin{array}{c}A_1\\A_1\end{array}\right)$		$\left(\begin{array}{c}A_1\\A_{n-t}\end{array}\right)$	$\left(\begin{array}{c}A_1\\B_1^R\end{array}\right)$		$\left(\begin{array}{c}A_1\\B_{n-t}^R\end{array}\right)$
		·			·	
R_{n-t}	$\left(\begin{array}{c}A_{n-t}\\A_1\end{array}\right)$		$\left(\begin{array}{c}A_{n-t}\\A_{n-t}\end{array}\right)$	$ \left(\begin{array}{c}A_{n-t}\\B_1^R\end{array}\right) $		$\left(\begin{array}{c}A_{n-t}\\B_{n-t}^R\end{array}\right)$
R_{n-t+1}	$\left(\begin{array}{c}B_1\\A_1^R\end{array}\right)$		$\left(\begin{array}{c}B_1\\A_{n-t}^R\end{array}\right)$	$ \left(\begin{array}{c}B_1\\B_1\end{array}\right) $		$\left(\begin{array}{c}B_1\\B_{n-t}\end{array}\right)$
		·			•	
$R_{2(n-t)}$	$\left(\begin{array}{c}B_{n-t}\\A_1^R\end{array}\right)$		$\left(\begin{array}{c}B_{n-t}\\A_{n-t}^R\end{array}\right)$	$\left(\begin{array}{c}B_{n-t}\\B_1\end{array}\right)$		$\left(\begin{array}{c}B_{n-t}\\B_{n-t}\end{array}\right)$

Similarly, the \mathcal{D} -class $D_{(d_1,\ldots,d_{p-1})}$ in L_p has the following egg box form:

	L_1	L_{n-t}			
$D_o: R_1$	$\left(\begin{array}{c}A_1\\A_1\end{array}\right)$		$\left(\begin{array}{c}A_1\\A_{n-t}\end{array}\right)$		
		·			
R_{n-t}	$\left(\begin{array}{c}A_{n-t}\\A_1\end{array}\right)$		$\left(\begin{array}{c}A_{n-t}\\A_{n-t}\end{array}\right)$		

Recall from [2], as a result of [2] Lemmas 1 and 2, that a non-empty subset W of K_r (L_r) is a generating set of $DP_{n,r}$ ($ODP_{n,r}$) if and only if $K_r \subseteq \langle W \rangle$ ($L_r \subseteq \langle W \rangle$). Moreover, recall that

- (I) Let $\alpha_1, \ldots, \alpha_k$ be some elements of K_p (L_p) for $k \ge 2$ and $1 \le p \le n 1$. Then $\alpha_1 \cdots \alpha_k = \gamma$ is also an element of K_p (L_p) if and only if $\alpha_i \alpha_{i+1}$ is element of K_p (L_p) , equivalently, im $(\alpha_i) = \text{dom}(\alpha_{i+1})$ for each $1 \le i \le k 1$.
- (II) Let *D* be a *D*-class in $DP_{n,r}$ ($ODP_{n,r}$) for $2 \le r \le n-1$, and let $\alpha_1, \ldots, \alpha_k \in D$ for $k \ge 2$. Then $\alpha_1 \cdots \alpha_k \in D$ if and only if $\alpha_i \alpha_{i+1} \in D$, equivalently, im (α_i) = dom (α_{i+1}) for each $1 \le i \le k-1$.
- (III) For $2 \le r \le n-1$, a non-empty subset W of $K_r(L_r)$ is a generating set of $DP_{n,r}(ODP_{n,r})$ if and only if $D \subseteq \langle W \cap D \rangle$ for each \mathcal{D} -class D in $K_r(L_r)$.

As a final of this section we give some definitions about digraphs. Let $\Pi = (V(\Pi), \vec{E}(\Pi))$ be a digraph where $V(\Pi)$ is the set of vertices and $\vec{E}(\Pi) \subseteq V(\Pi) \times V(\Pi)$ is the list of directed edges. For any $u_1, \ldots, u_k \in V(\Pi)$ $(k \ge 2)$ (they have not to be distinct) if $(u_1, u_2), (u_2, u_3), \ldots, (u_{k-1}, u_k) \in \vec{E}(\Pi)$, then $u_1 \to u_2 \to \cdots \to u_k$ is called *a walk* from u_1 to u_k . In particular, for distinct vertices $u_1, \ldots, u_k \in V(\Pi)$ where $k \ge 1$, the closed walk $u_1 \to \cdots \to u_k \to u_1$ is called a *cycle*, and the cycle consists of a unique vertex is called *loop*. Also, for any vertices $u, v \in V(\Pi)$ if u = v or there exists a walk from u to v we say u is *connected* to v, and respectively, the vertex u = v or the walk $u \to \cdots \to v$ is also called *connection* from u to v. Let W_D be a non-empty subset of any \mathcal{D} -class D in K_r (L_r) . Then we define the digraph Γ_{W_D} as follows:

- the vertex set of Γ_{W_D} , denoted by $V = V(\Gamma_{W_D})$, is W_D ; and
- the directed edge set of Γ_{W_D} , denoted by $\vec{E} = \vec{E}(\Gamma_{W_D})$, is

$$\vec{E} = \{ (\alpha, \beta) \in V \times V : \alpha\beta \in D \}.$$

(For unexplained terms about digraphs, see [5].)

Theorem 2.1. [[2] Theorem 3] Let D be a D-class in K_p for $2 \le p \le n-1$, and let $\emptyset \ne W_D \subseteq D$. Then $D \subseteq \langle W_D \rangle$ if and only if

- (*i*) for each order-preserving map $\gamma \in D \setminus W_D$ there exist $\alpha, \beta \in W_D$ such that dom $(\alpha) = \text{dom}(\gamma)$ and im $(\beta) = \text{im}(\gamma)$, and at least one walk ρ , from α to β in Γ_{W_D} such that the number of order-reversing maps in ρ is even, and
- (*ii*) for each order-reversing map $\gamma' \in D \setminus W_D$ there exist $\alpha', \beta' \in W_D$ such that dom $(\alpha') = \text{dom}(\gamma')$ and im $(\beta') = \text{im}(\gamma')$, and at least one walk ρ' , from α' to β' in Γ_{W_D} such that the number of order-reversing maps in ρ' is odd. \Box

Theorem 2.2. [[2] *Theorem* 4] *For* $2 \le r \le n - 1 \operatorname{rank} (DP_{n,r}) = \binom{n}{r}$.

Theorem 2.3. [[2] Theorem 5] Let D be a \mathcal{D} -class in L_p for $2 \le p \le n - 1$, and let $\emptyset \ne W_D \subseteq D$. Then $D \subseteq \langle W_D \rangle$ if and only if, for each $\gamma \in D \setminus W_D$ there exist $\alpha, \beta \in W_D$ such that dom $(\alpha) = \text{dom}(\gamma)$ and im $(\beta) = \text{im}(\gamma)$, and there exists at least one walk from α to β in Γ_{W_D} .

Theorem 2.4. [[2] *Theorem 6*] For $2 \le r \le n - 1 \operatorname{rank}(ODP_{n,r}) = \binom{n}{r}$.

3. Minimal generating sets of $DP_{n,r}$

Lemma 3.1. Let D be a D-class in K_p , for $1 \le p \le n-1$, and let $\emptyset \ne W_D \subseteq D$. For any possible subset A of X_n let R_A and L_A be the \mathcal{R} -class and \mathcal{L} -class, which contain id_A , in D, respectively. Moreover, let $H_A = R_A \cap L_A$.

- (i) If $R_A \cap W_D \subseteq H_A$, then $R_A \cap \langle W_D \rangle \subseteq H_A$.
- (*ii*) If $L_A \cap W_D \subseteq H_A$, then $L_A \cap \langle W_D \rangle \subseteq H_A$.

Proof. Let $D = D_{(d_1,...,d_{p-1})}$ be a \mathcal{D} -class in K_p , and then notice that

$$H_A = \begin{cases} \left\{ \begin{pmatrix} A \\ A \end{pmatrix}, \begin{pmatrix} A \\ A^R \end{pmatrix} \right\} & \text{if the gap } (d_1, \dots, d_{p-1}) \text{ is symmetric,} \\ \left\{ \begin{pmatrix} A \\ A \end{pmatrix} \right\} & \text{if the gap } (d_1, \dots, d_{p-1}) \text{ is asymmetric.} \end{cases}$$

(*i*) If $R_A \cap W_D = \emptyset$ then $R_A \cap \langle W_D \rangle = \emptyset$ since dom $(\beta) \neq A$ for each $\beta \in \langle W_D \rangle$. Now let $\emptyset \neq R_A \cap W_D \subseteq H_A$, and let $\beta \in R_A \cap \langle W_D \rangle$. Then there exist $\beta_1, \ldots, \beta_k \in W_D$ such that $\beta = \beta_1 \cdots \beta_k$ $(k \in \mathbb{Z}^+)$. It follows from (II) that $\operatorname{im}(\beta_i) = \operatorname{dom}(\beta_{i+1})$ for each $1 \leq i \leq k - 1$, and so $\operatorname{dom}(\beta) = \operatorname{dom}(\beta_1)$. Thus $\beta_1 \in R_A$, and so $\beta_1 \in R_A \cap W_D$. Then, from the assumption, we have $\beta_1 \in H_A$. Similarly, since dom $(\beta_{i+1}) = \operatorname{im}(\beta_i) = A$ for each $1 \leq i \leq k - 1$, it follows that $\beta_1, \ldots, \beta_k \in H_A$, and so $\beta \in H_A$, as required.

(*ii*) It can be proved similarly.

Lemma 3.2. Let $D = D_{(d_1,...,d_{p-1})}$ be a \mathcal{D} -class in K_p for $2 \le p \le n-1$, such that $(d_1,...,d_{p-1})$ is asymmetric, and let $\emptyset \ne W_D \subseteq D$. If W_D contains at least one order-reversing map, and if Γ_{W_D} is a cycle then the number of order-reversing maps in W_D is a positive even number.

Proof. Notice that *D* has the form as D_{as} given above. Then, with the same notations, the set of all order-reversing maps with gap (d_1, \ldots, d_{p-1}) , and the set of all order-reversing maps with reverse-gap (d_1, \ldots, d_{p-1}) are

$$U = \left\{ \begin{pmatrix} A_1 \\ B_1^R \end{pmatrix}, \dots, \begin{pmatrix} A_1 \\ B_{n-t}^R \end{pmatrix}, \dots, \begin{pmatrix} A_{n-t} \\ B_1^R \end{pmatrix}, \dots, \begin{pmatrix} A_{n-t} \\ B_1^R \end{pmatrix}, \dots, \begin{pmatrix} A_{n-t} \\ B_{n-t}^R \end{pmatrix} \right\} \text{ and } V = \left\{ \begin{pmatrix} B_1 \\ A_1^R \end{pmatrix}, \dots, \begin{pmatrix} B_1 \\ A_{n-t}^R \end{pmatrix}, \dots, \begin{pmatrix} B_{n-t} \\ A_1^R \end{pmatrix}, \dots, \begin{pmatrix} B_{n-t} \\ A_{n-t}^R \end{pmatrix} \right\}$$

where $t = \sum_{i=1}^{p-1} d_i$, respectively.

First of all, let $\mu_1 \to \cdots \to \mu_l$ be any walk in Γ_{W_D} , for any $l \ge 3$, such that $\mu_1, \mu_l \in U$ and $\mu_2, \ldots, \mu_{l-1} \notin U$. Then it is clear that, since im $(\mu_i) = \text{dom}(\mu_{i+1})$ for each $1 \le i \le l-1$, there exists a unique $2 \le j \le l-1$ such that $\mu_j \in V$. That is, there exists a unique order-reversing map with reverse-gap (d_1, \ldots, d_{p-1}) between two order-reversing maps with gap (d_1, \ldots, d_{p-1}) in Γ_{W_D} . Similarly, there exists a unique order-reversing map with gap (d_1, \ldots, d_{p-1}) between two order-reversing maps with reverse-gap (d_1, \ldots, d_{p-1}) in Γ_{W_D} .

Now, without loss of generality, suppose that $W_D = \{\lambda_1, \ldots, \lambda_s\}$ for any $s \ge 2$. If s = 2, since W_D contains at least one order-reversing map and Γ_{W_D} is a cycle, then it is clear that, without loss of generality, λ_1 has a form $\begin{pmatrix} A \\ B^R \end{pmatrix}$ and λ_2 has a form $\begin{pmatrix} B \\ A^R \end{pmatrix}$, as required, where $A \in \{A_1, \ldots, A_{n-t}\}$ and $B \in \{B_1, \ldots, B_{n-t}\}$. Now let $s \ge 3$, and suppose that there exist only $k \ge 1$ order-reversing maps with gap (d_1, \ldots, d_{p-1}) in W_D , say $\lambda_{i_1}, \ldots, \lambda_{i_k}$. Then, since Γ_{W_D} is a cycle, without loss of generality Γ_{W_D} has the form

$$\lambda_{i_1} \to \cdots \to \lambda_{i_2} \to \cdots \to \lambda_{i_k} \to \cdots \to \lambda_{i_1}.$$

Since there exists a unique order-reversing map with reverse-gap (d_1, \ldots, d_{p-1}) between two order-reversing maps with gap (d_1, \ldots, d_{p-1}) in Γ_{W_D} , also there exist only k order-reversing maps with reverse-gap (d_1, \ldots, d_{p-1}) in W_D , and so the number of order-reversing maps in W_D is 2k, as required.

Theorem 3.1. For $2 \le r \le n-1$, let W be a non-empty subset of K_r with cardinality $\binom{n}{r}$. Then W is a minimal generating set of $DP_{n,r}$ if and only if the following conditions are satisfied for each D-class $D = D_{(d_1,...,d_{r-1})}$ in K_r .

- (*i*) $|R \cap W| = |L \cap W| = 1$ for each *R*-class *R* and *L*-class *L* in *D*.
- (*ii*) If (d_1, \ldots, d_{r-1}) is symmetric, then the digraph $\Gamma_{W \cap D}$ is a cycle with n t vertices and the number of orderreversing maps in $W \cap D$ is an odd number.
 - If (d_1, \ldots, d_{r-1}) is asymmetric, then the digraph $\Gamma_{W \cap D}$ is a cycle with 2(n-t) vertices and the number of order-reversing maps in $W \cap D$ is a positive even number

where
$$t = \sum_{i=1}^{r-1} d_i$$
.

Proof. (\Rightarrow) Suppose that $\emptyset \neq W \subseteq K_r$ is a minimal generating set of $DP_{n,r}$ with cardinality $\binom{n}{r}$. Then, from (III), $D \subseteq \langle W \cap D \rangle$ for each \mathcal{D} -class D in K_r . Now let $D = D_{(d_1, \dots, d_{r-1})}$ be any \mathcal{D} -class in K_r and let $t = \sum_{i=1}^{r-1} d_i$.

(*i*) The claim is provided from (III), Theorems 2.1 and 2.2.

(*ii*) **Case 1.** Suppose that (d_1, \ldots, d_{r-1}) is symmetric. Then D has the form as D_s and it is clear that $|W \cap D| = n - t \ge 1$ since the condition (*i*) is satisfied. If $|W \cap D| = 1$ then we have

$$D: R_1 \boxed{\left(\begin{array}{c} A \\ A \end{array}\right), \left(\begin{array}{c} A \\ A^R \end{array}\right)}$$

where *A* is the unique subset of X_n with symmetric gap (d_1, \ldots, d_{r-1}) . It is clear that $D \subseteq \langle W \cap D \rangle$ if and only if $W \cap D = \{\alpha = \begin{pmatrix} A \\ A^R \end{pmatrix}\}$, and so $\Gamma_{W \cap D}$ is a cycle with a unique vertex α , which is an order-reversing map, as required.

If $|W \cap D| \ge 2$ then, from the first condition and Lemma 3.1, there is no element in $W \cap D$ which has a form $\begin{pmatrix} A \\ A \end{pmatrix}$ or $\begin{pmatrix} A \\ A^R \end{pmatrix}$ for any possible non-empty subset A of X_n . Hence there is no loop in $\Gamma_{W \cap D}$. Now let α and β be two distinct elements of $W \cap D$. Then consider any (order-preserving or order-reversing) map $\gamma \in D$ such that dom $(\gamma) = \text{dom}(\alpha)$ and im $(\gamma) = \text{im}(\beta)$. Notice that α and β are not in the same \mathcal{R} -class and not in the same \mathcal{L} -class in D, from the first condition, and so $\alpha \neq \gamma, \beta \neq \gamma$, and moreover $\gamma \notin W \cap D$. Since W is a generating set of $DP_{n,r}$, from (III), there exist $\lambda_1, \ldots, \lambda_k \in W \cap D$ such that $\lambda_1 \cdots \lambda_k = \gamma$ for $k \ge 2$. Then, from (II), we have dom $(\lambda_1) = \text{dom}(\gamma) = \text{dom}(\alpha)$ and im $(\lambda_k) = \text{im}(\gamma) = \text{im}(\beta)$, and so $\lambda_1 \mathcal{R}\alpha$ and $\lambda_k \mathcal{L}\beta$. From the first condition $\lambda_1 = \alpha$ and $\lambda_k = \beta$, and so there exists a walk from α to β in the digraph $\Gamma_{W \cap D}$. Moreover, for any $\alpha \in W \cap D$, there exists a unique $\lambda \in (W \cap D) \setminus \{\alpha\}$ such that $\text{im}(\alpha) = \text{dom}(\lambda)$ and a unique $\mu \in (W \cap D) \setminus \{\alpha\}$ such that dom $(\alpha) = \text{im}(\mu)$ from the first condition. That is, there exists a unique edge from α and a unique edge to α in $\Gamma_{W \cap D}$. Therefore, $\Gamma_{W \cap D}$ is a cycle with n - t vertices.

Now let $W \cap D = \{\mu_1, \dots, \mu_{n-t}\}$ and without loss of generality suppose that the cycle $\Gamma_{W \cap D}$ is $\mu_1 \to \dots \to \mu_{n-t} \to \mu_1$. Since any product of some order-preserving maps is also an order-preserving map, it is clear that $W \cap D$ must contain at least one order-reversing map. Now consider the map

$$\delta = \begin{cases} \begin{pmatrix} A \\ B^R \end{pmatrix} & \text{if } \mu_1 = \begin{pmatrix} A \\ B \end{pmatrix}, \\ \begin{pmatrix} A \\ B \end{pmatrix} & \text{if } \mu_1 = \begin{pmatrix} A \\ B^R \end{pmatrix} \end{cases}$$

for two possible different subsets *A* and *B* with symmetric gap (d_1, \ldots, d_{r-1}) . It is easy to see from (II) that, to generate the map δ we have to use the walk $\mu_1 \to \cdots \to \mu_{n-t} \to \mu_1$ in $\Gamma_{W \cap D}$, and δ can be written only as the product $(\mu_1 \cdots \mu_{n-t})^k \mu_1$ for some $k \ge 1$. If the number of order-reversing maps in $W \cap D$ is even, then $\mu_1 \cdots \mu_{n-t}$ is the partial identity map with domain set dom (μ_1) , and so $(\mu_1 \cdots \mu_{n-t})^k \mu_1 = \mu_1$ for each $k \ge 1$. Thus we have $\delta \notin \langle W \cap D \rangle$, which is a contradiction, and so the number of order-reversing maps in $W \cap D$ is odd.

Case 2. Suppose that (d_1, \ldots, d_{r-1}) is asymmetric. Then *D* has the form as D_{as} and it is clear that $|W \cap D| = 2(n-t) \ge 2$ since the condition (*i*) is satisfied. Similarly we can show that $\Gamma_{W \cap D}$ is a cycle with 2(n-t) vertices and $W \cap D$ must contain at least one order-reversing map. Then, from Lemma 3.2, the result is clear.

(\Leftarrow) Suppose that the conditions are satisfied. Now let $D = D_{(d_1,\dots,d_{r-1})}$ be any \mathcal{D} -class in K_r and let $\gamma \in D$. Then, from the first condition, there exist a unique $\alpha \in W \cap D$ and a unique $\beta \in W \cap D$ such that dom (γ) = dom (α) and im (γ) = im (β).

Case 1. Suppose that (d_1, \ldots, d_{r-1}) is symmetric and recall that $|W \cap D| = n - t \ge 1$. From the second condition $\Gamma_{W \cap D}$ is a cycle with n - t vertices and the number of order-reversing maps in $W \cap D$ is odd. Now suppose that $|W \cap D| = 1$. Then we similarly have

$$D: R_1 \boxed{\left(\begin{array}{c} A \\ A \end{array}\right), \left(\begin{array}{c} A \\ A^R \end{array}\right)}$$

and $W \cap D = \{ \alpha = \beta = \begin{pmatrix} A \\ A^R \end{pmatrix} \}$. Notice that $\gamma = \alpha$ or $\gamma = \alpha^2$, and so $D \subseteq \langle W \cap D \rangle$, as required.

Next suppose that $|W \cap D| = n - t \ge 2$. If $\gamma \in W \cap D$ then $\gamma = \alpha = \beta$, as required. If $\gamma \notin W \cap D$ and $\alpha = \beta$, then dom $(\gamma) = \text{dom}(\alpha)$, im $(\gamma) = \text{im}(\alpha)$ and $\gamma \neq \alpha$, that is $H \setminus \{\alpha\} = \{\gamma\}$ where H is the \mathcal{H} -class contains α . Then, without loss of generality, suppose that $W \cap D = \{\alpha, \lambda_1, \dots, \lambda_{n-t-1}\}$ and that $\Gamma_{W \cap D}$ has a form

$$\alpha \to \lambda_1 \to \cdots \to \lambda_{n-t-1} \to \alpha.$$

It is clear that $\alpha \lambda_1 \cdots \lambda_{n-t-1}$ is an order-reversing map, and so

$$\gamma = \alpha \lambda_1 \cdots \lambda_{n-t-1} \alpha \in \langle W \cap D \rangle.$$

Finally, if $\gamma \notin W \cap D$ and $\alpha \neq \beta$, then, without loss of generality, suppose that $W \cap D = \{\alpha, \lambda_1, \dots, \lambda_k, \beta, \mu_1, \dots, \mu_l\}$ for $k, l \ge 0$ (notice that k + l + 2 = n - t), and that $\Gamma_{W \cap D}$ has a form

 $\alpha \to \lambda_1 \to \cdots \to \lambda_k \to \beta \to \mu_1 \to \cdots \to \mu_l \to \alpha.$

If the number of order-reversing maps in $\{\alpha, \lambda_1, \ldots, \lambda_k, \beta\}$ is even, then

$$\gamma = \begin{cases} \alpha \lambda_1 \cdots \lambda_k \beta & \text{if } \alpha \text{ is an order-preserving map,} \\ \alpha \lambda_1 \cdots \lambda_k \beta \mu_1 \cdots \mu_l \alpha \lambda_1 \cdots \lambda_k \beta & \text{if } \alpha \text{ is an order-reversing map,} \end{cases}$$

and so $\gamma \in \langle W \cap D \rangle$. If the number of order-reversing maps in $\{\alpha, \lambda_1, \ldots, \lambda_k, \beta\}$ is odd, then

$$\gamma = \begin{cases} \alpha \lambda_1 \cdots \lambda_k \beta \mu_1 \cdots \mu_l \alpha \lambda_1 \cdots \lambda_k \beta & \text{if } \alpha \text{ is an order-preserving map,} \\ \alpha \lambda_1 \cdots \lambda_k \beta & \text{if } \alpha \text{ is an order-reversing map,} \end{cases}$$

and so $\gamma \in \langle W \cap D \rangle$. Thus $D \subseteq \langle W \cap D \rangle$, as required.

Case 2. Suppose that (d_1, \ldots, d_{r-1}) is asymmetric, and recall that $|W \cap D| = 2(n-t) \ge 2$. If $\gamma \in W \cap D$ then $\gamma = \alpha = \beta$, as required. If $\gamma \notin W \cap D$ then, since each \mathcal{H} -class in D consist of a unique element, we have $\alpha \neq \beta$,

otherwise $\gamma = \alpha \in W \cap D$ which is a contradiction. Since $\Gamma_{W \cap D}$ is a cycle, from the second condition, there exists a unique shortest walk ρ in $\Gamma_{W \cap D}$ from α to β . Then it is easy to see that $\gamma = \xi \in \langle W \cap D \rangle$ where ξ is the consecutive product of all elements of ρ . Thus $D \subseteq \langle W \cap D \rangle$, as required.

Notice that $|W| = \binom{n}{r}$ from the first condition. Therefore, it follows from (III) and Theorem 2.2 that *W* is a minimal generating set of $DP_{n,r}$.

Corollary 3.1. Let W is a minimal generating set of $DP_{n,r}$ for $2 \le r \le n-1$, and let $D = D_{(d_1,...,d_{r-1})}$ be a \mathcal{D} -class in K_r .

- (*i*) If (d_1, \ldots, d_{r-1}) is symmetric and $|W \cap D| \ge 2$, then $W \cap D$ does not contain any partial map which has a form $\begin{pmatrix} A \\ A \end{pmatrix}$ or $\begin{pmatrix} A \\ A^R \end{pmatrix}$ for any possible subset A of X_n .
- (*ii*) If (d_1, \ldots, d_{r-1}) is symmetric and $|W \cap D| = 1$, or if (d_1, \ldots, d_{r-1}) is asymmetric, then $W \cap D$ does not contain any partial identity map.

4. Minimal generating sets of *ODP*_{*n*,*r*}

Lemma 4.1. Let D be a D-class in L_p for $1 \le p \le n - 1$, and let $\emptyset \ne W_D \subseteq D$. For any possible subset A of X_n let R_A and L_A be the \mathcal{R} -class and \mathcal{L} -class, which contain id_A , in D, respectively. Moreover, let $H_A = R_A \cap L_A$, that is $H_A = \{\operatorname{id}_A\}$.

- (*i*) If $R_A \cap W_D \subseteq H_A$, then $R_A \cap \langle W_D \rangle \subseteq H_A$.
- (*ii*) If $L_A \cap W_D \subseteq H_A$, then $L_A \cap \langle W_D \rangle \subseteq H_A$.

Proof. The proof is similar to the proof of Lemma 3.1.

Theorem 4.1. For $2 \le r \le n-1$, let W be a non-empty subset of L_r with cardinality $\binom{n}{r}$. Then W is a minimal generating set of $ODP_{n,r}$ if and only if

- (i) $|R \cap W| = |L \cap W| = 1$ for each \mathcal{R} -class R and \mathcal{L} -class L in L_r , and
- (*ii*) for each \mathcal{D} -class D in L_r , the digraph $\Gamma_{W \cap D}$ is a cycle.

Proof. The proof is similar to the proof of Theorem 3.1, by using the fact that, |H| = 1 for each \mathcal{H} -class H in $ODP_{n,r}$.

Corollary 4.1. For $2 \le r \le n-1$, any minimal generating set of $ODP_{n,r}$ does not contain any partial identity map except partial identities of singleton D-classes in L_r .

References

- [1] Al-Kharousi, F., Kehinde, R., Umar, A.: *On the semigroup of partial isometries of a finite chain*. Comm. Algebra. 44, 639–647 (2016).
- Bugay, L., Yağcı M., Ayık, H.: The ranks of certain semigroups of partial isometries. Semigroup Forum. 97, 214–222 (2018).
- [3] Ganyushkin, O., Mazorchuk, V.: Classical finite transformation semigroups. Springer-Verlag. London (2009).
- [4] Howie, J. M.: Fundamentals of semigroup theory. Oxford University Press. New York (1995).
- [5] Wilson, R.J., Watkins, J.J.: Graphs, An Introductory Approach, A First Course in Discrete Mathematics. Jon Wiley & Sons Inc. Toronto (1990).

Affiliations

LEYLA BUGAY **ADDRESS:** Department of Mathematics, Çukurova University, Sarıçam, 01330, Adana, Turkey. **E-MAIL:** ltanguler@cu.edu.tr **ORCID ID:** 0000-0002-8316-2763

MELEK YAĞCI ADDRESS: Department of Mathematics, Çukurova University, Sarıçam, 01330, Adana, Turkey. E-MAIL: msenol@cu.edu.tr ORCID ID: 0000-0002-0457-156X