On orthomorphism elements in ordered algebra

Bahri TURAN*, Hüma GÜRKÖK

Department of Mathematics, Faculty of Science, Gazi University, 06500 Teknikokullar Ankara

Abstract: Let \(C \) be an ordered algebra with a unit \(e \). The class of orthomorphism elements \(\text{Orthe}(C) \) of \(C \) was introduced and studied by Alekhn in "The order continuity in ordered algebras". If \(C = L(G) \), where \(G \) is a Dedekind complete Riesz space, this class coincides with the band \(\text{Orth}(G) \) of all orthomorphism operators on \(G \). In this study, the properties of orthomorphism elements similar to properties of orthomorphism operators are obtained. Firstly, it is shown that if \(C \) is an ordered algebra such that \(C_\gamma \), the set of all regular elements of \(C \), is a Riesz space with the principal projection property and \(\text{Orthe}(C) \) is topologically full with respect to \(I_e \), then \(B_e = \text{Orthe}(C) \) holds, where \(B_e \) is the band generated by \(e \) in \(C_\gamma \). Then, under the same hypotheses, it is obtained that \(\text{Orthe}(C) \) is an \(f \)-algebra with a unit \(e \).

Key words: Ordered algebra, orthomorphism elements, orthomorphism, \(f \)-algebra

1. Introduction

All vector spaces are considered over the reals only. An ordered vector space (Riesz space) \(C \) under an associative multiplication is said to be an ordered algebra (Riesz algebra) whenever the multiplication makes \(C \) an algebra, and in addition it satisfies the following property: \(a, b \in C^+ \) implies \(ab \in C^+ \). A Riesz algebra \(C \) is called an \(f \)-algebra if \(C \) has the additional property that \(a \wedge b = 0 \) implies \(ac \wedge b = ca \wedge b = 0 \) for each \(c \in C^+ \).

Throughout the study, we will assume \(C \neq \{0\} \) and \(C \) has a unit element \(e > 0 \). An element \(a \in C \) is called a regular element if \(a = b - c \) with \(b \) and \(c \) positive, the space of all regular elements of \(C \) will be denoted by \(C_\gamma \). Obviously, \(C_\gamma \) is a real ordered algebra. Let \(C \) be an ordered vector space and an element \(a \in C^+ \), the order ideal \(I_a \) generated by \(a \) is the set \(I_a = \{ b \in C : -\lambda a \leq b \leq \lambda a \text{ for some } \lambda \in \mathbb{R}^+ \} \). Under the algebraic operations and the ordering induced by \(C \), \(I_a \) is an ordered vector subspace of \(C \). Moreover, \(I_e \) is an ordered algebra [1].

An element \(q \in C \) is said to be an order idempotent whenever \(0 \leq q \leq e \) and \(q^2 = q \). Under the partial ordering induced by \(C \), the set of all order idempotents \(\text{OI}(C) \) of \(C \) is a Boolean algebra and its lattice operations satisfy the identities \(p \wedge q = pq \) and \(p \lor q = p + q - pq \) for all \(p, q \in \text{OI}(C) \). If \(c \in C \) and the modulus \(|c| \) of \(c \) exists, then \(q|c| = |qc| \) and \(|c| q = |cq| \) for all \(q \in \text{OI}(C) \) [2].

Definition 1.1 [1] Let \(C \) be an ordered algebra, an element \(a \in C \) is said to be an order idempotent preserving element whenever \((e - q)a + q = 0 \) for all \(q \in \text{OI}(C) \). An element \(a \) is said to be an orthomorphism element of

*Correspondence: bturan@gazi.edu.tr

2010 AMS Mathematics Subject Classification: 46B42, 47B60

This work is licensed under a Creative Commons Attribution 4.0 International License.
an ordered algebra C whenever a is an order idempotent preserving element that is also regular.

The collection of all orthomorphism elements of an ordered algebra C will be denoted by $\text{Orthe}(C)$. An operator $\pi : G \to G$ on a Riesz space G is said to be band preserving whenever $\pi(B) \subseteq B$ holds for each band B of G. π is a band preserving operator if and only if $\pi(x) \perp y$ whenever $x \perp y$ in G. A band preserving and order bounded operator π is called orthomorphism of G and the set of all orthomorphisms of G is denoted by $\text{Orth}(G)$. If G has the principal projection property, then an operator $\pi : G \to G$ is band preserving if and only if $\pi p = p \pi$ (or $(I - p)\pi p = 0$) for every order projection p on G [3, Theorem 8.3]. If $C = L(G)$ is taken, where G is a Dedekind complete Riesz space, then the set of all order idempotents $\text{OI}(C)$ of C is the set of all order projections on G [3, Theorem 3.10] and the band B_e generated by e in C_r is equal to $\text{Orth}(G) = \text{Orthe}(C)$ [3, Theorem 8.11]. In general, the equality $B_e = \text{Orthe}(C)$ does not hold in the case of an arbitrary ordered algebra C. Therefore, the following question might come into mind. Under what condition $\text{Orthe}(C)$ could be identified to B_e? In this work, we try to provide an answer to this question. Moreover, we will show that, under the same hypothesis, $\text{Orthe}(C)$ has the similar properties of orthomorphisms.

We refer to [3, 5, 7, 9] for definitions and notations which are not explained here. All Riesz spaces in this paper are assumed to be Archimedean.

2. Orthomorphism elements

Proposition 2.1 Let C be an ordered algebra such that C_r is a Riesz space. Then, $\text{Orthe}(C)$ is a band in C_r so that $B_e \subseteq \text{Orthe}(C)$ where B_e is the band generated by e in C_r.

Proof Since $q|a| = |qa|$ and $|a|q = |aq|$ for all $q \in \text{OI}(C)$ and $a \in C_r$, it is easy to show that $\text{Orthe}(C)$ is an order ideal. To see that $\text{Orthe}(C)$ is a band in C_r, let $0 \leq (b_\alpha) \uparrow b$ in C_r with $(b_\alpha) \subseteq \text{Orthe}(C)$. Then, for all α we have

$$0 \leq (e - q) bq = (e - q)(b - b_\alpha)q + (e - q)b_\alpha q = (e - q)(b - b_\alpha)q \leq (b - b_\alpha).$$

Thus, $b - b_\alpha \downarrow 0$ implies $(e - q) bq = 0$ and $b \in \text{Orthe}(C)$. $B_e \subseteq \text{Orthe}(C)$ is obtained from the definition of B_e. \hfill \Box

Lemma 2.2 Let C be an ordered algebra such that C_r is a Riesz space with the principal projection property and $b \in C_r$. Then, $b \in \text{Orthe}(C)$ if and only if $ba = ab$ for all $a \in I_e$.

Proof Let $b \in C_r$. If $ba = ab$ for all $a \in I_e$ then $b \in \text{Orthe}(C)$ as $\text{OI}(C) \subseteq I_e$. Now, let $b \in \text{Orthe}(C)$. From Freudenthal’s Spectral Theorem [3, Theorem 6.8], there exists a sequence (u_n) of e-step function satisfying

$$0 \leq a - u_n \leq n^{-1}e$$

for each n and $u_n \uparrow a$ for every $a \in I_e$. As u_n e-step function, there exist $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$ and $p_1, p_2, ..., p_k \in \text{OI}(C)$ such that $u_n = \sum_{i=1}^{k} \lambda_i p_i$. Thus, we have $bu_n = u_n b$ for each n. This yields

$$0 \leq |ab - ba| = |ab - u_n b + u_n b - ba| \leq |ab - u_n b| + |bu_n - ba| \leq n^{-1}b + n^{-1}b$$

for each n. Since C is Archimedean, we have $ab = ba$ for every $a \in I_e$. \hfill \Box

404
If $C = L(G)$, where G is a Dedekind complete Riesz space, then $\text{Orth}(G) = \text{Orth}(C) = B_I$ where B_I is the generated by the identity operator I in C_r. In general, the equality $B_c = \text{Orth}(C)$ does not hold in the case of an ordered algebra C.

Example 2.3 Let G be the Riesz space of all continuous piecewise linear functions on $[0,1]$, then $\text{Orth}(G) = \{\lambda I : \lambda \in \mathbb{R}\}$ by the Problem 7 in [3, p. 124]. If we take $C = L(G)$, then we have $OI(C) = \{0, I\}$ as $OI(C) \subseteq \text{Orth}(G)$ holds. As a result of these simple observations we obtain that $\text{Orth}(C) = L_r(G) \neq B_I$.

Now, we will investigate when $B_c = \text{Orth}(C)$ holds.

Definition 2.4 Let C be an ordered algebra such that C_r is a Riesz space and $\text{Orth}(C)$ has separating order dual. Let $b, c \in \text{Orth}(C)$ be arbitrary and $0 \leq b \leq c$. $\text{Orth}(C)$ is said to be topologically full with respect to I_e if there exists a net $0 \leq a_\alpha \leq e$ with $a_\alpha c \to b$ in $\sigma(\text{Orth}(C), \text{Orth}(C)\^\sim)$.

Example 2.5 Let G be a Dedekind complete Riesz space with separating order dual. If we take $C = L(G)$, then $\text{Orth}(C) = \text{Orth}(G)$ is topologically full with respect to $I_e = Z(G)$ from the Theorem 4.3 in [6].

Let C be a Riesz algebra such that C_r is a Riesz space. It is easy to see that $(bc)g = q(bc)$ for each $b, c \in \text{Orth}(C)$ and $q \in OI(C)$. Thus, $\text{Orth}(C)$ is a Riesz algebra. For $b \in \text{Orth}(C)$, let us define $L_b : \text{Orth}(C) \to \text{Orth}(C) : L_b(c) = bc$ and $R_b : \text{Orth}(C) \to \text{Orth}(C) : R_b(c) = cb$ for each $c \in \text{Orth}(C)$.

L_b, R_b are regular operators and so that the adjoint operators L_b^\sim, R_b^\sim are regular operators on $\text{Orth}(C)\^\sim$. Let us consider positive linear maps

$$S_h : \text{Orth}(C) \to I_e^\sim, \ b \to S_{b,h} : S_{b,h}(a) = h(ab)$$

$$V_h : \text{Orth}(C) \to I_e^\sim, \ b \to V_{b,h} : V_{b,h}(a) = h(ba)$$

for each $b \in \text{Orth}(C)$, $a \in I_e$ and $h \in \text{Orth}(C)\^\sim_+$. If $\text{Orth}(C)$ is topologically full with respect to I_e, then we can say more about the positivity of the maps S_h and V_h. The proof of the following Lemma is the adaptation of the Lemma in [8, p.65].

Lemma 2.6 If C is an ordered algebra such that C_r is a Riesz space with the principal projection property and $\text{Orth}(C)$ is topologically full with respect to I_e, then $S_h, V_h : \text{Orth}(C) \to I_e^\sim$ are lattice homomorphisms for each $h \in \text{Orth}(C)\^\sim_+$.

Proof Let $0 \leq h \in \text{Orth}(C)\^\sim_+$. To see that S_h is a lattice homomorphism, it is enough to show that $S_{b,h} \land S_{c,h} = 0$ for each $b, c \in \text{Orth}(C)$ satisfying $b \land c = 0$. Let $d = b + c$ and I_b, I_c, I_d be respectively, the order ideals generated by b, c, and d. Then I_d is actually the order direct sum of I_b and I_c by the Theorem 17.6 [5]. We denote by p the order projection of I_d onto I_b. Let R be the restriction to I_d of order bounded functionals on $\text{Orth}(C)$. Then R is an order ideal in I_d^\sim by the Theorem 2.3 in [3]. The adjoint $p^\sim : I_d^\sim \to I_d^\sim$ of p satisfies $0 \leq p^\sim \leq I$ and as a consequence we obtain $p^\sim(R) \subseteq R$. As a result of these simple observations we obtain that the pair $< I_d, R >$ constitutes a Riesz pair and $p : (I_d, \sigma(I_d, R)) \to (I_d, \sigma(I_d, R))$ is continuous. Since $0 \leq p(d) \leq d$ there exists (a_α) in I_e such that $0 \leq a_\alpha \leq e$ with $a_\alpha d \to p(d) = b$ in $\sigma(\text{Orth}(C), \text{Orth}(C)\^\sim)$. As $L_{a_\alpha} \in Z(I_d)$ for each α it is easy to see that $a_\alpha d \to b$ in $\sigma(I_d, R)$ and
\(a_{\alpha} p(d) = p(a_{\alpha} d)\). By the continuity of \(p\) now yields \(a_{\alpha} p(d) = a_{\alpha} b \rightarrow b\) in \(\sigma(I_{d}, R)\). Since \(a_{\alpha} d = a_{\alpha} b + a_{\alpha} c\) for each \(\alpha\), we have \(a_{\alpha} c \rightarrow 0\) in \(\sigma(I_{d}, R)\). As \((S_{b,h} \wedge S_{c,h})(a) \leq h((a - aa_{\alpha})b + (aa_{\alpha})c)\) for each \(\alpha\), we obtain

\[
0 \leq (S_{b,h} \wedge S_{c,h})(a) \leq \lim_{\alpha} h((a - aa_{\alpha})b + (aa_{\alpha})c) \\
= \lim_{\alpha} h(L_{a}(b - a_{\alpha}b + a_{\alpha}c)) \\
= \lim_{\alpha} L_{a}^{\sim}(h)(b - a_{\alpha}b + a_{\alpha}c) \\
= 0
\]

as \(L_{a}^{\sim}(\text{Orthe}(C)^{\sim}) \subseteq \text{Orthe}(C)^{\sim}\), which implies that \(S_{h}\) is lattice homomorphism. On the other hand, by the Lemma 2.2 \(ba_{\alpha} \rightarrow b\) and \(ca_{\alpha} \rightarrow 0\) in \(\sigma(I_{d}, R)\) holds. Similarly, taking \(V_{h}\) instead of \(S_{h}\) and \(R_{a}\) instead of \(L_{a}\), we get \(V_{h}\) is lattice homomorphism. \(\square\)

Corollary 2.7 Let the hypotheses in the Lemma 2.6 hold. If \(b, c \in \text{Orthe}(C)\) and \(b \wedge c = 0\) then \(|S_{b,h}| \wedge |S_{c,t}| = 0\) for each \(h, t \in \text{Orthe}(C)^{\sim}\).

Proof Let \(b, c \in \text{Orthe}(C)\) and \(b \wedge c = 0\). From the Lemma 2.6 we have

\[
0 \leq |S_{b,h}| \wedge |S_{c,t}| \leq |S_{b|h}| \wedge |S_{c|t}| \leq |S_{b|h\vee|t|} \wedge S_{c|h\vee|t|}| = |S_{b\wedge c|h\vee|t|}| = 0.
\]

\(\square\)

Proposition 2.8 Let \(C\) be an ordered algebra such that \(C_{r}\) is a Riesz space with the principal projection property and \(\text{Orthe}(C)\) is topologically full with respect to \(I_{c}\). Then, \(B_{e} = \text{Orthe}(C)\) holds (where \(B_{e}\) is the band generated by \(e\) in \(\text{Orthe}(C)\)).

Proof Let \(b \in \text{Orthe}(C)\) with \(|b| \wedge e = 0\). Clearly,

\[S_{b,h}(a) = h(ab) = h(L_{b}(a)) = L_{b}^{\sim}(h)(ae) = S_{e,L_{b}^{\sim}(h)}(a)\]

holds for each \(h \in \text{Orthe}(C)^{\sim}\). Then, it follows that

\[
0 \leq |S_{b,h}| = |S_{b,h}| \wedge |S_{b,h}| \leq |S_{b,h}| \wedge S_{e,L_{b}^{\sim}(h)} = 0
\]

and so \(S_{b,h} = 0\) for each \(h \in \text{Orthe}(C)^{\sim}\). Thus, we have \(b = 0\) which implies that \(B_{e} = \{e\}^{dd} = \text{Orthe}(C)\). \(\square\)

Corollary 2.9 Let the hypotheses be as in the Proposition 2.8. Then, the band \(B_{e}\) generated by \(e\) in \(C_{r}\) is equal to \(\text{Orthe}(C)\).

Proof It is clear that the band generated by \(e\) in \(\text{Orthe}(C)\) is equal to the band generated by \(e\) in \(C_{r}\) as \(\text{Orthe}(C)\) is a band in \(C_{r}\). \(\square\)

By the Example 2.5, we have known that if \(G\) is a Dedekind complete Riesz space with separating order dual and \(C = L(G)\), then \(\text{Orthe}(C)\) has separating order dual and \(\text{Orthe}(C) = \text{Orth}(G)\) is topologically full with respect to \(I_{c} = Z(G)\). By using this observation and the above result, we can obtain the following Corollary being previously proved as a theorem in a different manner.
Corollary 2.10 Let G be a Dedekind complete Riesz space and G has separating order dual. Then the band B_I generated by the identity operator in $L_r(G)$ is equal to $\text{Orth}(G)$.

Theorem 2.11 If C is an ordered algebra such that C_r is a Riesz space with the principal projection property and $\text{Orth}(C)$ is topologically full with respect to I_e, then $\text{Orth}(C)$ is an f-algebra. Moreover, it is a full subalgebra of C.

Proof Let $b, c, d \in \text{Orth}(C)^+$ and $b \wedge c = 0$. For each $0 \leq h \in \text{Orth}(C)^\sim$ and $a \in I_e$

$$0 \leq S_{db \wedge c,h}(a) = (S_{db,h} \wedge S_{c,h})(a)$$

$$\leq S_{db,h}(a) \wedge S_{c,h}(a)$$

$$= h(a(db)) \wedge S_{c,h}(a)$$

$$= h(d(ab)) \wedge S_{c,h}(a)$$

$$= h(L_d(ab)) \wedge S_{c,h}(a)$$

$$= L_d^\sim(h)(ab) \wedge S_{c,h}(a)$$

$$= S_{b,L_d^\sim(h)}(a) \wedge S_{c,h}(a)$$

$$= 0$$

holds, which proves that $db \wedge c = 0$. Similarly, taking V instead of S and R_d instead of L_d, we have $bd \wedge c = 0$.

Let $b \in \text{Orth}(C)$ be invertible in C. We will show that $b^{-1} \in \text{Orth}(C)$. As $b \in \text{Orth}(C)$ \(bq = qb \) for each $q \in OI(C)$. It is easy to see that $b^{-1}q = qb^{-1}$ for each $q \in OI(C)$. Thus, $\text{Orth}(C)$ is a full subalgebra of C.

Corollary 2.12 Let G be a Dedekind complete Riesz space and G has separating order dual. Then, $\text{Orth}(G)$ is an f-algebra. Moreover, it is a full subalgebra of $L_r(G)$.

As each unital f-algebra C with separating order dual is topologically full with respect to I_e [8], we can give the following corollary.

Corollary 2.13 Let C be an ordered algebra such that C_r is a Riesz space with the principal projection property and $\text{Orth}(C)$ has separating order dual. Then, $\text{Orth}(C)$ is an f-algebra if and only if $\text{Orth}(C)$ is topologically full with respect to I_e.

As we said before, if G is a Dedekind complete Riesz space with separating order dual and $C = L(G)$ then $\text{Orth}(C) = \text{Orth}(G)$ is topologically full with respect to $I_e = Z(G)$. However, even if C is a Dedekind complete ordered algebra, $\text{Orth}(C)$ may not be topologically full with respect to I_e. We now give an example of a Dedekind complete ordered algebra which is not topologically full with respect to I_e.

Example 2.14 Let f be a multiplicative functional on l_∞ satisfying $f(e_0) = 0$ and C be the linear space $l_\infty \oplus \mathbb{R}$. C is a Dedekind complete ordered Banach algebra with unit $(e, 0)$ under the multiplication

$$(u_1, \lambda_1) \ast (u_2, \lambda_2) = (u_1 u_2, \lambda_1 f(u_2) + \lambda_2 f(u_1) + \lambda_1 \lambda_2),$$
the norm
\[\|(u, \lambda)\| = \|u\| + |\lambda| \]
and the order induced by the cone
\[C^+ = \{(u, \lambda) : u \in l_1^+ \text{ and } \lambda \in \mathbb{R}\}. \]

Furthermore,
\[OI(C) = \{(p, 0) : p \in OI(l_\infty)\} \text{ and } \text{Orthe}(C) = \{(u, \lambda) : u \in \text{Orthe}(l_\infty) \text{ and } \lambda \in \mathbb{R}\} \text{ [1].} \]

Since \(C \) is Dedekind complete, \(C_r \) is a Riesz space with the principal projection property. As \(\text{Orthe}(C) \) is order closed, \(\text{Orthe}(C) \) is norm closed [9, Theorem 100.7]. This implies \(\text{Orthe}(C) \) Banach lattices, hence \(\text{Orthe}(C)^\sim = \text{Orthe}(C)' \) and so \(\text{Orthe}(C) \) has separating order dual. It is easy that, \((0, 1), (e, 0) \in \text{Orthe}(C)\) and \((0, 1), (e, 0) \). On the other hand, we have
\[(0, 1) \ast (e, 0) = (0e, 1f(e) + 0f(0) + 01) = (0, 1) \neq 0 \]
so that \(\text{Orthe}(C) \) is not an \(f \)-algebra. By the Corollary 2.13, \(\text{Orthe}(C) \) is not topologically full with respect to \(I_e \).

Since each \(f \)-algebra is commutative, we can give the following corollary.

Corollary 2.15 Let \(C \) be an ordered algebra such that \(C_r \) is a Riesz space with the principal projection property and \(\text{Orthe}(C) \) is topologically full with respect to \(I_e \). Then, \(\text{Orthe}(C) \) is a commutative algebra.

References