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Abstract: This paper addresses an asset management problem in the 
context of the wind energy industry. Asset management decisions 
(including operation and maintenance, retrofitting and purchasing) for 
assets reached their end-of-life are explicitly examined in a linear 
programming model over a planning horizon. Unfortunately, almost all 
important generic classes of integer programming problems are NP-hard 
and many of these problems are large-size. Therefore, in order to solve 
practical integer programming problems we may need to use problem 
specific algorithms which can exploit some special structures of the 
problem at hand. We propose a solution approach based on a Lagrangian 
relaxation and the subgradient method for a large size parallel asset 
management problem, which originally solved by using mixed integer 
linear programming (MILP). The decomposition approach considers the 
relaxation of different sets of constraints, including the budget and energy 
constraints. The computational results show that the incorporation of 
Langrangian relaxation significantly improves the duality gap and solution 
time of a case study from wind turbine (WT) sector. 
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Anahtar Kelimeler 
Rüzgâr türbünü,  
Karışık tam sayılı doğrusal 
programlama,  
Langrangian gevşemesi 

Öz: Bu makale, rüzgâr enerji sektöründe kullanım ömrünü doldurmuş rüzgar 

türbinlerinin varlık yönetimini ele almaktadır. Kullanım ömrü dolmuş varlıklar 

için mevcut olan varlık yönetimi kararları (işletme ve bakım, güçlendirme ve 

satın alma dahil) bir planlama ufku üzerinden doğrusal bir programlama 

modelinde açıkça incelenir. Ne yazık ki, tamsayı programlama problemlerinin 

neredeyse hepsi NP-Zor (NP-Hard)’dur ve bu problemlerin çoğu büyük 

boyuttadır. Bu nedenle, pratik tamsayı programlama problemlerini çözmek için, 

problemin bazı özel yapılarından faydalanabilecek probleme özgü algoritmalar 

kullanmak gerekebilir. Bu çalışmada, başlangıçta karma tamsayı doğrusal 

programlama (MILP) kullanılarak çözülen büyük boyutlu bir paralel varlık 

yönetimi problemi için Lagrange gevşetmesi ve alt gradyan yöntemine dayanan 

bir çözüm yaklaşımı önerilmiştir. Bütçe ve enerji kısıtları gevşetilerek çözüm 

elde edilmeye çalışılmıştır. Vaka çalışması olarak Rüzgar türbinlerinin 

kullanıldığı model sonuçları incelendiğinde, bu yöntem sayesinde, dual aralığı 

ve çözüm süresinin önemli ölçüde azaldığı gözlenmiştir. 
 

  
*Corresponding Author, email: cinarsuna@yahoo.com 

 
1. Introduction 

As assets are utilized overtime, operating and maintenance costs increases. Therefore, an asset manager has to 
deal with the tradeoff between the lower operating and maintenance (O&M) costs of newer fleets and their higher 
initial capital costs as well as the tradeoff between conventional and new efficient technologies. Due to the nature 
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of the problem, asset management by itself (i.e. keeping an asset with preventive maintenance or replacing with a 
new one) is quite similar to a parallel replacement problem. The traditional approach to solving asset management 
problems is using economic service life approach, dynamic programing or mixed integer linear programming 
(MILP). In the literature, there are limited number of studies completed in the field of asset management problems. 
Therefore, in this section, most of the current studies are up to year 2018.These studies are summarized below. 
 Jones et al. (1991) analyzed the parallel machine replacement problem using dynamic programming and 
assuming that a fixed charge was incurred in each period of replacement, thus proving that cluster of the same-
age assets would either be kept or replaced (no-splitting rules) as a group in any period if demand was constant 
[1]. Hartman (2000) examined the impact of fluctuating demand and budgeting consideration of the parallel 
replacement problem under economies of scale, where the purchase of an asset is subject to a fixed charge, 
regardless of the order size, and a capital budgeting constraint in each period. He recognizes that problem can get 
difficult when the number of assets is large because of the large state-space [2].  Karabakal et al. (1994) addressed 
a different parallel replacement problem with capital budgeting constraints solved by a branch-and-bound 
algorithm [3]. Karabakal et al. (2000) provide a heuristic multiplier adjustment method for solving large, 
realistically sized problems [4]. Hartman and Dearden (1999) presented integer programming solutions that allow 
decision makers to determine minimum cost-replacement strategies with variable utilization schedules and 
categorize assets based on age and cumulative utilization [5]. Hartman and Clarke (2002) integrated a production 
planning problem with a parallel replacement problem, and illustrated how their integer programming model 
accurately predicts costs production decisions and may alter replacement decisions [6]. Hartman (2004) examined 
asset replacement decisions, based on age and cumulative utilization, under variable periodic utilization [7]. 
Laksuwong et al. (2014) presented a new approach for the parallel fleet replacement problem. In this study, the 
aim was to determine an optimal replacement schedule for a fleet of vehicles that results in minimal total cost of 
owning and operating the fleet [8]. Seif and Rabbani (2014) assessed life cycle costing (LCC) of equipment 
based on the failure rates of machine components. The LCC was assessed, mathematically modeled, and 
incorporated to the parallel machine replacement problem with capacity expansion consideration [9]. Chen 
(1998) study solution algorithms for the parallel replacement problem under economy of scale [10]. Abhishek 
(2000),  examined three or more assets and higher number of discrete utilization levels per asset under stochastic 
demand by  different algorithm including exhaustive search dynamic programing, demand approximation, relaxed 
integrated approximation and decision approximation. Based on the results, it was concluded that decision 
approximation algorithm provided the best result[11]. Ching-Jung and Kuo-Rui (2016), proposed to use 
Lagrangian relaxation heuristic that can be an effective solution method for the capacitated p hub median location 
problem with multiple capacity levels [12]. Hartman (2000) studied the parallel asset replacement problem under 
economies of scale and non-decreasing demand with branch-and-cut. He showed that parallel replacement 
problems (PRP) are NP-hard [13].  
 
Mainly two options, either keeping asset with preventive maintenance or purchase a new asset has been 
considered for PRP. Yet, there can be another alternative, which is retrofitting, for asset management in the field 
of wind energy. There exists little literature regarding the PRP with retrofitting as an improvement options in an 
optimization model. Therefore, there is a need for such an asset management model that provides the strategic 
operation and management plan to decision makers under budget and energy constraints. To close this gap, Cinar 
et al. (14) prosed a MILP to determine the optimal replacement scheduling incorporating retrofitting options into 
the model under a limited budget [12]. As this proposed parallel replacement problem with retrofitting (PRP-R) 
considered as NP-hard, to reduce the solution time for a large problems, we propose an approximate solution 
approach based on Lagrangian relaxation and the subgradient method as an alternative to obtain approximate 
solutions. Coupled with a Lagrangian relaxation, this should provide us with feasible solutions and estimates of 
the potential error. Our main objective have been to analyze the potential of this approach for a difficult asset 
management problem and, hence, we have applied the wind farm. To the best of our knowledge, this is the first 
study that Lagrangian relaxation algorithm developed for PRP-R. Therefore, the proposed model can be considered 
as the main research contribution. Our computational results show that the incorporation of Langrangian 
relaxation significantly improves the integrality gap and reduces the solution time of a case study problem of the 
WTs asset management.  
 
Brief summary of the Lagrangian relaxation method is given in Section 2. A description of the problem is outlined 
in Section 3 and the mathematical model, which takes form of a MILP, is then presented in Section 3.1. Section 3.2 
briefly describe the sub-gradient algorithm used for the model. Section 4 presents a case study that validates the 
model. Finally, Section 5 presents conclusions and suggestions for future research. 

 
2. Langrangian Relaxation for Proposed Model 
 
The power of commercial MILP solvers has improved greatly over the last ten to fifteen years. This is due partly to 
much faster Linear Programing (LP) solvers, which allow a much quicker processing of the nodes in the Branch-
and-Bound tree. In addition, increased use of logical processing and heuristic tools for tightening models and for 
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finding solutions help the process. Despite the fact that some of the combinatorial optimization problems are still 
very difficult to solve using Branch-and-Bound alone. This seems to be the case for problems containing different 
components that are only loosely connected together by constraints. 
 
In our original problem, when we increase the size of the problem, we observe that computational time to solve 
the problem increased exponentially. Therefore, in order to solve the problem faster, we develop and implement 
Lagrangian relaxation algorithm to pick a set of complicating constraints, which, if relaxed, is much easier to solve 
than the original problem.  
 
Lagrangean relaxation was developed in the early 1970's with the pioneering work of Held and Karp on the 
travelling salesman problem. [15]. Lagrangian relaxation is a relaxation and decomposition method to solve 
mathematical programming problems. The main idea of Lagrangian relaxation is to separate the constraints as 
easy constraints and the hard constraints, and eliminate the hard constraints from the constraint set of the 
mathematical programming model [16]. Lagrangian relaxation is a technique commonly used to relax these 
complicating constraints in order to have an easier problem to optimize [17]. The method of Lagrangian relaxation 
lifts these complicating constraints and makes use of the special structure to solve the relaxed problem. This 
produces a lower bound for a minimization problem. There are two general techniques are available: sub-gradient 
optimization and multiplier adjustment methods. With Lagrangian relaxation, a good approximate solution or the 
best (tight) bound can be obtained by subgradient optimization methods where a subgradient vector is obtained 
by minimizing the relaxed primal problem and the dual variables are updated iteratively along the direction of this 
subgradient vector [18]. Lagrangian relaxation with subgradient optimization  method is provided in literature by 
several authors [17].  
 
Considering PRP-R being NP-hard, in this study, we use the Lagrangian relaxation with subgradient optimization 
method for our problem. We provide insight into solving large-scale problems with the use of Langrangian 
relaxation method for the problem developed in previous research [14]. Considering the motivations above, the 
objective of this work is to extend the PRP-R model that we develop to aid the replacement and retrofitting 
decision-making in wind farms. The work focuses on the economic and financial aspects of the replacement 
problem, trying to identify the optimal replacement, retrofitting or recycling timing and the consequences of 
alternative decisions.  

 
3. Solving Original Parallel Replacement Problem-Retrofitting (PRP-R) Mathematical Model by 
Langrangian Relaxation 
 
The model used in this study is originally proposed by Cinar et al. (2018) [14]. In this model, a MILP is developed 
to determine the optimal replacement policy for the WT industry. The proposed MILP model consists of 
formulating the total cost, including the cost for operating, retrofitting and replacing WTs. As PRP-R model defined 
as NP-Hard, we propose to solve the original model by using Langrangian relaxation to reduce the solution time.   
 
3.1. Model Details 
 
In the original MILP model, we  select the constraint (3) and (4) as complicating constraints and modify the 
objective function by adding two difficult constraints to the objective function and solving the problem with 
subgradient optimization. Constraint 3 and 4 are dualized into original objective function.  We represent the 
notation and model formulation with a network illustration, shown in Figure 1 [14]. 
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Figure 1. Representation of RRR as a network with flow representing purchase (P), retrofitting (V, VN), utilization (U), salvage (S), retrofitted WT salvaged (SNEW), retrofitted WT utilized 

(UNEW)  variables, and initial WT (h, R), initial retrofitted WT (R)  with N=3 and T=7. [124] 
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The model for the proposed problem has the following sets, indexes, parameters, cost, and decision 
variables. 

i: asset age, iI ={1,…,|I|} 

t: time period, t T ={1,…,|T|} 

Parameters: 
Bt: budget at time period t ($) 
Dt:  energy demand at time period t (kW) 
Ft: fixed cost of retrofit at the end of year t ($) 
EOit: energy production of an old asset at age i at time period t (kW) 
ENt: energy production of a new asset at time period t (kW)   
ERt: energy production of a retrofitted asset at time period t (kW) (ENt ≥ERt) 
Et: unit cost of electricity at time period t ($/Kw)  
hi: number of existing assets at age i (initial cluster size) 
ri: number of retrofitted assets at age i at time period zero 

 
Costs: 

OPi: operation and maintenance costs for i year old asset receiving preventive 
maintenance ($) 

ORi: operation and maintenance costs for i year old asset receiving retrofit ($) 
SAit: salvage revenue (negative cost) from selling i year old assets at time period t ($) 
SRit: salvage revenue (negative cost) from selling i year old retrofitted asset at time period 

t ($) 
Ɵt: cost of purchasing a new asset at the end of year t ($) 
dr: inflation rate 

Decision Variables: 
Uit: number of i-year-old assets that received preventive maintenance at end of year t 
UNit: number of i-year-old assets that received retrofitting and utilized at end of year t 
Vit: number of i-year-old assets that received retrofit at end of year t 
VNit: number of i-year-old retrofitted assets that received another retrofit at end of year 

t 
Pt: number of assets purchased at end of year t (new asset) 
Sit: number i-year-old assets salvaged at end of year t 
SNit: number i-year-old retrofitted asset salvaged at end of year t for retrofitting 

 
The objective function, shown as equation (1), includes the operation and maintenance cost, purchase 
cost of a new asset, and fixed cost of retrofitting the main components (i.e., structure, motors, gearbox, 
blades, generator, etc.) of an existing asset and  minimizes the sum of purchasing, maintaining, operating, 
and salvaging over the period of analysis, i.e., from time zero (present) to the end of year t. Constraints 
(2) and (3) provide that there is enough energy production to satisfy periodic demands at time zero and 
after time zero, respectively. Constraint (4) shows that purchase costs, operation and maintenance costs, 
and fixed costs cannot exceed the yearly budget. Constraints (5) to (10) are referred to as flow 
conservation constraints. The age of any asset in use will increase by one year after each time period (5). 
Constraint (6) ensures that the conservation of assets, i.e., the initial asset (not 0-age ones) must be used, 
sold, or retrofitted. At the end of the last time period, there will be no asset in use for any age or type of 
asset, i.e., all assets will be sold.  Constraint (7) is the initial boundary condition for an asset at age 0 at 
time period t is equal to a newly purchased plus retrofitted asset at period t – 1 (previous period). 
Constraints (8) and (9) are flow balance constraints for the last period of an existing asset, which should 
be either retrofitted or salvaged from the previous period. Constraint (10) is a flow balance constraint 
for the number of assets utilized during year zero, which must be equal to the sum of existing assets plus 
purchased assets. The decision variables associated with purchasing, utilization, retrofitting, and 
salvaging decisions must be integer positive numbers, as shown in expression (11). To be able to 
determine if retrofitting is profitable as a WT asset management strategy, we modified the objective 
function based on total profit, which includes total electricity production price minus total operating, 
purchasing, and retrofitting costs. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = ∑ ∑ 𝑂𝑃𝑖𝑡 ∗ 𝑈𝑖𝑡

𝑖∈𝐼\{|𝐼|}𝑡∈𝑇\{|𝑇|}

∗ (1 + 𝑑𝑟)−𝑡

+ ∑ ∑ 𝑂𝑅𝑖𝑡 ∗ 𝑈𝑁𝑖𝑡

𝑖∈𝐼\{|𝐼|}

∗ (1 + 𝑑𝑟)−𝑡

𝑡∈𝑇\{|𝑇|}

+ ∑ Ɵ𝑡 ∗ 𝑃𝑡 ∗ (1 + 𝑑𝑟)−𝑡

𝑡∈𝑇\{|𝑇|}

+ ∑ ∑ 𝐹𝑖𝑡 ∗ 𝑉𝑖𝑡 ∗ (1 + 𝑑𝑟)−𝑡 + ∑ ∑ 𝐹𝑖𝑡 ∗ 𝑉𝑁𝑖𝑡

𝑖∈𝐼𝑡∈𝑇\{|𝑇|}𝑖∈𝐼𝑡∈𝑇\{|𝑇|}

∗ (1 + 𝑑𝑟)−𝑡

− ∑ ∑ 𝑆𝐴𝑡𝑖 ∗ 𝑆𝑖𝑡

𝑖∈𝐼\{0}𝑡∈𝑇

∗ (1 + 𝑑𝑟)−𝑡 − ∑ ∑ 𝑆𝑅𝑡𝑖 ∗ 𝑆𝑁𝑖𝑡 ∗ (1 + 𝑑𝑟)−𝑡

𝑖∈𝐼\{0}𝑡∈𝑇

 

Subject to: 

 (1) 

∑ 𝑈𝑖(𝑡𝑜)

𝑖∈𝐼\{|𝐼|}

∗ 𝐸𝑂𝑖 + 𝑃(𝑡0) ∗ 𝐸𝑁(𝑖0) ≥ 𝐷(𝑡0)  (2) 

 

 

𝑃𝑡+1 ∗ 𝐸𝑁(𝑖) + ∑𝑉(𝑖+1)𝑡

𝑖∈𝐼

∗ 𝐸𝑅(𝑖) + ∑𝑉𝑁(𝑖+1)𝑡

𝑖∈𝐼

∗ 𝐸𝑅(𝑖) ∑ 𝑈𝑖(𝑡+1)

𝑖∈𝐼

∗ 𝐸𝑂𝑖 + ∑𝑈𝑁𝑖(𝑡+1)

𝑖∈𝐼

∗ 𝐸𝑁𝑖 ≥ 𝐷(𝑡+1) 

 

  𝑡 ∈ 𝑇\{|𝑇|} (3) 

∑ 𝑈𝑖𝑡

i∈𝐼\{|𝐼|}

∗ 𝑂𝑃𝑖𝑡 + ∑ 𝑈𝑁𝑖𝑡

i∈𝐼\{|𝐼|}

∗ 𝑂𝑅𝑖𝑡 + ∑ 𝑉𝑖𝑡

i∈𝐼\{0}

∗ 𝐹𝑖𝑡 + ∑ 𝑉𝑁𝑖𝑡

i∈𝐼\{0}

∗ 𝐹𝑖𝑡 + ∑ 𝑃𝑡

𝑡∈𝑇\{|𝑇|}

∗ Ɵ𝑡 − ∑ 𝑆𝑖𝑡 ∗

𝑖∈𝐼\{0}

𝑆𝐴𝑡𝑖 − ∑ 𝑆𝑁𝑖𝑡 ∗

𝑖∈𝐼\{0}

𝑆𝑅𝑡𝑖 ≤ 𝐵𝑡  

 

𝑡 ∈ 𝑇\{|𝑇|} (4) 

 
𝑈(𝑖−1)(𝑡−1) = 𝑈𝑖𝑡 + 𝑉𝑖𝑡 + 𝑆𝑖𝑡                

 

i ∈ 𝐼\{0},        𝑡 ∈ 𝑇\{0} (5a) 

𝑈𝑁(𝑖−1)(𝑡−1) = 𝑈𝑁𝑖𝑡 + 𝑉𝑁𝑖𝑡 + 𝑆𝑁𝑖𝑡            

 

i ∈ 𝐼\{0},         𝑡 ∈ 𝑇\{0} (5b) 

ℎ𝑖 = 𝑈𝑖0 + 𝑉𝑖0 + 𝑆𝑖0               

           

i ∈ 𝐼\{0} (6a) 

 

ri0 = 0                                               

          

i ∈ 𝐼\{0} (6b) 

𝑈(0)(𝑡+1) = 𝑃𝑡+1 + ∑ 𝑉𝑖𝑡                            𝑖∈𝐼   i ∈ 𝐼\{0}, 𝑡 ∈ 𝑇\{|𝑇|} (7a) 

 

𝑈𝑁(0)(𝑡+1) = ∑ 𝑉𝑖𝑡 + ∑ 𝑉𝑁𝑖𝑡                    𝑖∈𝐼   𝑖∈𝐼   𝑖 = {|𝐼|},          𝑡 ∈ 𝑇\{|𝑇|} (7b) 

𝑈(𝐼−1)𝑡 = 𝑆𝐼(𝑡+1) + 𝑉𝐼(𝑡+1)                   𝑖 = {|𝐼|},         𝑡 ∈ 𝑇\{|𝑇|} (8a) 

 

UN(|I|−1)t = SN|I|(t+1)                      𝑖 = {|𝐼|} ,        𝑡 ∈ 𝑇\{|𝑇|} (8b) 

𝑈𝑖(|𝑇|−1) = 𝑆(𝑖+1)|𝑇|                           

        

𝑖 ∈ 𝐼\{|𝐼|} (9a) 

UNi(|T|−1) = SN(i+1)|T|                       𝑖 ∈ 𝐼\{|𝐼|} ,    𝑡 = {|𝑇|} (9b) 

   

𝑈00 = 𝑃0 + ℎ0 
 

 (10) 

𝑈𝑖𝑡 ,  𝑆𝑖𝑡 , SNit, 𝑉𝑖𝑡 , VNit, UNit,, 𝑃𝑡  ∈ 𝑍 +      

 

𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (11) 
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3.2. Model Details 
 
In the PRP-R, when the size of the problem is increased, it can be seen that the computational time to 
solve it increases exponentially. In order to solve the problem faster, a Lagrangian relaxation algorithm 
is proposed. This algorithm penalizes a set of complicating constraints to the objective function, which 
results in a problem easier to solve than the original problem, and a subgradient optimization method is 
used to update the penalty. 
In other words, the Lagrangian relaxation method lifts these complicating constraints and makes use of 
the special structure to solve the relaxed problem. This produces a lower bound for a minimization 
problem. There are two general techniques to implement a Lagrangian relaxation algorithm: sub-
gradient optimization and multiplier adjustment methods [19]. Several authors, including Fisher (2004) 
and Lemar´echal (2001) use Lagrangian relaxation with the subgradient optimization method [15, 20]. 
A multiplier adjustment method is an iterative method that generates a series of monotonically 
increasing lower bounds. In general, a multiplier adjustment method requires less iteration than the 
subgradient method per iteration. On the other hand, it cannot guarantee lower bounds that are a good 
as those produced by the subgradient method [21]. As,  subgradient method has always appeared to give  
good lower bounds which is often close to the optimal integer solution, this method is usually preferred. 
 
In the problem here, constraints (3) and (4) (production and budget constraints, which are inequalities) 
are selected as complicating constraints and the objective function is modified by penalizing  these 
constraints to the objective function and solving the problem using the subgradient optimization 
technique. The resulting objective function is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑂𝑀𝑃𝑁𝑖𝑡 ∗ 𝑈𝑖𝑡 ∗ (1 + 𝑑𝑟)−𝑡
𝑖∈𝐼\{|𝐼|}𝑡∈𝑇\{|𝑇|} + ∑ ∑ 𝑂𝑀𝐿𝑅𝑖𝑡 ∗ 𝑈𝑁𝑖𝑡 ∗ (1 +𝑖∈𝐼\{|𝐼|}𝑡∈𝑇\{|𝑇|}

𝑑𝑟)−𝑡 + ∑ 𝑃𝑈𝑅𝑡 ∗ 𝑃𝑡 ∗ (1 + 𝑑𝑟)−𝑡
𝑡∈𝑇\{|𝑇|} + ∑ ∑ 𝐹𝑅𝐸𝑇𝑖𝑡 ∗ 𝑉𝑖𝑡 ∗ (1 + 𝑑𝑟)−𝑡 +𝑖∈𝐼𝑡∈𝑇\{|𝑇|}

∑ ∑ 𝐹𝑅𝐸𝑇𝑖𝑡 ∗ 𝑉𝑁𝑖𝑡 ∗ (1 + 𝑑𝑟)−𝑡
𝑖∈𝐼𝑡∈𝑇\{|𝑇|} − ∑ ∑ 𝑆𝐴𝐿𝑡𝑖 ∗ 𝑆𝑖𝑡 ∗ (1 + 𝑑𝑟)−𝑡

𝑖∈𝐼{0}𝑡∈𝑇 − ∑ ∑ 𝑆𝐴𝐿𝑡𝑖 ∗𝑖∈𝐼\{0}𝑡∈𝑇

𝑆𝑁𝑖𝑡 ∗ (1 + 𝑑𝑟)−𝑡 + ∑ ∑ 𝛷𝑖𝑡𝑖∈𝐼\{|𝐼|} ∗𝑡∈𝑇\{|𝑇|} (𝐸𝑛𝐷𝑒𝑚 − 𝑃𝑡+1 ∗ 𝐸𝑁𝑁𝐸𝑊(𝑖0) + ∑ 𝑉(𝑖+1)𝑡𝑖∈𝐼 ∗ 𝐸𝑁𝑅𝐸𝑇(𝑖0) +

∑ 𝑉𝑁(𝑖+1)𝑡𝑖∈𝐼 ∗ 𝐸𝑁𝑅𝐸𝑇(𝑖0) ∑ 𝑈𝑖(𝑡+1)𝑖∈𝐼 ∗ 𝐸𝑁𝑂𝐿𝐷𝑖 + ∑ 𝑈𝑁𝑖(𝑡+1)𝑖∈𝐼 ∗ 𝐸𝑁𝑁𝐸𝑊𝑖) +

 ∑ ∑ 𝛿𝑖𝑡𝑖∈𝐼\{|𝐼|} ∗𝑡∈𝑇\{|𝑇|} (∑ 𝑈𝑖𝑡i∈𝐼\{|𝐼|} ∗ 𝑂𝑀𝑃𝑁𝑖𝑡 + ∑ 𝑈𝑁𝑖𝑡i∈𝐼\{|𝐼|} ∗ 𝑂𝑀𝐿𝑅𝑖𝑡 + ∑ 𝑉𝑖𝑡i∈𝐼\{0} ∗ 𝐹𝑅𝐸𝑇𝑖𝑡 +

∑ 𝑉𝑁𝑖𝑡i∈𝐼\{0} ∗ 𝐹𝑅𝐸𝑇𝑖𝑡 + ∑ 𝑃𝑡𝑡∈𝑇\{|𝑇|} ∗ 𝑃𝑈𝑅𝑡 − ∑ 𝑆𝑖𝑡 ∗𝑖∈𝐼 𝑆𝐴𝐿 − ∑ 𝑆𝑁𝑖𝑡 ∗𝑖∈𝐼 𝑆𝐴𝐿𝑡𝑖 − 𝐵𝑢𝑑𝑔𝑒𝑡)                                   

            

          (12) 

Subject to constraints (2), (5a), (5b), (6a), (6b), (7a), (7b), (8a), (8b), (9a), (9b), (10), and (11). 

The subgradient algorithm used for this problem is shown below. Two Lagrangian relaxation multipliers 
based on MILP formulation are used for the original problem. First, the budget and energy constraints 
are relaxed; then a relaxation with the integrality property is obtained. This is useful for solving the MILP 
relaxation of the original problem approximately. Relaxation is obtained by dualizing the set of 
constraints (4) and (5) with 𝛷𝑖𝑡   and 𝛿𝑖𝑡  ≥ 0, where 𝛷𝑖𝑡  𝑎𝑛𝑑  𝛿𝑖𝑡  are multipliers associated with budget 
and energy constraints, respectively, of period t. 

 𝛷𝑖𝑡   𝑎𝑛𝑑  𝛿𝑖𝑡 ≥ 0    𝑖 ∈  𝐼 and 𝑡 ∈  𝑇            

 (13) 

The pseudo code for the proposed Lagrangian algorithm is presented in Table 1. 
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Table 1. Pseudo Code for Proposed Subgradient Optimization Algorithm for PRP-R  

Algorithm Steps Explanation for each step 

Input: LLBP();                    //Lagrangian lower bound 

Input: Lup;  //Upper bound value for original problem 

{Initialization}  

𝜃:= 𝜃𝑖𝑛𝑖𝑡;     //Subgradient agility, suggested 𝜃𝑖𝑛𝑖𝑡=2     [22] 

An initial value 𝛷0 ≥ 0 , 𝛿0 ≥ 0 //Lagrangian multiplier 

𝐿𝑚𝑎𝑥 = −∞;                                 //Best lower bound so far 

  for µ=0,1,…. {Sub-gradient iterations}  

𝛾𝑡 ≔ 𝑔(𝑥𝑡)      
𝜎𝑡 ≔ 𝑔(𝑦𝑡)                                                                       

//Gradient of 𝐿(𝛷𝑡)   and 
//Gradient of 𝐿(𝛿𝑡)   

𝜕𝑡 ≔ 𝜃𝑡(𝐿
∗ − 𝐿(𝛷𝑡))/|| 𝛾𝑡||2                 and 

𝜓𝑡 ≔ 𝜃𝑡(𝐿
∗ − 𝐿(𝛿𝑡))/|| 𝜎𝑡||2             

//Compute step size 
 

𝛷𝑡+1 ≔ max {0,𝛷𝑡+𝜕𝑡𝛾
𝑡}                    and 

𝛿𝑡𝑡+1
≔ max {0, 𝛿𝑡𝑡

+𝜓𝑡𝜎
𝑡}                  

//Update step size 
 

If ||𝛷𝑡+1-𝛷𝑡|| < 𝜀       and 
If ||𝛿𝑡+1-𝛿𝑡|| < 𝜀 then                                         

// Suggested 𝜀 = 0.01(1)                                       
 

          Stop 
            End if 
If no progress in more than K iterations, then  
𝜃𝑡+1:= 𝜃𝑡/2 

//Reduce agility 
 

else 
𝜃𝑡+1:= 𝜃𝑡 
        End if 
µ:= µ + 1 
end for 

 

             

4. Results and Discussion 
 
For each instance we first solved the original formulation using Branch and Bound algorithm. We then 
solved the Lagrangian relaxation algorithm.  To further illustrate the applicability of the model and 
solution method, we apply our methodology on available data for the GE 1.5 MW WT, which is widely 
used throughout the US in wind farms. Even though, there are many types and style of WTs can exist at 
each wind farm; we consider only one type and one style of WTs. For implementation, we consider 50 
replacement periods (years), and three scenarios with small, medium, and large size of initial inventory 
of assets. Summing all the cost data provided above, cost data for the experimental design is presented 
in Table 2. 
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Table 2. 1.5 MW WT data for model illustration 

Parameter Symbol Data Reference 
Unit purchase cost P1;1 $1,400-$2000 per kw increasing by 2% each 

time period t 
[23] 

 
Unit O&M cost  

OMPN1;1 
OMLR1;1 

$ 9 -$20 per MWh increasing by 10% each 
time period  

[23] 
 

 
Unit salvage value 

S1;1 
SN1;1 

80% of P1;1 and decreasing by 20% each time 
period t 

Estimated value 

Demand EnDem 15,500,000-45,000,000 kWh per year Estimated value 

Energy production EN 4,500,000 kWh per year for 1.5 MW WT [24] 

Budget Budget $250,000-$1,500,000 Estimated value 

Cost of electricity ECost 0. 02-0.05$/kW [24] 

New wind turbine cost (GE 1.5 XLE 1.5 
MW) 

P1;1 $1, 400,000 [25], [26] 

Gearbox 10-15% of total cost of WT 
 
 
V1;1, VN1;1 

 

 

 

$140,000-$210,000 [25], [26] 

Generator % 5-10 of total cost of WT 
(including installation cost) 

$70,000-$140,000; 

Blades % 10-25 of total cost of WT 
(including installation cost) 

$140,000-$210,000; 

Tower cost %10-35 of total cost of WT 
(including installation cost) 

$140,000-$350,000 

  

We solve original problem using CPLEX and alternative method for three scenarios, present results, 
and illustrate the solution effectiveness in Table 3. The computational experiments with 
Computational experiments with Lagrangian relaxation suggest that subgradient optimization is quite 
effective in solving large-scale problems. When the problem planning period is 100 time units, the 
subgradient algorithm solves the problem in approximately less than 1.5% of the CPU time that the 
PRP-R model requires to find the optimal solution using CPLEX. Each run results in a number of 
iterations, which are provided in Table 4. Lagrangian relaxation suggest that sub-gradient optimization 
is quite effective in solving the large scale problems. 
 

Table 3. Run Times with Lagrangian Relaxation 

Time Period 
Main 

Problem CPU (sec) 
LR CPU 

(sec) 
Number of 
Iterations 

25 10 0.08 3 

50 70 2 7 

100 4,568 60 15 

100—Case a 
(20% operation and maintenance cost increase) 

4,452 56 12 

100—Case b 
(20% retrofitting cost  increase) 

4,376 49 10 

100—Case c 
(20% increasing energy demand) 

4,735 83 14 

       
Based on the results obtained it was concluded that the Branch and Bound algorithm was not able to 
solve the basic formulation in a reasonable time, except in the small instance. However, a significant 
improvement is obtained by strengthening the formulation of the model. This benefits both the 
straightforward use of Branch and Bound, and the Lagrangian relaxation. Notice that the Branch and 
Bound leads higher CPU times compared to the Linear Relaxation approach.  
 
This paper present Lagrangian relaxation with subgradient method for the previously designed MILP 
programing for an asset replacement problem. A significant number of previous studies have focused on 
both theoretical development and mathematical modeling of asset management problems. To the best 
of our knowledge this is the first study considers Lagrangian relaxation approach to solve the NP-Hard 
PRP-R. As a result this is a significant contribution to the field of study. 
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5 Conclusion  
 
 
In this study, we have analyzed WTs asset management problem modelled through a combinatorial 
optimization formulation that can be viewed as the composition of a location problem and a fixed charge 
problem. Due to the difficulty of solving a given the combinatorial complexity of the subproblems, we 
used Lagrangian relaxation approach to solve the problem. We tested a WT asset management problem 
with both small and large instances.  
 
In summary, we note that strengthening of the formulation does significantly improve the solutions 
process, and Lagrangian relaxation seems to be a promising approach for larger, more difficult to solve 
problems. Strengthening the formulation led to optimal solutions for the large and medium sized 
problems in reasonable CPU time. Detail testing is needed to achieve better conclusions on the 
applicability of Lagrangian relaxation, but this preliminary study results suggests that the approach is 
promising, specially if it is combined with strengthening procedures. 
 
Further research is suggested in the analysis of other Lagrangian heuristics, such as simple versions of 
Ant Colony Optimization and GRASP, among other well-known heuristics and metaheuristics to compare 
the model solution time.  In addition, to be able to test the proposed algorithm, different application 
(such as different type of end of life product including vehicles and electronic goods) can be studied. 
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