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Abstract
The aim of the present paper is to introduce a class Σ∗p(G,H,τ,c) of meromorphic univalent functions in E = {0 <
|z|< 1} and investigate coefficient estimates, distortion properties and radius of convexity estimates for this class.
Furthermore, it is shown that this class is closed under convex linear combinations, convolutions and integral
transforms.
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1. Introduction
Let Σ symbolized the class of analytic functions, which are with a simple pole at the origin with residue 1 of the form in the
punctured unit disc E = {z : 0 < |z|< 1} and of the form

f (z) =
1
z
+

∞

∑
n=1

anzn. (1.1)

Let Σs,Σ
∗(α) and Σk(α) be the subclass of Σ consisting of univalent, meromorphically starlike of order α and meromorphi-

cally convex functions of α, 0≤ α < 1 respectively.
A function given by (1.1) is in the Σ∗(α)

⇔ ℜ

{
− z f ′(z)

f (z)

}
> α (z ∈ E) (1.2)

and f ∈ Σk(α)

⇔ ℜ

{
− (1+ z f ′′(z))

f ′(z)

}
> α, (z ∈ E). (1.3)

Recent years, many authors investigated the subcalss of meromorphic functions with positive coefficients (see [1, 2, 3, 4, 5].
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Let Σp denote the class of functions of the form

f (z) =
1
z
+

∞

∑
n=1

anzn, (an ≥ 0) (1.4)

that are analytic and univalent in E.
We recall here the generalized Bessel function of first kind of order γ (see [6]), denoted by

w(z) =
∞

∑
n=0

(−c)n

n!Γ(γ +n+ b+1
2 )

( z
2

)2n+γ

(z ∈U)

(where Γ stands for the Gamma Euler function) which is the particular solution of the second order linear homogeneous
differential equation (see, for details, [7] )

z2w′′(z)+bzw′(z)+ [cz2− γ
2 +(1−b)γ]w(z) = 0,

where c,γ,b ∈C.
We introduce the function ϕ defined, in terms of the generalized Bessel function w by

ϕ(z) = 2γ
Γ

(
γ +

b+1
2

)
z−(1+ γ

2 )w(
√

z).

By using the well-known Pochhammer symbol (x)τ defined, for x ∈C and in terms of the Euler gamma function, by

(x)τ =
Γ(x+ τ)

Γ(x)
=

{
1, (τ = 0);
x(x+1)(x+2) · · ·(x+n−1), (τ = n ∈ N = {1,2,3 · · ·}).

We obtain the following series representation for the function ϕ(z)

ϕ(z) =
1
z
+

∞

∑
n=0

(−c)n+1

4n+1(n+1)!(τ)n+1
zn
(

τ = γ +
b+1

2
/∈ Z−0 = {0,−1,−2, · · ·}

)
.

Corresponding to the function ϕ define the Bessel operator S c
τ by the following Hadamard product

S c
τ f (z) = (ϕ ∗ f )(z) =

1
z
+

∞

∑
n=0

(−c
4

)n+1 an

(n+1)!(τ)n+1
zn

=
1
z
+

∞

∑
n=1

φ(n,τ,c)anzn, (1.5)

where φ(n,τ,c) = (−c
4 )

n

(n)!(τ)n

Definition 1.1. Let Σ∗p(G,H,τ,c) denote the subclass of Σp consisting of functions f (z) in Σp which satisfy∣∣∣ z(Sc
τ f (z))′

S c
τ f (z)

+1
∣∣∣< ∣∣∣G+H

z(S c
τ f (z))′

S c
τ f (z)

∣∣∣, (1.6)

for −1≤ G < H, 0 < H ≤ 1.

2. Coefficient Inequalities

Our first theorem gives a necessary and sufficient condition for a function to be in Σ∗p(G,H,τ,c).

Theorem 2.1. Let f (z) ∈ Σp as given by (1.4). Then f (z) ∈ Σ∗p(G,H,τ,c) if and only if

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)an ≤ H−G, (2.1)

for −1≤ G < H, 0 < H ≤ 1.
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Proof. Suppose f (z) = 1
z +

∞

∑
n=1

anzn, an ≥ 0, is in Σ∗p(G,H,τ,c). Then

∣∣∣∣∣
z(S c

τ f (z))′

S c
τ f (z) +1

G+H z(S c
τ f (z))′

S c
τ f (z)

∣∣∣∣∣=
∣∣∣∣∣

∞

∑
n=1

(n+1)φ(n,τ,c)anzn

(H−G) 1
z −

∞

∑
n=1

(G+Hn)φ(n,τ,c)anzn

∣∣∣∣∣< 1 (2.2)

for all z ∈ E. Since Re(z)≤ |z| for all z, we have

Re

{ ∞

∑
n=1

(n+1)φ(n,τ,c)anzn

(H−G) 1
z −

∞

∑
n=1

(G+Hn)φ(n,τ,c)anzn

}
< 1, (z ∈ E).

Now choose the values of z on real axis so that z(S c
τ f (z))′

S c
τ f (z) is real.

Upon clearing the denominator in (2.2) and letting z→ 1 through positive values, we obtain

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)an ≤ H−G.

Conversely, suppose that (2.1) holds for all admissible values of G and H. We have

M( f , f ′) = |z(S c
τ f (z))′+S c

τ f (z)|− |GS c
τ f (z)+Hz(S c

τ f (z))′|

=
∣∣∣ ∞

∑
n=1

(n+1)φ(n,τ,c)anzn
∣∣∣− ∣∣∣(H−G)

1
z
−

∞

∑
n=1

(G+Hn)φ(n,τ,c)anzn
∣∣∣

or

zM( f , f ′)≤
∞

∑
n=1

(n+1)φ(n,τ,c)an|z|n+1− (H−G)+
∞

∑
n=1

(G+Hn)φ(n,τ,c)an|z|n+1

=
∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)an|z|n+1− (H−G).

Since the above inequality holds for all r = |z|, 0 < r < 1, letting r→ 1, we have

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)an ≤ (H−G)

by (2.1). Hence it follows that f (z) is in the class Σ∗p(G,H,τ,c).

Corollary 2.2. If the function f (z) ∈ Σ∗p(G,H,τ,c) then

an ≤
(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)
, (n≥ 1). (2.3)

The result is sharp for the function

fn(z) =
1
z
+

(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n≥ 1). (2.4)

3. Distortion Properties and Radius of Convexity Estimates

Theorem 3.1. If the function f (z) ∈ Σ∗p(G,H,τ,c) then for 0≤ |z|= r < 1,

1
r
− (H−G)

(2+G+H)φ(1,τ,c)
r ≤ | f (z)| ≤ 1

r
+

(H−G)

(2+G+H)φ(1,τ,c)
r. (3.1)

The result is sharp.
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Proof. Suppose f (z) is in Σ∗p(G,H,τ,c). By Theorem 2.1, we have

∞

∑
n=1

an ≤
(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)
, (n≥ 1). (3.2)

Thus | f (z)| ≤ 1
|z| + |z|

∞

∑
n=1

an ≤ 1
r +

(H−G)
(2+G+H)φ(1,τ,c) r.

Also | f (z)| ≥ 1
|z| −|z|

∞

∑
n=1

an ≥ 1
r −

(H−G)
(2+G+H)φ(1,τ,c) r.

Thus the result is sharp for the function

f (z) =
1
z
+

(H−G)

(2+G+H)φ(1,τ,c)
z.

Theorem 3.2. If the function f (z) ∈ Σ∗p(G,H,τ,c) then f (z) is meromorphically convex of order δ (0≤ δ < 1) in |z|< r =
r(G,H,τ,c,δ ), where

r(G,H,τ,c,δ ) = inf
n≥1

[ (1−δ )[(n+1)+(G+Hn)]φ(n,τ,c)
(H−G)n(n+2−δ )

] 1
n+1

.

The result is sharp.

Proof. Let f (z) be in Σ∗p(G,H,τ,c). Then by Theorem 2.1, we have

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)
(H−G)

an ≤ 1. (3.3)

It is sufficient to show that
∣∣∣2+ z f ′′(z)

f ′(z)

∣∣∣≤ 1−δ for |z| ≤ r(G,H,τ,c,δ ), where r(G,H,τ,c,δ ) is as specified in the statement
of the theorem. Then

∣∣∣∣2+ z f ′′(z)
f ′(z)

∣∣∣∣=
∣∣∣∣∣∣∣∣

∞

∑
n=1

n(n+1)anzn−1

−1
z2 +

∞

∑
n=1

nanzn−1

∣∣∣∣∣∣∣∣≤
∞

∑
n=1

n(n+1)an|z|n+1

1−
∞

∑
n=1

nan|z|n+1
.

This will be bounded by 1−δ if

∞

∑
n=1

n(n+2−δ )

1−δ
an|z|n+1 ≤ 1. (3.4)

By (3.3), it follows that (3.4) is true if

n(n+2−δ )

1−δ
|z|n+1 ≤ [(n+1)+(G+Hn)]φ(n,τ,c)

H−G
, (n≥ 1)

or

|z| ≤

{
(1−δ )[(n+1)+(G+Hn)]φ(n,τ,c)

(H−G)n(n+2−δ )

} 1
n+1

, (n≥ 1). (3.5)

Setting |z|= r(G,H,τ,c,δ ) in (3.5), the result follows.
The result is sharp for the functions

fn(z) =
1
z
+

(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n≥ 1). (3.6)
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4. Convex Linear Combinations and Convolution Properties

We shall prove that the class Σ∗p(G,H,τ,c) is closed under convex linear combinations and convolutions.

Theorem 4.1. Let f0(z) = 1
z and

fn(z) =
1
z
+

(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n≥ 1). (4.1)

Then f (z) ∈ Σ∗p(G,H,τ,c) if and only if it can be expressed in the form f (z) =
∞

∑
n=0

λn fn(z), where λn ≥ 0 and
∞

∑
n=0

λn = 1.

Proof. Let f (z) =
∞

∑
n=0

λn fn(z) with λn ≥ 0 and
∞

∑
n=0

λn = 1. Then

f (z) =
∞

∑
n=0

λn fn(z) =
1
z
+

∞

∑
n=0

(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn. (4.2)

Since
[(n+1)+(G+Hn)]φ(n,τ,c)

(H−G)
λn

(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)

=
∞

∑
n=1

λn = 1−λn ≤ 1,

by Theorem 2.1, f (z) is in the class Σ∗p(G,H,τ,c).
Conversely, suppose that the function f (z) is the class Σ∗p(G,H,τ,c). Setting

λn =
[(n+1)+(G+Hn)]φ(n,τ,c)

(H−G)
an, n≥ 1

and λ0 = 1−
∞

∑
n=1

λn, it follows that f (z) =
∞

∑
n=0

λn fn(z).

Here, we see that λn ≥ 0 (n≥ 1) by definition and λ0 ≥ 0 in view of Theorem 2.1. This completes the proof of the theorem.
The result is sharp for the function

fn(z) =
1
z
+

(H−G)

[(n+1)+(G+Hn)]φ(n,τ,c)
zn, (n≥ 1). (4.1)

Robertson [8], has shown that if f (z) = 1
z +

∞

∑
n=1

anbnzn and g(z) = 1
z +

∞

∑
n=1

bnzn are in Σs then so their convolutions

( f ∗g)(z) = 1
z +

∞

∑
n=1

anbnzn.

Theorem 4.2. If the function f (z) and g(z) are in the class Σ∗p(G,H,τ,c) then ( f ∗g)(z) is the class Σ∗p(G,H,τ,c).

Proof. Suppose that f (z) and g(z) are in Σ∗p(G,H,τ,c). By Theorem 2.1, we have
∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)
(H−G)

an ≤ 1,

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)
(H−G)

bn ≤ 1.

Since f (z) and g(z) are regular in E, so ( f ∗g)(z). Furthermore
∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)
(H−G)

anbn ≤
{
[(n+1)+(G+Hn)]φ(n,τ,c)

(H−G)

}2

anbn

≤
∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)
(H−G)

an

{
[(n+1)+(G+Hn)]φ(n,τ,c)

(H−G)

}
bn

≤ 1.

Hence by Theorem 2.1, ( f ∗g)(z) is in the class Σ∗p(G,H,τ,c).
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5. Integral Transforms

In this section, we consider transforms of functions in the class Σ∗p(G,H,τ,c) of the type considered by Bajpai [9].

Theorem 5.1. If the function f (z) is in the class Σ∗p(G,H,τ,c) then the integral transforms

Fc(z) = c
1∫

0

uc f (uz)dz, (0 < c < ∞)

is in the class Σ∗p(G,H,τ,c).

Proof. Suppose f (z) is in Σ∗p(G,H,τ,c). Then we have

Fc(z) = c
1∫

0

uc f (uz)du =
1
z
+

∞

∑
n=1

c
n+ c+1

anzn.

Since

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)
(H−G)

can

n+ c+1
≤

∞

∑
n=1

[(n+1)+(G+Hn)]φ(n,τ,c)

(H−G)
an ≤ 1,

by Theorem 2.1, it follows that Fc(z) is in the class Σ∗p(G,H,τ,c).
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