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Rotational Hypersurfaces Satisfying 𝚫𝐈𝐑 = 𝐀𝐑 in the 

Four-Dimensional Euclidean Space 

 

Highlights 

❖ Rotational hypersurface has zero mean curvature iff its Laplace-Beltrami operator vanishing 

❖ Each element of the 4×4 order matrix A, which satisfies the condition 𝛥𝐼𝑅 = 𝐴𝑅, is zero 

❖ Laplace-Beltrami operator of the rotational hypersurface depends on its mean curvature and the Gauss map 

 

Graphical Abstract 

Rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of 

hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. The Laplace-Beltrami 

operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. In addition, it is 

indicated that each element of the 4×4 order matrix A, which satisfies the condition 𝛥𝐼𝑅 = 𝐴𝑅, is zero, that is, the 

rotational hypersurface R is minimal.  

 

Aim 

We consider the rotational hypersurfaces in 𝔼4 to find its Laplace-Beltrami operator. 

 

Design & Methodology 

We indicate fundamental notions of 𝔼4. Considering differential geometry formulas in 3-space, we transform them 

in 4-space. Moreover, we use straight calculations by hand. 

 

Originality 

All findings in the paper are original. 

 

Findings 

We define rotational hypersurface using rotation matrix. We calculate curvatures of rotational hypersurface. Defining 

the Laplace-Beltrami operator (LBo for short), we compute the LBo of rotational hypersurface. Finally, we give the 

rotational hypersurface satisfying 𝛥𝐼𝑅 = 𝐴𝑅. 

 

Conclusion 

Rotational hypersurface has zero mean curvature iff its Laplace-Beltrami operator vanishing. Then, each element of 

the 4×4 order matrix A, which satisfies the condition 𝛥𝐼𝑅 = 𝐴𝑅, is zero. Finally, the Laplace-Beltrami operator of 

the rotational hypersurface depends on its mean curvature and the Gauss map. 
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ABSTRACT  

In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of 

hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has 

been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element 

of the 4 × 4 order matrix 𝐀, which satisfies the condition ∆𝐼𝐑 = 𝐀𝐑, is zero, that is, the rotational hypersurface 𝐑 is minimal. 

Keywords: 4-dimensional Euclidean space, Laplace-Beltrami operator, rotational hypersurface, curvature. 

Dört-Boyutlu Öklid Uzayında ∆𝐼𝐑 = 𝐀𝐑 Koşulunu 

Sağlayan Dönel Hiperyüzeyler 

ÖZ 

Bu çalışmada, 4-boyutlu Öklid uzayındaki dönel hiperyüzeyler ele alınmıştır. Hiperyüzeylerin ortalama, Gauss eğrilikleri 

hesaplanıp aralarındaki minimal ve düzlemsel olma durumları gibi bazı bağıntılar verilmiştir. Ayrıca, 4-boyutlu hiperyüzeyler için 

birinci temel forma bağlı olarak Laplace-Beltrami operatörü tanımlanmıştır. Üstelik, dönel yüzeyin ∆𝐼𝐑 = 𝐀𝐑 koşulunu sağlayan 

4 × 4 mertebeli 𝐀 matrisinin her elemanının sıfır olduğu, yani 𝐑 dönel hiperyüzeyinin minimal olduğu gösterildi. 

Anahtar Kelimeler: 4-boyutlu Öklid uzayı, Laplace-Beltrami operatörü, dönel hiperyüzey, eğrilik  
1. INTRODUCTION 

After Chen [5], finite type submanifold, (i.e. for 

Laplacian, coordinate functions are finite sum of eigen-

functions) has been studied by [1-3,5-16,18,21-23,25-

26].  

In 𝔼3, Takahashi [24] constructed spheres and minimal 

surfaces are the only surfaces with Δ𝑟 = 𝜆𝑟, 𝑟 ∈ ℝ. 

Ferrandez et al [12] found Δ𝐻 = (𝐴)3×3𝐻 which are 

either an open part of sphere or of a right circular cylinder 

or minimal. Choi and Kim [8] classified the helicoid 

depends on the first kind pointwise 1-type Gauss map. 

Dillen et al [9] gave Δ𝑟 = (𝐴)3×3𝑟 + (𝐵)3×1 which are 

the circular cylinders, spheres, minimal surfaces. 

Senoussi and Bekkar [23] introduced helicoidal surfaces 

depends on three fundamental forms. Lawson [17] 

revealed general Laplace-Beltrami operator.  

General rotational surfaces were originated by Moore 

[19,20] in 𝔼4. Ganchev and Milousheva [13] gave the 

counterpart of them in 𝔼1
4. 

Arslan et al [2] worked generalized rotation surfaces, 

Dursun and Turgay [11] considered pseudo umbilical, 

minimal rotational surfaces. Recently, Altın et al [1] 

worked Monge hypersurfaces with density in 𝔼4. 

We consider the rotational hypersurfaces in 𝔼4. We 

indicate fundamental notions of 𝔼4 in Section 2. In 

Section 3, we define rotational hypersurface using 

rotation matrix. We calculate curvatures of rotational 

hypersurface. Defining the Laplace-Beltrami operator 

(LBo for short) in Section 4, we compute the LBo of 

rotational hypersurface. Finally, we give the rotational 

hypersurface satisfying ∆𝑰𝐑 = 𝐀𝐑 in Section 5. We give 

a conclusion in Section 6. 

 

2. PRELIMINARIES 

We introduce shape operator matrix 𝐒, Gaussian 

curvature (GC for short) 𝐾, and the mean curvature (MC 

for short) 𝐻 of hypersurface (hypface for short) 

𝐌(𝑟, 𝜃1, 𝜃2) in 𝔼4.  

Whole work, we identify its transpose with a vector. Let 

𝐌 be an isometric immersion of a hypface 𝑀3 in 𝔼4. 

Definition 1. Inner product of �⃗� = (𝑥1, 𝑥2, 𝑥3, 𝑥4), �⃗� =
(𝑦1, 𝑦2, 𝑦3, 𝑦4), 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) in 𝔼4 is defined by 

�⃗� ⋅ �⃗� = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3+𝑥4𝑦4. 

Definition 2. Triple vector product of �⃗� =
(𝑥1, 𝑥2, 𝑥3, 𝑥4), �⃗� = (𝑦1, 𝑦2, 𝑦3, 𝑦4), 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) in 

4E  is given by 

�⃗� ×  �⃗� × 𝑧 = 𝑑𝑒𝑡 (

𝑒1 𝑒2 𝑒3 𝑒4
𝑥1 𝑥2 𝑥3 𝑥4
𝑦1 𝑦2 𝑦3 𝑦4
𝑧1 𝑧2 𝑧3 𝑧4

). 

Definition 3. For a hypface 𝐌(𝑟, 𝜃1, 𝜃2) in 𝔼4, 

 *Sorumlu Yazar  (Corresponding Author)  

 e-posta :  eguler@bartin.edu.tr 
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det𝐼 = (𝐸𝐺 − 𝐹2)𝐶 − 𝐴2𝐺 + 2𝐴𝐵𝐹 − 𝐵2𝐸,      (1) 

det𝐼𝐼 = (𝐿𝑁 −𝑀2)𝑉 − 𝑃2𝑁 + 2𝑃𝑇𝑀 − 𝑇2𝐿,     (2) 

where 𝐼 and 𝐼𝐼 are fundamental form matrices, 

respectively, with coefficients: 

   𝐸 = 𝐌𝑟 ⋅ 𝐌𝑟 ,      𝐹 = 𝐌𝑟 ⋅ 𝐌𝜃1 ,      𝐺 = 𝐌𝜃1 ⋅ 𝐌𝜃1 , 

   𝐴 = 𝐌𝑟 ⋅ 𝐌𝜃2 ,    𝐵 = 𝐌𝜃1 ⋅ 𝐌𝜃2 ,    𝐶 = 𝐌𝜃2 ⋅ 𝐌𝜃2 , 

   𝐿 = 𝐌𝑟𝑟 ⋅ 𝑒,       𝑀 = 𝐌𝑟𝜃1 ⋅ 𝑒,        𝑁 = 𝐌𝜃1𝜃1 ⋅ 𝑒, 

   𝑃 = 𝐌𝑟𝜃2 ⋅ 𝑒,      𝑇 = 𝐌𝜃1𝜃2 ⋅ 𝑒,      𝑉 = 𝐌𝜃2𝜃2 ⋅ 𝑒. 

Here, the Gauss map is defined by 

𝑒 =
𝐌𝑟 ×𝐌𝜃1 ×𝐌𝜃2

‖𝐌𝑟 ×𝐌𝜃1 ×𝐌𝜃2‖
.                      (3) 

Definition 4. Resulting matrix of (𝐼)−1. (𝐼𝐼) indicates 

shape operator matrix as follows 

𝐒 =
1

det𝐼
(𝑠𝑖𝑗)3×3,                        (4) 

where 

𝑠11 = (𝐴𝐵 − 𝐶𝐹)𝑀 + (𝐵𝐹 − 𝐴𝐺)𝑃 + (𝐶𝐺 − 𝐵2)𝐿, 

𝑠12 = (𝐴𝐵 − 𝐶𝐹)𝑁 + (𝐵𝐹 − 𝐴𝐺)𝑇 + (𝐶𝐺 − 𝐵
2)𝑀, 

𝑠13 = (𝐴𝐵 − 𝐶𝐹)𝑇 + (𝐵𝐹 − 𝐴𝐺)𝑉 + (𝐶𝐺 − 𝐵
2)𝑃, 

𝑠21 = (𝐴𝐵 − 𝐶𝐹)𝐿 + (𝐴𝐹 − 𝐵𝐸)𝑃 + (𝐶𝐸 − 𝐴
2)𝑀, 

𝑠22 = (𝐴𝐵 − 𝐶𝐹)𝑀 + (𝐴𝐹 − 𝐵𝐸)𝑇 + (𝐶𝐸 − 𝐴2)𝑁, 

𝑠23 = (𝐴𝐵 − 𝐶𝐹)𝑃 + (𝐴𝐹 − 𝐵𝐸)𝑉 + (𝐶𝐸 − 𝐴
2)𝑇, 

𝑠31 = (𝐵𝐹 − 𝐴𝐺)𝐿 + (𝐴𝐹 − 𝐵𝐸)𝑀 + (𝐸𝐺 − 𝐹2)𝑃, 

𝑠32 = (𝐵𝐹 − 𝐴𝐺)𝑀 + (𝐴𝐹 − 𝐵𝐸)𝑁 + (𝐸𝐺 − 𝐹2)𝑇, 

𝑠33 = (𝐵𝐹 − 𝐴𝐺)𝑃 + (𝐴𝐹 − 𝐵𝐸)𝑇 + (𝐸𝐺 − 𝐹
2)𝑇. 

Definition 5. The formulas of the GC and the MC of 

hypface are, respectively, as follows 

𝐾 = det(𝐒),                                       (5) 

𝐻 =
1

3
tr(𝐒),                                       (6) 

where 

tr(𝐒) =
1

det𝐼
[−2(𝐴𝑃𝐺 + 𝐵𝑇𝐸 − 𝐴𝐵𝑀 − 𝐴𝑇𝐹 − 𝐵𝑃𝐹) 

       −𝐴2𝑁 − 𝐵2𝐿 + (𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀)𝐶+(𝐸𝐺 − 𝐹2)𝑉]. 

When 𝐻 = 0 on 𝐌, hypface 𝐌 is called minimal. 

 

3. ROTATIONAL HYPERSURFACE 

Let us 𝛾: I ⊂ ℝ⟶ Π be a plane curve, ℓ be a line in Π in 

𝔼4. 

Definition 6. A rotational hypface in 𝔼4 is hypface 

rotating a profile curve 𝛾 about axis ℓ. 

ℓ is spanned by (0,0,0,1)𝑡 and orthogonal matrix 

𝑍(𝜃1, 𝜃2) is defined by 

(

cos𝜃1 cos𝜃2 − sin𝜃1 − cos𝜃1 sin𝜃2 0
sin𝜃1 cos𝜃2 cos𝜃1 − sin𝜃1 sin𝜃2 0
sin𝜃2 0 cos𝜃2 0
0 0 0 1

),     (7) 

with 𝜃1, 𝜃2 ∈ ℝ. Matrix 𝑍 supplies: 

𝑍ℓ = ℓ,  𝑍𝑡𝑍 = 𝑍𝑍𝑡 = 𝐼4,  det𝑍 = 1. 

Profile curve is given by 

𝛾(𝑟) = (𝑟, 0,0, 𝜑(𝑟)), 

where 𝜑(𝑟): I ⊂ ℝ ⟶ ℝ is 𝐶∞ for all 𝑟 ∈ I. Rotational 

hypface, spanned by the vector (0,0,0,1)𝑡, holds: 

𝐑(𝑟, 𝜃1, 𝜃2) = 𝑍(𝜃1, 𝜃2). 𝛾(𝑟)
𝑡 .             (8) 

In 𝔼4, let us rewrite (8) as follows 

𝐑(𝑟, 𝜃1, 𝜃2) = (

𝑟cos𝜃1cos𝜃2
𝑟sin𝜃1cos𝜃2
𝑟sin𝜃2
𝜑(𝑟)

),                 (9) 

where 𝑟 ∈ ℝ − {0} and 𝜃1, 𝜃2 ∈ [0,2𝜋). 

Using derivatives of (9) depends on 𝑟, 𝜃1 and 𝜃2, get 

𝐼 = (
1 + 𝜑′2 0 0

0 𝑟2 cos2𝜃2 0

0 0 𝑟2
)            (10) 

and 

𝐼𝐼 =

(

 
 
 
 

−𝑟2𝜑′′cos𝜃2

√det𝐼
0 0

0
−𝑟3𝜑′cos3𝜃2

√det𝐼
0

0 0
−𝑟3𝜑′cos𝜃2

√det𝐼 )

 
 
 
 

   (11) 

with 𝜑 = 𝜑(𝑟), 𝜑′ =
𝑑𝜑

𝑑𝑟
, 

det𝐼 = 𝑟4(1 + 𝜑′2) cos2𝜃2. 

Using (3) on (9), we find 

𝑒𝐑 =
1

√det𝐼

(

 
 
𝑟2𝜑′ cos𝜃1 cos

2𝜃2
𝑟2𝜑′ sin𝜃1 cos

2𝜃2
𝑟2𝜑′ sin𝜃2 cos𝜃2
−𝑟2 cos𝜃2 )

 
 
,             (12) 

Hence, we have 

𝐒 =

(

 
 
 

−𝜑′′

𝑊3/2
0 0

0
−𝜑′

𝑟𝑊1/2
0

0 0
−𝜑′

𝑟𝑊1/2)

 
 
 

, 

where 𝑊 = 1 + 𝜑′2. Using (5) and (6), respectively, we 

find followings 
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𝐾 = −
𝜑′2𝜑′′

𝑟2𝑊5/2
,   𝐻 = −

𝑟𝜑′′ + 2𝜑′3 + 2𝜑′

3𝑟𝑊3/2
. 

Corollary 1. Let 𝐑 ∶ 𝑀3 ⟶ 𝔼4 be an immersion in (9). 

Then, following results holds: 

(a) 𝑀3 has CGC iff 

(𝜑′)4(𝜑′′)2 − 𝑐𝑟4(1 + 𝜑′
2
)
5
= 0. 

(b) 𝑀3 has CMC iff 

(𝑟𝜑′′ + 2𝜑′3 + 2𝜑′)2 − 9𝑐𝑟2(1 + 𝜑′
2
)
3
= 0. 

(c) 𝑀3 is flat iff 

𝜑(𝑟) = 𝑐1𝑟 + 𝑐2. 

Proof. Calculating eq. 𝐾 = 0, i.e. 𝜑′2𝜑′′ = 0, we find the 

solution. 

(d) 𝑀3 has ZMC iff 

𝜑(𝑟) = ±∫
𝑑𝑟

√𝑐1𝑟
4 − 1

+ 𝑐2 = Elliptic𝐹(𝑖𝑟, 𝑖), 

where Elliptic𝐹(𝜙,𝑚) = ∫ (1 − 𝑚sin2𝜃)−1/2𝑑𝜃
𝜙

0
 is 

elliptic integral, and 𝜙 ∈ [−𝜋/2, 𝜋/2]. 

Proof. Solving eq. 𝑟𝜑′′ + 2𝜑′3 + 2𝜑′ = 0, we see 

solution. 

4. LAPLACE-BELTRAMI OPERATOR 

Definition 7. For smooth 𝜙 = 𝜙(𝑥1, 𝑥2, 𝑥3)|𝐃⊂ℝ𝟑 of 

class 𝐶𝟑 of hypface 𝐌, the LBo is defined by 

∆𝐼𝜙 =
1

√𝑔
∑

𝜕

𝜕𝑥𝑖

3

𝑖,𝑗=1

(√𝑔𝑔𝑖𝑗
𝜕𝜙

𝜕𝑥𝑗
).           (13) 

where (𝑔𝑖𝑗) = (𝑔𝑘𝑙)
−1 and 𝑔 = det(𝑔𝑖𝑗). 

Then, the LBo ∆𝐼𝐑 of 𝐑 = 𝐑(𝑟, 𝜃1, 𝜃2) is as follows 

1

√det𝐼

{
 
 
 

 
 
 

𝜕

𝜕𝑟
(
(𝐶𝐺 − 𝐵2)𝐑𝑟 − (𝐴𝐵 − 𝐶𝐹)𝐑𝜃1 + (𝐵𝐹 − 𝐴𝐺)𝐑𝜃2

√det𝐼
)

−
𝜕

𝜕𝜃1
(
(𝐴𝐵 − 𝐶𝐹)𝐑𝑟 − (𝐶𝐸 − 𝐴

2)𝐑𝜃1 + (𝐴𝐹 − 𝐵𝐸)𝐑𝜃2

√det𝐼
)

𝜕

𝜕𝜃2
(
(𝐵𝐹 − 𝐴𝐺)𝐑𝑟 − (𝐴𝐹 − 𝐵𝐸)𝐑𝜃1 + (𝐸𝐺 − 𝐹

2)𝐑𝜃2

√det𝐼
)
}
 
 
 

 
 
 

. 

(14) 

Hence, the LBo of (9) is given by 

∆𝐼𝐑 =
1

√det𝐼
(
𝜕

𝜕𝑟
𝐔 −

𝜕

𝜕𝜃1
𝐕 +

𝜕

𝜕𝜃2
𝐖). 

By derivatives of 𝑟, 𝜃1, 𝜃2 on 𝐔, 𝐕,𝐖, respectively, we 

get 

 Δ𝐼𝐑 = 
𝑟𝜑′′ + 2𝜑′3 + 2𝜑′

𝑟𝑊2
 (

− 𝜑′ cos𝜃1 cos𝜃2
− 𝜑′ sin𝜃1 cos𝜃2
− 𝜑′ sin𝜃2

1

). 

Remark 1. When ∆𝐼𝐑 = 0, 𝑟 ≠ 0, the system of 

equation are as follows 

     −𝜑′(𝑟𝜑′′ + 2𝜑′3 + 2𝜑′) cos𝜃1 cos𝜃2 = 0, 

      −𝜑′(𝑟𝜑′′ + 2𝜑′3 + 2𝜑′) sin𝜃1 cos𝜃2 = 0, 

                  −𝜑′(𝑟𝜑′′ + 2𝜑′3 + 2𝜑′) sin𝜃2 = 0, 

                       𝑟𝜑′′ + 2𝜑′3 + 2𝜑′ = 0. 

By using Remark 1, we find following corollaries: 

Corollary 2. While cos𝜃𝑖 ≠ 0, and sin𝜃𝑖 ≠ 0, then   

𝜑′ = 0. Hence, we obtain 

𝜑 = 𝑐 = 𝑐𝑜𝑛𝑠𝑡.  ⇔  Δ𝐼𝐑 = 0. 

Corollary 3. When 𝜑′ ≠ 0, cos𝜃𝑖 ≠ 0, and sin𝜃𝑖 ≠ 0, 

then we see 

𝑟𝜑′′ + 2𝜑′3 + 2𝜑′ = 0 (i. e. 𝐻 = 0) ⇔ Δ𝐼𝐑 = 0. 

 

5. ROTATIONAL HYPERSURFACES  

    SATISFYING ∆𝑰𝐑 = 𝐀𝐑 IN 𝔼𝟒 

Theorem 1. Assume 𝐑 ∶ 𝑀3 ⟶ 𝔼4 be an immersion by 

(9). So, ∆𝐼𝐑 = 𝐀𝐑 iff 𝑀3 has ZMC. 

Proof. The Gauss map of (9) is 

𝑒 =
1

√𝑊
(

𝜑′cos𝜃1cos𝜃2
𝜑′sin𝜃1cos𝜃2
𝜑′sin𝜃2
−1

), 

where 𝑊 = 1 + 𝜑′2. We use 

−3𝐻𝑒 = 𝐀𝐑,                             (15) 

then we get 

(

−(Θ 𝜑′ + 𝑎11 𝑟) cos𝜃1 cos𝜃2 − 𝑎12 𝑟 sin𝜃1 cos𝜃2 − 𝑎13 𝑟 sin𝜃2
−𝑎21 𝑟 cos𝜃1 cos𝜃2 − (Θ 𝜑

′ + 𝑎22 𝑟) sin𝜃1 cos𝜃2 − 𝑎23 𝑟 sin𝜃2
−𝑎31 𝑟 cos𝜃1 cos𝜃2 − 𝑎32 𝑟 sin𝜃1 cos𝜃2 − (Θ 𝜑

′ + 𝑎33 𝑟) sin𝜃2
Θ

) 

= (

𝑎14𝜑
𝑎24𝜑
𝑎34𝜑

𝑎41 𝑟 cos𝜃1 cos𝜃2 + 𝑎42 𝑟 sin𝜃1 cos𝜃2 + 𝑎43 𝑟 sin𝜃2 + 𝑎44𝜑

), 

where 𝐀 is 4 × 4 matrix, and Θ =
3𝐻

𝑊
. The eq. ∆𝐼𝐑 = 𝐀𝐑 

by (10) and (15) gives following ODEs system 

 −(Θ𝜑′ + 𝑎11𝑟) cos𝜃1 cos𝜃2 − 𝑎12 𝑟 sin𝜃1cos𝜃2 − 𝑎13 𝑟 sin𝜃2 

= 𝑎14𝜑, 

 −𝑎21 𝑟 cos𝜃1 cos𝜃2 − (Θ𝜑
′ + 𝑎22𝑟) sin𝜃1 cos𝜃2 − 𝑎23 𝑟 sin𝜃2 

= 𝑎24𝜑, 

 −𝑎31 𝑟 cos𝜃1 cos𝜃2 − 𝑎32 𝑟 sin𝜃1 cos𝜃2 − (Θ𝜑
′ + 𝑎33𝑟) sin𝜃2 

= 𝑎34𝜑, 

𝑎41 𝑟 cos𝜃1 cos𝜃2 + 𝑎42 𝑟 sin𝜃1 cos𝜃2 + 𝑎43 𝑟 sin𝜃2 + 𝑎44𝜑 = Θ. 

Differentiating ODEs twice with respect to 𝜃1, we have 

𝑎14 = 𝑎24 = 𝑎34 = 𝑎44 = 0,   Θ = 0.       (16) 

From (16), we get 

−𝑎11𝑟cos𝜃1 − 𝑎12𝑟sin𝜃1 = 0, 

−𝑎21𝑟cos𝜃1 − 𝑎22𝑟sin𝜃1 = 0, 

−𝑎31𝑟cos𝜃1 − 𝑎32𝑟sin𝜃1 = 0, 

   𝑎41𝑟cos𝜃1 + 𝑎42𝑟sin𝜃1 = 0. 



Erhan GÜLER   / POLİTEKNİK  DERGİSİ, Politeknik Dergisi,2021;24(2): 517-520 

520 

Since the functions cos and sin are linear independent on 

𝜃1, the coefficients 𝑎𝑖𝑗 = 0. Considering Θ =
3𝐻

𝑊
, it is 

clear 𝐻 = 0. Finally, 𝐑 is a minimal hypface. 

 

6. CONCLUSION 

In this study, rotational hypfaces in 𝔼4 are investigated in 

detail by using its Gauss map, MC and the GC. 

According to findings, minimality and flatness cases are 

determined. Taking into account LBo on rotational 

hypface in four space, 𝐻 = 0 ⇔ Δ𝐼𝐑 = 0 are presented. 

This means, rotational hypface has ZMC iff its LBo 

equals to zero. This result can be seen in Corollary 3, 

clearly. In addition, rotational hypface satisfies the 

condition ∆𝐼𝐑 = 𝐀𝐑, when matrix 𝐀 occurs only 𝐀 =
𝟎4×4 for 4 × 4 matrix 𝐀. That is, 𝐑 is minimal hypface. 

This study is important because rotation matrix, 

rotational hypface, LBo could not defined before, clearly. 

Also, literature about the topic are limited to reveal and 

calculate the properties of this kind rotational hypfaces in 

𝔼4. 
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