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Rotational Hypersurfaces Satisfying A'R = AR in the

Four-Dimensional Euclidean Space

Highlights
< Rotational hypersurface has zero mean curvature iff its Laplace-Beltrami operator vanishing
% Each element of the 4x4 order matrix A, which satisfies the condition A'R = AR, is zero

< Laplace-Beltrami operator of the rotational hypersurface depends on its mean curvature and the Gauss map

Graphical Abstract

Rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of
hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. The Laplace-Beltrami
operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. In addition, it is
indicated that each element of the 4 x4 order matrix A, which satisfies the condition A’'R = AR, is zero, that is, the
rotational hypersurface R is minimal.

Aim
We consider the rotational hypersurfaces in E* to find its Laplace-Beltrami operator.

Design & Methodology

We indicate fundamental notions of E*. Considering differential geometry formulas in 3-space, we transform them
in 4-space. Moreover, we use straight calculations by hand.

Originality
All findings in the paper are original.

Findings
We define rotational hypersurface using rotation matrix. We calculate curvatures of rotational hypersurface. Defining

the Laplace-Beltrami operator (LBo for short), we compute the LBo of rotational hypersurface. Finally, we give the
rotational hypersurface satisfying A'R = AR.

Conclusion

Rotational hypersurface has zero mean curvature iff its Laplace-Beltrami operator vanishing. Then, each element of
the 4x4 order matrix A, which satisfies the condition A'R = AR, is zero. Finally, the Laplace-Beltrami operator of
the rotational hypersurface depends on its mean curvature and the Gauss map.
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ABSTRACT

In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of
hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has
been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element
of the 4 x 4 order matrix A, which satisfies the condition A’R = AR, is zero, that is, the rotational hypersurface R is minimal.

Keywords: 4-dimensional Euclidean space, Laplace-Beltrami operator, rotational hypersurface, curvature.

Dért-Boyutlu Oklid Uzayinda A’R = AR Kosulunu
Saglayan Donel Hiperyiizeyler
oz
Bu caligmada, 4-boyutlu Oklid uzayindaki dénel hiperyiizeyler ele alinmustir. Hiperyiizeylerin ortalama, Gauss egrilikleri

hesaplanip aralarindaki minimal ve diizlemsel olma durumlar gibi bazi bagintilar verilmistir. Ayrica, 4-boyutlu hiperyiizeyler i¢in
birinci temel forma bagli olarak Laplace-Beltrami operatorii tammlanmistir. Ustelik, donel yiizeyin A’R = AR kosulunu saglayan

4 X 4 mertebeli A matrisinin her elemaninin sifir oldugu, yani R donel hiperyiizeyinin minimal oldugu gésterildi.

Anahtar Kelimeler: 4-boyutlu Oklid uzayi, Laplace-Beltrami operatorii, donel hiperyiizey, egrilik

1. INTRODUCTION

After Chen [5], finite type submanifold, (i.e. for
Laplacian, coordinate functions are finite sum of eigen-
functions) has been studied by [1-3,5-16,18,21-23,25-
26].

In E3, Takahashi [24] constructed spheres and minimal
surfaces are the only surfaces with Ar = Ar, r € R.
Ferrandez et al [12] found AH = (A);x3H which are
either an open part of sphere or of a right circular cylinder
or minimal. Choi and Kim [8] classified the helicoid
depends on the first kind pointwise 1-type Gauss map.
Dillen et al [9] gave Ar = (A)3x37 + (B)3x1 Which are
the circular cylinders, spheres, minimal surfaces.
Senoussi and Bekkar [23] introduced helicoidal surfaces
depends on three fundamental forms. Lawson [17]
revealed general Laplace-Beltrami operator.

General rotational surfaces were originated by Moore
[19,20] in E*. Ganchev and Milousheva [13] gave the
counterpart of them in Ef.

Arslan et al [2] worked generalized rotation surfaces,
Dursun and Turgay [11] considered pseudo umbilical,
minimal rotational surfaces. Recently, Altin et al [1]
worked Monge hypersurfaces with density in E*.

We consider the rotational hypersurfaces in E*. We
indicate fundamental notions of E* in Section 2. In

*Sorumlu Yazar (Corresponding Author)
e-posta : eguler@bartin.edu.tr

Section 3, we define rotational hypersurface using
rotation matrix. We calculate curvatures of rotational
hypersurface. Defining the Laplace-Beltrami operator
(LBo for short) in Section 4, we compute the LBo of
rotational hypersurface. Finally, we give the rotational
hypersurface satisfying A’R = AR in Section 5. We give
a conclusion in Section 6.

2. PRELIMINARIES

We introduce shape operator matrix S, Gaussian
curvature (GC for short) K, and the mean curvature (MC
for short) H of hypersurface (hypface for short)
M(r,0,,0,) in E*.
Whole work, we identify its transpose with a vector. Let
M be an isometric immersion of a hypface M3 in E*.
Definition 1. Inner product of ¥ = (x;, x5, x3,%4), ¥ =
V1, Y2, Y3, Ya), Z = (21, 23, 23, 2,) In E* is defined by
XY =x191 + X0, + X3Y3+X4 s
Definition 2. Triple vector product of X =
(%1, X2, %3,%4), ¥ = (Y1, Y2, Y3, Ya), Z = (21, 2, 23, 24) I
E* is given by
€1 € €3 €4
X1 Xp X3 X4

Vi Y2 Y3 Ya

XX yxZ=det

Definition 3. For a hypface M(r, 8, 8,) in E*,
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detl = (EG — F*)C — A*G + 2ABF — B%E, (1)
detll = (LN — M%)V — P2N + 2PTM — T?L, (2)

where I and II are fundamental form matrices,

respectively, with coefficients:
E=M,-M,, F=M,-My, G=M, Mg,

A:Mr'Mgz, B:Mgl‘Mez, C:Mez'Mgz,

L=M,, e,

IWZM.,«Q1 ‘e, N=M9191-e,

P:M‘rg2 -e, T:M9192 -e, V=M9292 ce.
Here, the Gauss map is defined by
M, X My, X Mg,

e = .
”MT x M91 x Mez ”

(3)

Definition 4. Resulting matrix of (I)~1.(II) indicates
shape operator matrix as follows

1

S= @(Su)m' C)
where
s1; = (AB — CF)M + (BF — AG)P + (CG — B?)L,
s12 = (AB — CF)N + (BF — AG)T + (CG — B*)M,
s13 = (AB — CF)T + (BF — AG)V + (CG — B?)P,
Sy1 = (AB — CF)L + (AF — BE)P + (CE — A*>)M,
Sy, = (AB — CF)M + (AF — BE)T + (CE — A%)N,
Sy3 = (AB — CF)P + (AF — BE)V + (CE — A®)T,
s3; = (BF — AG)L + (AF — BE)M + (EG — F?)P,
S3p = (BF — AG)M + (AF — BE)N + (EG — F?)T,
s33 = (BF — AG)P + (AF — BE)T + (EG — F)T.
Definition 5. The formulas of the GC and the MC of
hypface are, respectively, as follows

K = det(S), (5)
1
H = §tr(S), (6)

where

1
tr(S) = 5 [~2(APG + BTE — ABM — ATF — BPF)

—A2N — B?L + (EN + GL — 2FM)C+(EG — F%)V].
When H = 0 on M, hypface M is called minimal.

3. ROTATIONAL HYPERSURFACE

Letusy:I c R — Il be aplane curve, £ bealineinIlin
E*.

Definition 6. A rotational hypface in E* is hypface
rotating a profile curve y about axis ¢.

£ is spanned by (0,0,0,1)! and orthogonal matrix
Z (64, 0,) is defined by

cosf, cosf, —sinf; —cosf;sinf, O
sinf,; cosf, cosf; —sinf,; sinf, O )
sinf, 0 cosb, 0/
0 0 0 1

with 6,, 6, € R. Matrix Z supplies:
=4, 7'Z =77t =1, detZ = 1.
Profile curve is given by

y(@) = (r,0,0,9(r),

where p(r): 1 c R — R is €* for all r € 1. Rotational
hypface, spanned by the vector (0,0,0,1)¢, holds:

R(T! 01r02) = 2(01162)'y(r)t' (8)
In E*, let us rewrite (8) as follows

rcos6,coso,
rsinf; cos6,
rsiné, ’
@(r)
where r € R — {0} and 64, 8, € [0,27).
Using derivatives of (9) depends on r, 8, and 8., get

R(r,6,,0,) = €)]

1+ ¢ 0 0
(10)

and
—12¢" cosh,
vdet!
—1r3¢’cos®0,

I = 0 —_— 0
Vdetl

0 0

0 0

(11)
—r3¢’cosb,
vdet!

. , d
with @ = (1), ¢’ = d—(f,

detl = r*(1 + ¢'?) cos?0,.
Using (3) on (9), we find

/rzq)’ cosf; cos?0,
1 200 o 2
r2¢@’' sinf; cos 92), 12)

R:—

vdetl

r2¢’ sind, cosh,
—r? cosb,

Hence, we have

¢
W3/2

¢

rwi/2

where W = 1 + ¢'2. Using (5) and (6), respectively, we
find followings
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12 .11
k=-2%_ py-

re" + 293+ 2¢’
r2Ws/z’ -

3rws/2

Corollary 1. Let R : M3 — E* be an immersion in (9).
Then, following results holds:

(a) M3 has CGC iff

((P’)4(§0”)2 _ CT4(1 + <p12)5 =0.
(b) M? has CMC iff

(ro" +2¢" +2¢")? —9cr?(1 + (p’2)3 = 0.
(c) M3 is flat iff
o) =cr+c,.

Proof. Calculatingeq. K = 0, i.e. ¢"%¢" = 0, we find the
solution.

(d) M3 has ZMC iff

dr
pr) == f —— + ¢, = EllipticF(ir, i),
Jort—1
where  EllipticF (¢, m) = [*(1 — msin?6)~1/2d6 is
elliptic integral, and ¢ € [—7/2,7/2].

Proof. Solving eq. r¢" +2¢3+2¢’ =0, we see
solution.

4. LAPLACE-BELTRAMI OPERATOR

Definition 7. For smooth ¢ = ¢(xy, %, x3)|pcgs Of
class €3 of hypface M, the LBo is defined by

3
vo=L 2 (i 52

i,j=1

(13)

where (g¥) = (gi)~* and g = det(g;;).
Then, the LBo A'R of R = R(r, 8, 8,) is as follows
i((ca — B?)R, — (4B — CF)Ry, + (BF — AG)R92>

or Vdetl
1 a ((AB — CF)R, — (CE — A®)Ry, + (AF — BE)R92>
Vdetl | 96, Vdet! '
a ((BF — AG)R, — (AF — BE)Ry, + (EG — FZ)R92>
20, Vdetl

(14)
Hence, the LBo of (9) is given by
AR = ! <iU —iV+iW).
vdet] \0r 00, 00,

By derivatives of r,8,,0, on U,V, W, respectively, we
get

— @' cosB; cosb,
— ¢’ sinf, cosH,
— ¢’ sinf,

1

Remark 1. When A'R=0, r # 0, the system of
equation are as follows

re" +2¢'% + 2¢’

AR =
rW?2

—@'(ro" + 29" + 2¢") cosb, cosh, = 0,
—@'(ro" + 29" + 2¢") sinb, cosh, = 0,
—@' (ro" + 29" + 2¢") sind, = 0,
ro" + 293 +2¢' = 0.
By using Remark 1, we find following corollaries:
Corollary 2. While cos; # 0, and sinf; # 0, then
@' = 0. Hence, we obtain
@ =c =const. © NR=0.
Corollary 3. When ¢ # 0, cosf; # 0, and siné; # 0,
then we see

re" + 2903 +2¢'=0(.e.H=0) © AR=0.

5. ROTATIONAL HYPERSURFACES
SATISFYING A'R = AR IN E*

Theorem 1. Assume R : M3 — E* be an immersion by
(9). So, A'R = AR iff M3 has ZMC.

Proof. The Gauss map of (9) is

¢'cosB,cosb,
1 [ ¢'sinB;cosh,
¢'sinf,
-1
where W = 1 + ¢'2. We use

—3He = AR, (15)

then we get

—(@ ¢' + ay, 1) cosb; cosh, — a,, 1 sinf; cosf, — a3 r sinb,
—ay, 1 cosb, cosh, — (O ¢’ + a,, r) sinb; cosh, — a,; r sinb,
—ag, T €0s0; cosf, — as, r sinb; cosh, — (0 ¢’ + asz r) sinb,

¢]

a149
_ A24Q
- [ !
a4 7 €0S8; cosB, + a,, 1 sinb; cosb, + a3 1 Sind, + ag@

where A is 4 X 4 matrix, and 0 = % Theeg. A'R = AR
by (10) and (15) gives following ODEs system

—(0¢" + ayy1) cosb, cosbB, — a;, r sinf;cosh, — a3 r sinb,

= 149,
—a,, 1 cosf, cosf, — (0@’ + a,,r) sinb, cosf, — a,; r sinb,
= 0249,
—ag, 1 cosB, cosf, — as, r sind, cosh, — (B¢’ + assr) sinb,
= A349,

a4q 7 €0SO; c0SO, + a4, T Sinby cosl, + a,z T Sind, + agp = 0.
Differentiating ODEs twice with respect to 6,, we have
Q14 =G4 =034 = g4 =0, 0=0. (16)
From (16), we get
—ay,rcosf; — a,,rsind; =0,
—a,,rcosf; — a,,rsing; =0,
—ag,rcosl; — az,rsing; =0,
a41rcosf; + ay,rsinfd; = 0.
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Since the functions cos and sin are linear independent on
6;, the coefficients a;; = 0. Considering © = % it is
clear H = 0. Finally, R is a minimal hypface.

6. CONCLUSION

In this study, rotational hypfaces in E* are investigated in
detail by using its Gauss map, MC and the GC.
According to findings, minimality and flatness cases are
determined. Taking into account LBo on rotational
hypface in four space, H = 0 & A'R = 0 are presented.
This means, rotational hypface has ZMC iff its LBo
equals to zero. This result can be seen in Corollary 3,
clearly. In addition, rotational hypface satisfies the
condition A’R = AR, when matrix A occurs only A =
0,4 for 4 x 4 matrix A. That is, R is minimal hypface.
This study is important because rotation matrix,
rotational hypface, LBo could not defined before, clearly.
Also, literature about the topic are limited to reveal and
calculate the properties of this kind rotational hypfaces in
E*.
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