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1. Introduction

Mainly 2D-integral equations furnish the important implement for modeling the engineering and science problems [1, 2]. We have used the
variant methods for solving 2D-linear stochastic integral equations in [3, 4, 5, 6, 7] that the BPFs method is one of these methods. The BPFs
are very common in use, but it seems that their convergence is weak. Here the modified block-pulse functions (MBPFs) method is used for
deriving approximation solution of 2D-linear stochastic Volterra-Fredholm integral equation of the second kind

Lol yorx Yy X
g(x,y) :f(x7y)+(/0 ./0 Vi (x,y,s,t)g(s,t)dsdt—kl/o (/0 Vz(x,y,s,t)g(s,t)dsdt—i—/o ./O Va(x,y,s,t)g(s,t)dB(s)dB(t), (1.1)
where (x,y) € [0,77) x [0,7») and
sLx <ty (1.2)

In (1.1), g(x,y) is the unknown function and the condition (1.2) is necessary.

We organize the paper as follows:

The properties of 2D-MBPFs are introduced in the next section. In Section 3 we solve (1.1) by finding the ordinary and stochastic operational
matrices. We depict the error analysis in Section 4. The certitude of the method is evinced by an example in Section 5. Eventually, we afford
the brief conclusion in Section 6.

2. Two dimentional MBPFs

An (n; + 1) x (np + 1)-set of 2D-MBPFs @y, 4,(x,y) (a1 =0,1,...,n1); (a2 =0,1,...,np) consists of (n; + 1) x (np + 1) functions which
are defined over district D by [8]

B 1, (X7y) € Dal‘az
Ogy.a,(X,y) = { 0, otherwise, -
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where
Dal,a2 = (X7Y) xXe I(ll,an 61&12787
and
[0,k; —€), a1 =0
Ia]"g: [alklfﬁ‘,(ﬂll‘l»l)kl*&‘), a1=l(l)(l’l171)
[1—8,1) ap =ny,
[07k2_8)7 (12:0
loye = lazky —€,(ax +)ky—€),  arx=1(1)(n2—1)
[1—¢,1) ar» =ny,

where n; and ny are arbitary positive integers and we have

ki=—, kh=—.
ni np

From (2.1), we can represent 2D-MBPFs as
Way a, (x,) = @y (x) gy (¥),

where @, and @,, are the one-dimensional MBPFs. Similar to the one-dimensional case, 2D-MBPFs have the elementary properties
that are: disjointness, orthogonality and completeness. Also the set of 2D-MBPFs can be written as a vector Q(x,y) of dimension
gi=m+1)(np+1)x1as

Q(x,y) = [00,0(%,Y)s s @0y ()0, By 0(X,Y) v Oty (X7Y)]T7 2.2)
where (x,y) € D. For every ¢j-vector K from (2.2) we have
Q(x,y)Q" (x,y)K = RQ(x,y), 2.3)
where K = diag(K) is a diagonal matrix of dimension ¢, = (nj + 1)(ny + 1) X (n1 + 1)(n3 + 1). Moreover, for every ¢-matrix H we get
QT (x,y)HQ(x,y) = AT Q(x,y), 2.4)

where H is an ¢)-vector with elements equal to the diagonal entries of matrix H.
2.1. Two dimensional MBPF's expansions

A function f(x,y) defined over L?(D) can be expanded by the 2D-MBPFs as [8, 9]

np ny
f=fe= Z Z fal,aza)ahaz :FTQ'7

a) :0[[2:0

where F is an ¢;-vector given by
F = [f0,07 '“7f0,l127 ~~~7fn1,07 “'>fl’l1.n2]T7
and Q is defined in (2.2). The modified block-pulse coefficients, fg, 4, , are obtained as

1

= x,y)dydx,
Jarts = o) % Ulare) /, /1 fw.y)dy

where £(1,, ¢)and? (Ia“;) are length of intervals I, ¢ and I, ¢ respectively. Similarly for every function f (x,y,5,1), we can write
f(x7y757[) =~ Q(x7y)TFSQ(S7t)7
where F¢ is 2D-MBPF coefficient matrix of dimension ¢p.

2.2. Ordinary perational matrix of 2D-MBPF's

By the double integration of the vector Q defined in (2.2) we have [8, 10, 11]

Yy X
/O/0Q(&t)det:PE'Q(xvy):[08,(111+1)><(n1+1)®05,(n2+l)x(n2+l)]Q(x7Y)v 2.5

where (x,y) € D and P; is g -ordinary operational matrix of integration for 2D-MBPFs so Og is defined in [5]. In (2.5), ® denotes the
Kronecker product. By disjointness and orthogonality properties of 2D-MBPFs we have

(lq — 8)(/(2 — 8) 0 0 0

O 0 kiky 0 0
//Q(s,t)QT(m)dsdz: : o | =R, (2.6)

o Jo : : :

0 kiky 0

0 0 0 ¢

where R; is the ¢g-known matrix.
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2.3. Stochastic operational matrix of 2D-MBPF's
Similarly we obtain
Yy X
| [ Q5.0 B$)aB() 2 Pes5) = Oy 4110 1) 9 O 1y 11250, @7

where P  is the gy-stochastic operational matrix of integration for 2D-MBPFs where O¢ ; is defined in [3]. In the next sections, it is assumed
that ) =T» = 1.

3. Method of solution
Now, we solve (1.1) using 2D-MBPFs. By applying 2D-MBPFs approximates for functions

f(x7y) ) Vl (x7y’s’t) ) VZ(X,y,S,l) ) V3(x7y7s7t) ) g(x7y)7

we have
_ T
f=FQ, 3.D
Vi = Q7 (x,y)TeQ(s,1), (3.2)
Vo = Q7 (x,9)A:Q(s,1), 3.3)
V3 = QT (x,y)0:Q(s,1), (3.4)
and
g=G{Q, (3.5

where the vectors F¢ and G¢ and matrices I's, A and ®, are the MBPFs coefficients of f, g, Vi, V, and V3 respectively. In (3.1), Fg is
¢1-known vector, also in (3.2), (3.3) and (3.4), I'¢, A¢ and ®; are ¢-known matrices but in (3.5), G¢ is gj-unknown vector. In (1.1), To
approximate Fredholm integral case from (3.2), (3.5) and using operational matrix R from (2.6) we get

1l 1 1
/ / Vigdsdt = / / QT (x,y)TeQ(s,1)QT (5,1)Gedsdt
0 JO 0 JO

1 rl
= QT (x,y)e ( / / Q(s,z)QT(s,z)dsdz) Ge
JOo JO
= QITeR:Ge = (TeR:G:) Q=ULQ,
where Ug is an gj-vector obtained from I'¢R¢ G¢. Therefore for the approximation of the first 2D-integral we have
1l
/ / Vigdsdt ~ UL Q. (3.6)
0 JO

In addition from (2.3), (3.3) and (3.5) we get [12]

Y [x Y [x y X
/ / Vagdsdt :/ / QT (x,y)AeQ(s5,0)QT (5,6)Gedsdt = QT (x,y)Ae (/ / Q(S,I)QT(s,t)ngsdz>
0 JO 0 JO 0 JO

y X 5 Yy X
Q' A ( / / GgQ(s,t)dsdt):QTAgGg ( / / Q(s,z)dsdz),
0 JO 0 JO
"y

X ~
/ / Vogdsdt ~ QT A G P-Q,
0 JO

where from (2.5) we arrive

in which A G P is an G-matrix. From (2.4) we can write
y X .
/ / Vagdsdt ~WIQ, (3.7
0 J0

where W, is an G1-vector with components equal to the diagonal entries of matrix Ag GePs. Similarly from (2.3), (3.4) and (3.5) we conclude

"y

/0” /Oxv,%gdB(s)dB(t) ~ /OxQT(x,Y)G)eQ(s,I)QT(s,t)GEdB(s)dB(z):QT(x,y)@)g ( /Oy /(;XQ(M)QTW)GE 4B dB(I))

2

"y

= ofe, (/0 /(:GEQ(s,z)dB(s)dB(zO:QT(@SGE (/Oy/:Q(s,t)dB(s)dB(t)),

by using (2.7) we can arrive
Y rx .
/ / V3gdB(s)dB(t) ~ QT®£G£P£_’XQ7
JO JO
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in which @GP ; is an ¢-matrix. From (2.4) we can write
v .
[ [ vagdB(s)asa) = Wi, (338)
0 Jo ;

where W€7S is an g;-vector with components equal to the diagonal entries of matrix @, G£P€7 s- Applying (3.1), (3.5), (3.6), (3.7) and (3.8) in
(1.1) give

GLQ~F Q+ U Q+W o+ W/ Q. (3.9)
By replacing ~ with =, in (3.9) we can get
Ge —Ue —We —We s = F, (3.10)
where after solving System (3.10), we can find G¢ and get
_ T
g=G Q.
Then
=
8§=8e = — Z 8e;»
K iz

ik
where & = lﬁ, i=0(1)(u — 1) is the estimation of the solution of (1.1) and u is a positive integer.
4. Error analysis

. . .1 . . .
In this section, we show that the convergence order of the proposed method is — by introducing several theorems. For convenience, we put
un

1
n=ny=n,s0k; =kp=—.
n

Theorem 4.1. Suppose that h is a differentiable function from S C R% into R, and for everyt € §
W2 <&,

where & € R. Then
Ih(d) —h(e)| < Eld —c],

forall c,d € S.

Proof. See [10]. O

Theorem 4.2. Assume that
n

n n
Fae=Y Y Y Y Fuped®apeds

a=0b=0c=0d=0

1 1l o1 opl
F, = X / / / / Fao, dtdsdydx,
L Ul ) ) le)ae)  Jo Jo Jo Jo 7 Pt caTEE

where a,b,c,d =0,1,...,n. Then the mean square error between F and F, ¢ on (x,y,s,t) € Dy p ¢.a reaches its minimum, moreover we have

and

0 oo

1 rloplopl o oo
/ / / / Flatdsdydx=Y Y Y Y F}p o al@apeal.
0 /0 J0 Jo a=0b=0¢=0d=0
Proof. By using [11], we can easily prove this theorem. O
ik
Theorem 4.3. Assume f is continuous and differentiable over district [—k,1 + k] x [k, 1 + k| and fn¢; & = lﬁfor i=0,1,...,u—1are
correspondingly 2D — MBPFs(&y) = 2D — BPFs, 2D — MBPFs(gy), ..., 2D — MBPF s(€,_1 ) expansions of f based on (n+1)* 2D-MBPFs

_ 1 _
over district [0,1) x [0,1) and fn ;i (x,y) = ﬁ Zl“:o] Sn,e;(x,y), then for sufficient large n we have

V2N
lleell2 < ———,
un
therefore
1
—0(—
leela = 0.

where N is bounded of || Df||».

Proof. See [13]. O
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Theorem 4.4. If F be an enough smooth function on S = [0,1)* with ||F|jy < M. Let

N . n n n o n
F, = Fn.ﬁ) = Z Z Z Z Fa,b,c.dwa,b,c,dv

a=1b=1c=1d=1
be 4D — MBPF s(&y) = 4D — BPF's expansion of F and
e=F— ﬁn,

then

1
=0(-).
leell2 = O( )

Proof. We have
€ab,cd = F— Fu,b,c‘,d¢a,b7c7d =F- Fu,b,c,d>

where ¢ is the set of 4D-BPFs of dimension nynyn3ng and

1 a b—1 b c—1 c d—1 d
Subea={"= <x< 800 <y,

N

n n n n

and (x,y,s,t) € Sy 4 ¢ 4- By using the mean value theorem we get
) b,/ n c/n d/n )
lleap,c.all2 :/ / / / F (F —Fapeaq) didsdydx
(a—1)/n —1)/n —1)/n

1
=3 7 (Fn,m, 1. 1) — abcd)2§ (Y1,72,73,74) € Sabcd- “.1

1 ak
F, =— / / / / cddtdsdydx,
abed =3 Jam e o1y Sy Ja—1yi Fap.ea Y

therefore by using mean value theorem we have

We know

1
Fabed =n" X —5 X F(61,6,05,04);  (61,6),63,64) € Supca- “2)

From Theorem 4.1 and involving (4.2) into (4.1) we obtain

, 1 1 s o AM?
Hea,h,c,de:nj(V(Yl,YL%,M) V(61,62,65,604))% < 7 XXM = — 4.3)

So

2
lell2

1 rl r1 gl
/ / / / ezdtdsdydx
0 J0 JOo JO

Ll pl gl nn n n
Y Y Y Y ddsdsix 2y ¥ Y Y [ o caveasisis
0 J0 JO JO ;T p=1c=1d=1

a<a' b<b' c<c'd<d’

Since fora < a',b < b',c < ¢’ and d < d’ we have
) )
Sa,b,c,d Sa’,b’,c’,d’ =4,

where (4.3) give
) n n n n aAM 2 1 )
lelz=Y Y Y ¥ lleweals <n*x P X 4M=,
a=1b=1c=1d=1
namely

1
=0(=).
lela=0(})
O
Theorem 4.5. Assume F(x, y,s t) is continuous and differentiable over district [—k, 1 + k] x [—k, 1 +k] x [—k, 1+ k] x [k, 1 + k], moreover
suppose F ¢, (x,y,8,1); &§ = — for i=0,1,...,u— 1 are correspondingly 4D — MBPF's(&y) = 4D — BPF's, 4D — MBPFs(g;), ..., 4D —
MBPFs(€y,_1) expansions ofF based on (n+ 1)* 4D-MBPFs over district [0,1)* and

1“1

Z Fre,

then for sufficient large values n

_ 1 _
NF = Fngellee S 7 max [ = For e
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Proof. We consider partial differentials
JF JF OJF OF
dx dy’ ds’ ot’
i—1 i+1

in D* = [——, ——)* which are approximately equal to constants A, A>, A3 and A4 respectively, where n is so large. Also we use function,
n n

i1
7 =A1x+Ayy+Ass+Ayt + Binstead of F in D*. Now in the district [, — + & )* we have
n'n

i} 1R
Fop(x,y,8,t) = ﬁ Z 16 X (A1 +A2 +A3+Ag)p1 + B+ (A] +Ax +A43)p1 +Aspr +B+ (A1 +Ax +Ag)p1 +A302 + B+ (A1 +A2)py
+ (A3 +A4)p2+B+ (A1 +A3 +A4)p1 +A202 + B+ (A1 +A3)p1 + (A2 +A4)p2 + B+ (A1 +A4)p1 + (A2 +A3)p2 +B+A P
+ (A2 +A3+A4)p2 +B+A1p2+ (A2 +A3+A4)p1 + B+ (A1 +As)p2 + (A2 +A3)p1 +B+ (A1 +A3)p2 + (A2 +A4)p1 +B
+ (A1 +A3+A4)p2+A2p1 + B+ (A1 +A2)p2+ (A3 +A4)p1 + B+ (A1 + A2 +Ag)pa +A3p1 +B
+ (A1 +A2+A3)p2 +A4p1 +B+ (A +A2 + A3 +A4)p2 + B
i i+1
o Al +Ay+A3+Ag)k(u—1
= (A1+A2+A3+A4)(u)+3—( 1Ay b PAOKK 1) @4
2 2u
where . i
(L
P1= (l’l m )7
and 1 i
(K
p2=(— ”)~
1
Since i L + k, we can reformulete (4.4) as
n n

_ i Al +Ary+A3+Aygk
Fn,“:(A1+A2+A3+A4)7+B+( 1Ay £ A3 F Ak

n 2u
Also we have

(A1 +Ar+A3+Ag)k

max  |[F—Fyul~  max  |Ax+Ayy+Ass+Agt+B—Fuyl= 4.5)
L1

2u
xS LE[—,—+¢)) Xy st€[—, —+¢))
n'n n'n
Therefore, we get
1
max ||F_Fn,£,-H°°2 max ‘F_Fn_rgi‘ ~[(A]+Ar+ A3 +A4)G)'1+B—T6 (A|+A2+A3+A4)D +B
& &
x,y,8,t €D x,y,5,t €D

+(A] +A2+A3)0) +As@r + B+ (A] + Ay +A4) @) +A3Dp + B+ (A +A2)B) + (A3 +A4) W + B+ (A + +A3 +A4) 0 + Ar® + B

+(A1+A3)01 + (A2 +A4) D2+ B+ (A1 +A4) @) + (A +A3) 02+ B+A 101 + (Ay + A3 +A4) Dy + B+ A @) + (A + Az +A4) B + B

+(A1 +A4) @2+ (A2 +A3) @)1 + B+ (A1 +A3)02 + (A2 +A4) @) + B+ (A +A3 +A4) 02 +Ar01 + B+ (A +A2) @2 + (A3 +Ag) @) + B
+(A1+Ar+Ay) 0+ A30) + B+ (A] + Ay +A3) W0 + Ay@) + B+ (A + Ay +A3 +A4) D, + B|

- (A1 +Ar+A3+Ay)
B 2

k, 4.6)

. i o
where @y = -, Lk =y, D= [, ) and ' = [, L k). From (4.5) and (4.6) we get
n n n n n'n
i I ]
IF = Fopelle S max||F = Fogee

Remark 4.6. Let
€ne = F_Fn,/b

and
en=F—F,
then from Theorem 4.2, Theorem 4.4 and Theorem 4.5 we have
lenell < 22
€ X
n,e |2 Lin
also we can write
lim F,¢ =F.

n—r+oo
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Theorem 4.7. If g be the exact solution of (1.1) and g, . (x,y) be the 2D-MBPFs approximate solution of it. Also
(1) lela<a , (s0)€0,1)?
(2) Vill2<Bisi=123, (xys0) € [0,1)

(3) Wi(x,y)= sup xx sup y,
x€f0,1)  ye[o,1)

(4) Walx,y)= sup [B(x)|x sup |B(y)],
x€[0,1) yel0,1)

2ﬁ1+2l3’2 2B3
) |prpor P2 (ﬁwﬁ)xwz(x,y)}a,

then :
—8ul2 = 0(—).
g — &nll2 (“n)

Proof. From (1.1), we get
N 1l . y .
g—8np=F—fan+ /0 /0 (Vig— Vi p ) dsdr + /0 /0 (Vag — Vo ) dsdt

y (X .
[ vty (5.0) = Va ) dB(5)4BO),
so the mean value theorem give
g —&nplla < If = Fugullz + 1Vig = Vimu@nullz + x91Vag = Vo w@nulla + Bx)BO)IV3g — V3 pénpll2-

By using Remark 4.6 and two first hypothesises, we obtain

IN

||V1g - Vl,n,ugn,uHZ HVI H2||g _gn,u”Z + HVI - Vl,n,u |2 (||g—§n,u||2 + HgHZ)

2B

A

Similarly we have

. . 2B, . 2B
Vo~ Pannale = (B2 22 ) g oo+ 22

and
2B3 2B3
IVag— v3nugn,u||2f(ﬁ3+ 22 g~ gl +

Substituting (4.8), (4.9) and (4.10) in (4.7) and Theorem 4.3 conclude

s 8nu\|27%+{<ﬁ1+iﬁl)l|g tnale+ o) s (B4 22 ) o+ 22
+5080) | (B + 22 ) el + 22

By taking sup and Hypothesises 3 and 4, we have

V2N
lg = gnull2 < T +

2B,

2B . 2B
(ﬁl+/.1n) sup Hg_gn,uHZ'f‘Wa

s<x , 1<y

s<x , 1<y

W (r.y) (Bﬁ%) sup._ ¢~ + f }

s<x, t<y

SO

AN +2B1a+2B0  2B3a
V2N +2B1a+2p; n B3 < W5 (x,)
|2 < Hn Hn

- {51+ﬁ2+2ﬁlu%2ﬁz+(ﬁ3 2133) XWZ(”)}’

Hg—gAn#

and from the boundedness of Brownian motion we get

. 1
llg—8gnulla = O(W)'

. 2 .
< Bille=uplat 200 (le=nula+0) = (B 200 ) gyl + 3oL

) 2
+W1(x7y)[(ﬁ2+“n) sup |lg —gupll2+ 2

“4.7)

(4.8)

(4.9)

(4.10)
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n Y g e (L,U)

2 | 1 (BPFs) | 0.488705 | 0.188705 | (0.487912,0.489498)

3 (MBPFs) | 0.397704 | 0.097704 0.390937,0.404471)

3 [ 1 (BPFs) | 0.327094 | 0.027093 | (0.326647,0.327540)

3 (MBPFs) | 0.316383 | 0.016382 | (0.304258,0.328508)
)
)
)
)

4 | 1 (BPFs) | 0.246046 | 0.053945 | (0.245386,0.246705
3 (MBPFs) | 0.582630 | 0.034799 | (0.222132,0.343128
5 1 (BPFs) | 0.400235 | 0.100235 | (0.399732,0.400738
3 (MBPFs) | 0.360730 | 0.060730 | (0.356168,0.365292

= == == =

Table 1: Results in (0.1,0.2)

n u g e (L,U)

2 1 (BPFs) | 0.996151 | 0.296151 0.987828,1.004470)

3 (MBPFs) | 0.906776 | 0.206776 | (0.870497,0.943055)

3| 1 (BPFs) | 0.997234 | 0.297234 | (0.976630,1.017840)

3 (MBPFs) | 0.880689 | 0.180689 0.833557,0.927822)
)
)
)
)

4 | 1 (BPFs) | 0.792689 | 0.092689 | (0.788890,0.796488
3 (MBPFs) | 0.751917 | 0.051917 | (0.733360,0.770475
5 1 (BPFs) | 0.799899 | 0.099899 | (0.799426,0.800373
3 (MBPFs) | 0.782178 | 0.082178 | (0.776386,0.787971

= == == =

Table 2: Results in (0,0.7)

5. Numerical example

We consider a numerical example to illustrate the efficiency of the MBPFs method. Consider the 2D-linear stochastic Volterra-Fredholm
integral equation

g(x,y) :f(x,y)—0—/(;1/O.l(xyst)g(s,t)dsdt—k/(;y /Ox(xyst)g(s,t)dsdt—k/(;y /Ox(xyst)g(s,t)dB(s)dB(t)7

where

"X

fley) =ty =5 =2 (R BBO) + B (y+20) [ BOd+BO)0x+25%) [ BGs)as

with the exact solution

g(x,y) =x+y.
The solution mean (g(x,y)), error mean (&(x,y)) and %95 confidence interval (L,U) at arbitrary points (0.1,0.2) and (0,0.7) for some values
of n and u are shown in Table 1 and Table 2. In this tables by the comparison between the computed results by the presented method and the

BPFs method we will see that in the MBPFs method we achieve the good accuracy by increasing (. You can see three-dimensional graphs of
this example in Fig. 5.1 and Fig. 5.2.

6. Conclusion

In this paper, we have successfully developed the 2D-MBPFs numerical method for approximate a solution for 2D-linear stochastic
Volterra-Fredholm integral equations. The numerical results represent that & in new method is lesser from & in BPF method.

Figure 5.1: (n=3)
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Figure 5.2: (n=15)
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