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Kübra Özkan1* and Utku Gürdal2
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Abstract

In this article, we prove a fixed point theorem, which is generalization of Banach fixed point theorem and characterizes the metric complete-
ness, for contravariant mapping on bipolar metric spaces. And, we give some results related to this fixed point theorem.
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1. Introduction

Suzuki introduced the Suzuki type fixed point theorem [9], which is known as one of useful generalizations of the Banach fixed point theorem,
as follows: Let (X ,d) be a complete metric space and let T be a selfmapping on X . We consider a nonincreasing function θ : [0,1)→ ( 1

2 ,1]
by

θ(r) =


1, 0≤ r ≤

√
5−1
2 ,

1−r
r2 ,

√
5−1
2 ≤ r ≤ 1√

2
,

1
1+r ,

1√
2
≤ r < 1.

Assume that ∃r ∈ [0,1) such that
θ(r)d(x,T x)≤ d(x,y)⇒ d(T x,Ty)≤ rd(x,y)

∀x,y ∈ X . Then, there exists a unique fixed point u of T . Moreover, lim
n→∞

T nx = u, ∀x ∈ X . Later, many researchers found this theory
interesting and obtained many generalizations, see [1, 2, 3, 4, 5, 10, 11].

2. Bipolar Metric Spaces

Definition 2.1. [6] Let X ,Y 6= /0 and d : X ×Y → R+ be a function. d is called a bipolar metric on (X ,Y ) if the following properties are
satisfied
(B0) x = y if d (x,y) = 0,
(B1) d (x,y) = 0 if x = y,
(B2) d (x,y) = d (y,x) if x,y ∈ X ∩Y ,
(B3) d(x,y)≤ d(x,y′)+d(x′,y′)+d(x′,y),
∀(x,y),(x′,y′) ∈ X×Y . Then the triple (X ,Y,d) is called a bipolar metric space.

Definition 2.2. [6] Let (X1,Y1,d1) and (X2,Y2,d2) be bipolar metric spaces. A function f : X1∪Y1→ X2∪Y2 is called a covariant map if
f (X1)⊆ X2 and f (Y1)⊆ Y2. Similarly, a function f : X1∪Y1→ X2∪Y2 is called a contravariant map if f (X1)⊆ Y2 and f (Y1)⊆ X2. These
maps are denoted as f : (X1,Y1,d1)⇒ (X2,Y2,d2) and f : (X1,Y1,d1)↘↗ (X2,Y2,d2), respectively.

Definition 2.3. [6] In a bipolar metric space (X ,Y,d);
(1) (a) The points of the set X are called left points,
(b) The points of the set Y are called right points,
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(c) The points of the set X ∩Y are called central points,
(2) (a) A sequence of left points is called a left sequence,
(b) A sequence of right points is called a right sequence,
(c) The term ”sequence” is commonly used for left sequences and right sequences,
(3) (a) If lim

n→∞
d(an,y) = 0 for a left sequence (an) and a right point y, then (an) is called convergent to y,

(b) If lim
n→∞

d(x,bn) = 0 for a right sequence (bn) and a left point x, then (bn) is called convergent to x,

(4) A sequence (xn,yn) on the set X×Y is called a bisequence on (X ,Y,d),
(5) A bisequence is called convergent, if both the left sequence (xn) and the right sequence (yn) converge,
(6) If (xn) and (yn) converge to a common point, then (xn,yn) is called biconvergent,
(7) A Cauchy bisequence is a bisequence (xn,yn) such that lim

n,m→∞
d(xn,ym) = 0,

(8) A bipolar metric space in which every Cauchy bisequence converges, is called a complete bipolar metric space.

It is shown in [6] that convergence of Cauchy bisequences implies biconvergence.

Proposition 1. [6] If a central point is a limit of a sequence, then this sequence has unique limit.

Definition 2.4. [6] (1) A covariant map f : (X1,Y1,d1)⇒ (X2,Y2,d2) is called left-continuous at x0 ∈ X1 ⇐⇒ ∃δ = δ (x0,ε)> 0 such that
d1(x0,y)< δ ⇒ d2( f (x0), f (y))< ε for every ε > 0 and ∀y ∈ Y1.
(2) A covariant map f : (X1,Y1,d1) ⇒ (X2,Y2,d2) is right-continuous at y0 ∈ Y1 ⇐⇒ ∃δ = δ (y0,ε) > 0 such that d1(x,y0) < δ ⇒
d2( f (x), f (y0))< ε for every ε > 0 and ∀x ∈ X1.
(3) If a covariant map f is left-continuous at each x ∈ X1 and right-continuous at each y ∈ Y1, then it is called continuous.
(4) A contravariant map f : (X1,Y1,d1)↘↗ (X2,Y2,d2) is called left-continuous at a point x0 ∈ X1, right-continuous at a point y0 ∈ Y1 or
continuous,⇐⇒ the corresponding covariant map f : (X1,Y1,d1)⇒ (Y2,X2,d2) is left-continuous at x0, right-continuous at y0 or continuous,
respectively.

This definition implies that a covariant or a contravariant map f , which is defined from (X1,Y1,d1) to (X2,Y2,d2), is continuous, ⇐⇒
(an)→ v on (X1,Y1,d1) =⇒ ( f (an))→ f (v) on (X2,Y2,d2).

Proposition 2. [6] If the point which a covariant or contravariant map f is left and right continuous, is central point, then the map f is
continuous in this point.

3. Main Results

Our first new result is the next:

Theorem 3.1. Let (X ,Y,d) be a complete bipolar metric space and T : (X ,Y )↘↗ (X ,Y ) be a contravariant mapping. We define a
nonincreasing function θ from [0,1) to

( 1
2 ,1
]

by

θ(r) =


1, 0≤ r ≤

√
5−1
2 ,

1−r
r2 ,

√
5−1
2 ≤ r ≤ 1√

2
,

1
1+r ,

1√
2
≤ r < 1.

Assume that ∃r ∈ [0,1) such that

θ(r)d(x,T x)≤ d(x,y) ⇒ d(Ty,T x)≤ rd(x,y)

θ(r)d(Ty,y)≤ d(x,y) ⇒ d(Ty,T x)≤ rd(x,y). (3.1)

∀x ∈ X, y ∈ Y . Then T : (X ,Y )↘↗ (X ,Y ) has a unique fixed point.

Proof. Since θ(r)≤ 1, θ(r)d(x,T x)≤ d(x,T x) for every x ∈ X . Using hypothesis, we can say that

d(T 2x,T x) ≤ rd(x,T x)

d(Ty,T 2y) ≤ rd(Ty,y) (3.2)

∀x ∈ X , y ∈ Y . Let x0 ∈ X , for each nonnegative integer n, we define xn = Tyn−1, yn = T xn. Then (3.1) and (3.2) yield

d(x1,y1) = d(Ty0,T x1)
= d(Ty0,T 2y0)
≤ rd(Ty0,y0)
= d(x1,y0)
= rd(T 2x0,T x0)
≤ r2d(x0,T x0)
≤ r2d(x0,y0).

Then we have d(xn,yn)≤ r2nd(x0,y0). From (3.1) and (3.2), we get

d(xn+1,yn) = d(Tyn,T xn)
= d(T 2xn,T xn)
≤ rd(xn,T xn)
≤ rd(xn,yn)
≤ r2n+1d(x0,y0).
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For all positive integer m and n, if n≤ m

d(xn,ym) ≤ d(xn,yn)+d(xn+1,yn)+d(xn+1,yn+1)+d(xn+2,yn+1)
+ . . .+d(xm,ym−1)+d(xm,ym)

≤ (r2n + r2n+1 + r2n+2 + · · ·+ r2m)d(x0,y0)

≤ r2n

1−r d(x0,y0)

if n > m
d(xn,ym) ≤ d(xn,yn−1)+d(xn−1,yn−1)+d(xn−1,yn−2)+d(xn−2,yn−2)

+ . . .+d(xm+1,ym+1)+d(xm+1,ym)
≤ (r2n−1 + r2n−2 + r2n−3 + · · ·+ r2m+2)d(x0,y0)

≤ r2m+2

1−r d(x0,y0).

Then, we say that d(xn,ym)→ 0. So, (xn,yn) is a Cauchy bisequence. Since (X ,Y,d) is a complete bipolar metric space, (xn,yn) is converges,
in fact biconverges, to u ∈ X ∩Y . We next show

d(u,T x) ≤ rd(x,u) for ∀x ∈ X−{u} (3.3)

d(Ty,u) ≤ rd(u,y) for ∀y ∈ Y −{u}. (3.4)

For y ∈ Y −{u}, ∀n ∈ N,

∃n0 ∈ N, ∀n≥ n0, d(xn,u)≤
d(u,y)

3

∃n1 ∈ N, ∀n≥ n1, d(u,yn)≤
d(u,y)

3
.

We take n2 = max{n0,n1}. Then, we have

θ(r)d(xn,T xn)≤ d(xn,T xn) = d(xn,yn)
≤ d(xn,u)+d(u,yn)

≤ 2
3 d(u,y)

= d(u,y)− d(u,y)
3

≤ d(u,y)−d(xn,u)
≤ d(xn,y).

From (3.1), we get
θ(r)d(xn,T xn)≤ d(xn,y)⇒ d(Ty,T xn)≤ rd(xn,y)⇒ d(Ty,yn)≤ rd(xn,y)

for n≥ n2. Letting n tend to ∞, we get
d(Ty,u)≤ rd(u,y).

That is, (3.4) is satisfied. On the other hand, for x ∈ X−{u}

∃n3 ∈ N, ∀n≥ n3, d(xn,u)≤
d(x,u)

3

∃n4 ∈ N, ∀n≥ n4, d(u,yn)≤
d(x,u)

3
.

We take n5 = max{n3,n4}. Then, we have

θ(r)d(Tyn,yn)≤ d(Tyn,yn) = d(xn+1,yn)
≤ d(xn+1,u)+d(u,yn)

≤ 2
3 d(x,u)

= d(x,u)− d(x,u)
3

≤ d(x,u)−d(u,yn)
≤ d(x,yn).

From (3.1), we get
θ(r)d(Tyn,yn)≤ d(x,yn)⇒ d(Tyn,T x)≤ rd(x,yn)⇒ d(xn,T x)≤ rd(x,yn)

for n≥ n5. Letting n tend to ∞, we get
d(u,T x)≤ rd(x,u).

That is, (3.3) is satisfied. Arguing by contradiction, we assume that T ju 6= u, ∀ j ∈ N. Then (3.3) and (3.4) yields

d(T j+1u,u)≤ r jd(Tu,u) for j ∈ N. (3.5)

We consider the following three cases;

* 0≤ r ≤
√

5−1
2

*
√

5−1
2 ≤ r ≤ 1√

2

* 1√
2
≤ r ≤ 1.
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Firstly, we consider the case where 0≤ r ≤
√

5−1
2 . Then, r2 + r ≤ 1 and 2r2 < 1. If we assume d(T 2u,u)< d(T 2u,T 3u), then from (3.5),

we have
d(u,Tu) ≤ d(u,T 2u)+d(T 2u,T 2u)+d(T 2u,Tu)

< d(T 2u,T 3u)+d(Tu,T 2u)
≤ r2d(u,Tu)+ rd(u,Tu)
≤ d(u,Tu).

This is a contradiction. So, we have (since θ(r) = 1)

d(T 2u,u)≥ d(T 2u,T 3u) = θ(r)d(T 2u,T 3u).

By hypothesis, we get

d(Tu,T 3u)≤ rd(T 2u,u). (3.6)

From (3.5) and (3.6), we have
d(u,Tu) ≤ du,T 3u)+d(T 3u,T 3u)+d(T 3u,Tu)

≤ r2d(u,Tu)+ rd(T 2u,u)
≤ r2d(u,Tu)+ r2d(Tu,u)
= 2r2d(u,Tu)
< d(u,Tu).

This is a contradiction.

In the second case where
√

5−1
2 ≤ r ≤ 1√

2
, it is obvious 2r2 < 1. If we assume

d(T 2u,u)< θ(r)d(T 2u,T 3u),

then, from (3.5), we get
d(u,Tu) ≤ d(u,T 2u)+d(T 2u,T 2u)+d(T 2u,Tu)

< θ(r)d(T 2u,T 3u)+d(T 2u,Tu)
≤ θ(r)r2d(u,Tu)+ rd(u,Tu)
= (θ(r)r2 + r)d(u,Tu)
= d(u,Tu).

This is a contradiction. So, we have
d(T 2u,u)≥ θ(r)d(T 2u,T 3u).

By hypothesis, we get

d(Tu,T 3u)≤ rd(T 2u,u). (3.7)

From (3.5) and (3.7), we have
d(u,Tu)≤ 2r2d(u,Tu)< d(u,Tu).

This is a contradiction.

In the third case where 1√
2
≤ r ≤ 1, we note that it is satisfied

θ(r)d(x2nT x2n)≤ d(x2n,u)

for every n ∈ N. If x2n = u, it is obvious. Otherwase, we assume that

θ(r)d(x2nT x2n)> d(x2n,u)

for ∃n ∈ N. Then, from (3.3), we have

d(x2n,T x2n) ≤ d(x2n,u)+d(u,u)+d(u,T x2n)
< d(x2n,u)+ rd(x2n,u)
= (1+ r)d(x2n,u)
< θ(r)d(x2n,T x2n)(1+ r)
= d(x2n,T x2n).

This is a contradiction. Similarly, we show that
θ(r)d(Ty2n,y2n)≤ d(u,y2n)

for every n ∈ N. If y2n = u, it is obvious. We assume that

θ(r)d(Ty2n,y2n)> d(u,y2n)

for ∃n ∈ N. Then from (3.4), we have

d(Ty2n,y2n) ≤ d(Ty2n,u)+d(u,u)+d(u,y2n)
< (1+ r)d(u,y2n)
< (1+ r)d(Ty2n,y2n)
= d(Ty2n,y2n).
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This is a contradiction. By hypothesis d(Tu,T x2n) ≤ rd(x2n,u) and d(Ty2n,Tu) ≤ rd(u,y2n) hold for every n ∈ N. Since {xn} and {yn}
converges to u, the above inequalities imply there exists a bisequence of (xn,yn) which biconverges to Tu. We get Tu = u. This is a
contradiction. Then, in all the cases, ∃ j ∈ N such that T ju = u. Since (T nu,T nu) is a Cauchy bisequence, we obtain Tu = u. That is, u is a
fixed point of T . We assume that there exist another fixed point v for T , such that u 6= v.

d(u,v) = d(Tu,T v)≤ rd(u,T v)≤ r2d(u,v).

This is a contradiction. Then, T has a unique fixed point.

It is obvious that the set of our contravariant contractions (3.1) in Theorem 3.1 includes that of the usual contravariant contractions in bipolar
metric spaces. So, we can write the following Corollary 1 as an result of the Theorem (3.1).

Corollary 1. [6] Let (X ,Y,d) be a complete bipolar metric space and T : (X ,Y )↘↗ (X ,Y ) be a contravariant mapping. Assume that
∃r ∈ [0,1) such that

d(Ty,T x)≤ rd(x,y)

∀x ∈ X, y ∈ Y . Then T : (X ,Y )↘↗ (X ,Y ) has a unique fixed point.

On the otherhand, the set of our contravariant contractions (3.1) in Theorem 3.1 and Kannan contravariant mappings in bipolar metric spaces
are independent. The following example show this.

Example 3.2. Let X = {0,1,2}, Y = {1,2,3}, d : X ×Y → [0,∞) be defined by d(1,1) = d(2,2) = 0, d(1,2) = d(2,1) = 5, d(0,1) = 9,
d(0,2) = 11, d(0,3) = 16, d(1,3) = 14, d(2,3) = 19. Then, (X ,Y,d) is a complete bipolar metric spaces. We define a contravariant
mapping T : (X ,Y )↘↗ (X ,Y ) such as T (0) = 1,T (1) = T (2) = 2,T (3) = 0. Then we get

d(Ty,T x)≤ 3
5

d(x,y)

if (x,y) 6= (1,1), (x,y) 6= (1,3). Since
θ(r)d(1,T (1)) = θ(r)d(1,2)≥ 5 > 0 = d(1,1)

and
θ(r)d(3,T (3)) = θ(r)d(0,3)≥ 15 > 13 = d(1,3)

for every r ∈ [0,1), T satisfies the assumption in Theorem 3.1. Then from Theorem 3.1, T has a unique fixed point 2 ∈ X ∩Y .
On the other hand, T is not a Kannan contravariant mapping. Because, for x = 0, y = 2, α ∈

[
0, 1

2
)
, it is obvious that

d(T (2),T (0)) = d(2,1) = 5 >
9
2
=

1
2
(d(0,T (0))+d(T (2),2)) .

Our second new result is the next:

Theorem 3.3. Let (X ,Y,d) be a bipolar metric space and define a function θ as in Theorem 3.1. For r ∈ [0,1) and η ∈ (0,θ(r)], let Ar,η be
the family of contravariant mappings T : (X ,Y )↘↗ (X ,Y ) satisfying the following:

(a) For x,y ∈ X,

ηd(x,T x)≤ d(x,y) ⇒ d(Ty,T x)≤ rd(x,y)

ηd(Ty,y)≤ d(x,y) ⇒ d(Ty,T x)≤ rd(x,y).

Let Br,η be the family of mappings T : (X ,Y )↘↗ (X ,Y ) satisfying (a) and the following:
(b) T (X) and T(Y) are countably infinite.
(c) Every subsets of T (X) and T (Y ) are closed.

Then the following are equivalent:

(i) (X ,Y,d)is complete.
(ii) Every mapping T ∈ Ar,θ(r) has a fixed point ∀r ∈ [0,1).

(iii) There exist r ∈ (0,1) and η ∈ (0,θ(r)] such that every mapping T ∈ Br,η has a fixed point.

Proof. By Theorem 3.1, (i) =⇒ (ii). Since Br,η ⊂ Ar,θ(r) for r ∈ [0,1) and η ∈ (0,θ(r)], (ii) =⇒ (iii). Let us prove (iii) =⇒ (i). We
assume that (iii) holds. Arguing by contradiction, we also assume that (X ,Y,d) is not complete. That is, there exists a Cauchy bisequence
(xn,yn) which does not biconverge. Define a function f : X ∪Y → [0,∞) by f (x) = lim

n
d(x,yn) and f (y) = lim

n
d(xn,y) for x ∈ X , y ∈ Y . We

note that f is well defined because {d(x,yn)} and {d(xn,y)} are two Cauchy bisequence for every x ∈ X , y ∈ Y . The following are obvious:

* f (x)− f (y)≤ d(x,y)≤ f (x)+ f (y) and f (x)− f (y)≤ d(x,y)≤ f (x)+ f (y) for x ∈ X , y ∈ Y ,
* f (x)> 0 and f (y)> 0, ∀x ∈ X , y ∈ Y ,
* lim

n
f (xn) = 0 and lim

n
f (yn) = 0.
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Define a contravariant mapping T on (X ,Y ) as follows: For each x ∈ X , y ∈Y , since f (x)> 0 and f (y)> 0 and lim
n

f (xn) = 0, lim
n

f (yn) = 0,

∃v ∈ N satisfying

f (yv)≤
ηr

3+ηr
f (x), f (xv)≤

ηr

3+ηr
f (y).

We put T x = yv and Ty = xv. Then it is obvious that

f (T x)≤ ηr

3+ηr
f (x), and T x ∈ {yn : n ∈ N},

f (Ty)≤ ηr

3+ηr
f (y) and Ty ∈ {xn : n ∈ N}

∀x ∈ X , y ∈ Y . Then ∀u ∈ X ∩Y , Tu 6= u, because F(Tu)< f (u). That is, T does not have a fixed point. Since T (X)⊂ {yn : n ∈ N} and
T (Y )⊂ {xn : n ∈N}, T (X) and T (Y ) countably infinite. That is, (b) holds. Also, it is not difficult to prove (c). Let us prove (a). Fix x,y ∈ X
with

ηd(x,T x)≤ d(x,y).

In the case where f (y)> 2 f (x), we have

d(Ty,T x)≤ f (Ty)+ f (T x) ≤ ηr
3+ηr

( f (x)+ f (y))

≤ r
3
( f (x)+ f (y))

≤ r
3
( f (x)+ f (y))+

2r
3
( f (y)−2 f (x)+)

= r( f (y)− f (x))
≤ rd(x,y).

In the case where f (y)≤ 2 f (x), we have

d(x,y)≤ ηd(x,T x) ≥ η( f (x)− f (T x))

≥ η

(
f (x)− ηr

3+ηr
f (x)

)
= η

(
1− ηr

3+ηr

)
f (x)

=
3η

3+ηr
f (x)

and hence
d(Ty,T x)≤ f (Ty)+ f (T x) ≤ ηr

3+ηr
( f (y)+ f (x))

≤ 3η

3+ηr
f (x)

≤ rd(x,y).

Similarly, fix x,y ∈ X with ηd(Ty,y)≤ d(x,y). In the case where f (x)> 2 f (y), we have

d(Ty,T x)≤ f (Ty)+ f (T x) ≤ ηr
3+ηr

( f (y)+ f (x))

≤ r
3
( f (x)+ f (y))

≤ r
3
( f (x)+ f (y))+

2r
3
( f (x)−2 f (y)+)

= r( f (x)− f (y))
≤ rd(x,y).

In the case where f (x)≤ 2 f (y), we have

d(x,y)≤ ηd(Ty,y) ≥ η( f (y)− f (Ty))

≥ η

(
f (y)− ηr

3+ηr
f (y)

)
= η

(
1− ηr

3+ηr

)
f (y)

=
3η

3+ηr
f (y)

and hence
d(Ty,T x)≤ f (Ty)+ f (T x) ≤ ηr

3+ηr
( f (y)+ f (x))

≤ 3η

3+ηr
f (y)

≤ rd(x,y).

Therefore, we have shown (a), that is, T ∈ Br,η . By (iii), T has a fixed point which yields a contradiction. Hence, we obtain that X is
complete.
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Corollary 2. For a bipolar metric space (X ,Y,d), the following are equivalent;

(i) (X ,Y,d) is complete,
(ii) There exists r ∈ (0,1) such that every mapping T on X and Y satisfying the following has a fixed point:

1
10000 d(x,T x)≤ d(x,y) =⇒ d(Ty,T x)≤ rd(x,y) and 1

10000 d(Ty,y)≤ d(x,y) =⇒ d(Ty,T x)≤ rd(x,y), ∀x ∈ X, y ∈ Y .

Proof. In the Theorem 3.3, if we take the η as 1
10000 , we obtain this corollary.
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