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Abstract
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1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric structures by Chinae and Gonzales [4].
These type of manifolds appear as a natural generalization of both Sasakian and Kenmotsu manifolds. In the Gray-Hervella classification of
almost Hermitian manifolds [6], there appears a class, Wy, of Hermitian manifolds which are closely related to locally conformal Kaehler
manifolds [3]. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [12] if the product manifold M x R
belongs to the class Wy. The class Cg & Cs [11] coincides with the class of the trans-Sasakian structures of type (¢, ). In [11], local nature
of the two subclasses, namely, Cs and Cg structures of trans-Sasakian structures are characterized completely.

We note that trans-Sasakian structures of type (0,0), (0,8) and (¢t,0) are cosymplectic [2], B-Kenmotsu [8] and o-Sasakian [8], respectively.
Also it is proved that trans-Sasakian structures are generalized quasi-Sasakian [8]. Thus, trans-Sasakian structures also provide a large class
of generalized quasi-Sasakian structures.

On the other hand the Schouten-van Kampen connection is one of the most natural connections adapted to a pair of complementary
distributions on a differentiable manifold endowed with an affine connection [1, 7, 9, 14]. Solov’ev investigated hyperdistributions in
Riemannian manifolds using the Schouten-van Kampen connection [15, 16, 17, 18]. Then Olszak studied the Schouten-van Kampen
connection to an almost contact metric structure and characterized some classes of almost contact metric manifolds with the Schouten-van
Kampen connection and found certain curvature properties of this connection on these manifolds [13]. Also, Yildiz studied projectively flat
and conharmonically flat 3-dimensional f-Kenmotsu manifolds with the Schouten-van Kampen connection [19].

The present paper is organized as follows: After preliminaries, we give some basic information about the Schouten-van Kampen connection
and trans-Sasakian manifolds. Then we adapte the Schouten-van Kampen connection on 3-dimensional trans-Sasakian manifolds. In section
5, we consider projectively flat and conharmonically flat 3-dimensional trans-Sasakian manifolds with respect to the Schouten-van Kampen
connection. In the last section, we give an example of a 3-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen
connection.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (¢,&,1,g), that is, ¢ is an (1, 1)-tensor field, &
is a vector field, 1 is a 1-form and g is the compatible Riemannian metric such that

P*(X)=-X+nX)E, nE)=1, ¢&=0, no¢p=0, @2.1)

8(9X,9Y) = g(X,¥) —n(X)n(Y), (2.2)

Email addresses: zerensemra@hotmail.com (Semra Zeren), a.yildiz@inonu.edu.tr (Ahmet Yildiz)



Konuralp Journal of Mathematics 153

g(X7¢Y):_g(¢X7Y)> g(xvé):n(x)7 (23)
for all X,Y € TM [2]. The fundamental 2-form & of the manifold is defined by
P(X,Y) =g(X,9Y), (24

forX,Y €e TM .
An almost contact metric struce (¢,&,7,g) on a connected manifold M is called trans-Sasakian structure [12] if (M x R, J, G) belongs to
the class Wy [6], where J is the almost complex structure on M x R defined by

J(X, fd/dt) = (9X — f&,n(X)d/dt),

for all vector fields X on M and smooth function f on M xR , and G is the product metric on M x R . This may be expressed by the condition

(3]

(Vx9)Y = a(g(X,Y)E —n(Y)X) + B(g(¢X,Y)E —n(Y)¢X), 2.5)

for smooth functions ¢ and B on M. Here we say that the trans-Sasakian structure is of type (o, 8). From the formula (2.5) it follows that
Vx& =—adX +B(X —n(X)E), (2.6)

(VXY = —ag(9X.Y) + Bg(9X,9Y). @7

An explicit example of 3-dimensional proper trans-Sasakian manifold was constructed in [10]. In [5], the Ricci tensor and curvature tensor
for 3-dimensional trans-Sasakian manifolds were studied and their explicit formulae were given.
From [5] we know that for a 3-dimensional trans-Sasakian manifold

20 +&a =0, (2.8)
S(X,8) = (2(a® ~ B*) ~ &P (X) —XB — (¢X)a, 2.9)
SXY) = (G+EB—(a?—BY)s(X.Y)
~(5+EB 3@~ BH)NX)m(Y) (2.10)
~(YB+(@V)o)n(X) — (XB+ (9X)e)n(¥),
and
RXY)Z = (5 +26B—2(a—BY)(8(Y,2)X —g(X.2)Y)

~5(r.2)[(5 +EB—3(? — BN (X)E

—n(X)(pgrado —gradB) + (XB + (9X) )]

+e(X,2)[(5 +EB ~3(a2 ~ BA)N(Y)E

—n(¥)(9grade — gradB) + (Y B +(9Y)a)E] @.11)
(2B + (2)e)n(¥) + (VB + (97 )er)n (2)

+(5+EB-3(o7 ~ BN (NN (@)X

+[(ZB + (9Z)a)n (X) + (X + (X)) (2)

(5 +EB 3@~ BN @)Y,

where S is the Ricci tensor, R is the curvature tensor and 7 is the scalar curvature of the manifold M, respectively.
For constants o and f3 are the above relations become

RX.Y)Z = (5=2(0%=B2)(s(t.2X —g(X.2)Y)
~(5 302 = BA) (&Y, 2N (X)& ~ g(X. Z)(¥V)& @.12)
Fn¥)M2)X —nX)n2)Y),
SY) = (5 = (o = BA)g(X.¥) = (5 —3(o® = BN (X)m(Y), @13
S(X,&) =2(c® - BN (X), (2.14)
R(X.Y)E = (o = B2)(n(Y)X —n(X)Y), 215)
QX = (5 — (o2 = BH)X — (5 —3(o® = BN (X)E. 2.16)

From (2.8) it follows that if o and 8 are constants, then the manifold is either o-Sasakian or 3-Kenmotsu or cosymplectic.
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3. The Schouten-van Kampen connection

Let M be a connected pseudo-Riemannian manifold of an arbitrary signature (p,n—p), 0 < p <n,n=dimM > 2. By g and V we denote
the pseudo-Riemannian metric and Levi-Civita connection induced from the metric g on M respectively. Assume that H and V are two
complementary, orthogonal distributions on M such that dimH = n— 1, dimV = 1, and the distribution V is non-null. Thus TM = H@V,
HNV ={0}and H L V. Assume that £ is a unit vector field and 7 is a linear form such that n(&) =1, g(£,&) = e ==+1 and

H=kern, V =span{&}. 3.1
We can always choose such & and 71 at least locally (in a certain neighborhood of an arbitrary chosen point of M). We also have
N(X) = eg(X,&). Moreover, it holds that Vx & € H.
For any X € TM, by X" and X" we denote the projections of X onto H and V, respectively. Thus, we have X = X" + X" with

x"=X-nx)§ X' =nX);. 32)

The Schouten-van Kampen connection V associated to the Levi-Civita connection V and adapted to the pair of the distributions (H,V)is
defined by [1]

VxY = (VY4 (Vyy")Y, (3.3)

and the corresponding second fundamental form B is defined by B=V — ?. Note that the condition (3.3) implies the parallelism of the
distributions H and V with respect to the Schouten-van Kampen connection V.
From (3.2), one can compute

(VxY")" = Vx¥Y—n(VxY)& —n(Y)Vx¢,
(VxY")" = (Vxm)(¥)§+n(VxY)S,

which enables us to express the Schouten-van Kampen connection with the help of the Levi-Civita connection in the following way [15]
VxY = Vx¥ —n(¥)Vx& +(Vxn)(¥)E. G4

Thus, the second fundamental form B and the torsion 7 of V are [15, 16]
B(X,Y)=n(Y)Vx&—(Vxn)(Y)E,
and
T(X,Y)=n(X)Vy& —n(Y)Vx& +2dn(X.Y)E.

With the help of the Schouten-van Kampen connection (3.4), many properties of some geometric objects connected with the distributions
H, V can be characterized [15, 16, 17]. Probably, the most spectacular is the following statement: g, & and 1 are parallel with respect to V,
thatis, VE =0, Vg =0, Vn =0.

4. Trans-Sasakian manifolds with respect to the Schouten-van Kampen connection

Let M be a 3-dimensional trans-Sasakian manifold with @ and 3 are constants with respect to the Schouten-van Kampen connection. Then
using (2.6) and (2.7) in (3.4), we get
Ux¥ = V¥ +a{n(Y)0X — g(0X,Y)E} + B{g(X,Y)E ~n(¥)X}. @1
Let R and R be the curvature tensors of the Levi-Civita connection V and the Schouten-van Kampen connection V
R(X,Y)=[Vx,V¥]=Vixy, R(X,Y)=[Vx,Vy]=Vixy.
Using (4.1), by direct calculations, we obtain the following formula connecting R and R on a 3-dimensional trans-Sasakian manifold M
R(X,Y)Z = R(X,Y)Z
+a{g(9Y.Z)0X — g(0X.Z)9Y +1(X)n(Z)Y @.2)
“N¥)NZ2)X -, Z)n(X)§ +g(X,Z)n(¥Y)s}
+B*{s(Y.2)X —5(X,Z)Y}.

We will also consider the Riemann curvature (0,4)-tensors R, R, the Ricci tensors S, S, the Ricci operators O, Q and the scalar curvatures %, 7
of the connections V and V are given by

I:’(X,Y,Z,W) = R(X,Y,Z,W)
+a{g(9Y,2)2(9X, W) — g($X,Z)g(9Y, W)
+g(¥,W)n(X)n(Z) —gX,W)n(¥)n(2) 4.3)
(Y, ZnX)n(W) +g(X,Z)n(¥)n(W)}
+B*{g(Y,2)g(X, W) — g(X,Z)g(Y,W)},

S(v,z) = S(v,Z) +2B%¢(Y,Z) — 20’1 (Y)n(2)), (“4)
O0X = 0X +2B%X —2a’n(X)¢, 4.5)
F=1-20>+6p>, (4.6)

respectively, where R(X,Y,Z,W) = g(R(X,Y)Z,W) and R(X,Y,Z,W) = g(R(X,Y)Z,W).
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5. Main results

In this section, we give some geometric results on 3-dimensional trans-Sasakian manifolds with o and 8 are constants with respect to the
Schouten-van Kampen connection.

The Projective curvature tensor is an important tensor from the differential geometric point of view. If there exists a one-to-one correspondence
between each coordinate neighbourhood of M and a domain in Euclidean space such that any geodesic of the Riemannian manifold
corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For n > 1, M is locally projectively flat if
and only if the projective curvature tensor P vanishes. In fact M is projectively flat if and only if it is of constant curvature [2]. Thus the
projective curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature.

In a 3-dimensional trans-Sasakian manifold, the projective curvature tensor with respect to the Schouten-van Kampen connection is given by

P(X,Y)Z=R(X,Y)Z— %{S(Y,Z)Xff(X,Z)Y}. (5.1)

If P = 0, then the manifold M is called projectively flat with respect to the Schouten-van Kampen connection.
Let M be projectively flat manifold with respect to the Schouten-van Kampen connection. From (5.1), we have

R(X,Y)Z= %{S(Y,Z)X -8(X,2)v},

(oot}

- 1 -
RX,Y,Z,W) = S{S(Y. Z)g(X, W) = 5(X,Z)g(Y, W)}. (5:2)
Then using (4.3) and (4.4) in (5.2), we get

R(X,Y7Z,W)+ﬁ2{g(Y Z) (X W) (X7Z) (Y W)}
+a? {g(0Y.2)g(9X, W) — g(¢Y,W)g(9X,Z) + (Y, W)n(X)n(Z)
—g(X, W)n(¥)n(2) —g(Y,Z)n(X)n(W) +g(X,Z)n(Y)n(W)}
= {50 2) +2B75(r,2) ~ 2020 )n(2)]g(X, W) (53)
~[S(X,2) +2B%2(X,Z) — 20> (X)N(2)]g(¥,W)}.
Taking W = £ and using (2.15) in (5.3), we obtain

0=51,Z)n(X)+2p%(Y,.Z)n(X) — 20’0 (Y)n(Z)n(X) = S(X,Z)n(Y) - 2B°¢(X,Z)n(Y) + 2’0 (Y)n(Z)n(X),

0= {S(Y,Z)n(X) - S(X,Z)n(¥) +2p%e(Y,Z)n(X) —2B°¢(X,Z)n(Y)}. (5.4)
Again taking X = & in (5.4), we have

S(v,2) = S(§,Z)n(Y) —2B%(Y,Z) +2B°n(Y)n(2). (5.5)
Using (2.14) in (5.5), we obtain
S(Y,Z) = —2B2g(Y,Z) + 20’0 (Y)n(Z). (5.6)
Now using (5.6) in (4.4), we get
S(r,z) =0.

Thus the manifold M is the Ricci-flat with respect to the Schouten-van Kampen connection. From (5.2), we have
R=0.

Now we can say the manifold M is flat with respect to the Schouten-van Kampen connection.

Conversely, if M is flat manifold with respect to the Schouten-van Kampen connection then M is the Ricci-flat with respect to the Schouten-van
Kampen connection. From (5.1), M is projectively flat with respect to the Schouten-van Kampen connection.

Thus we have the following:

Theorem 5.1. Let M be a 3-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection. Then the following
statements are equivalent: i) M is projectively flat with respect to the Schouten-van Kampen connection, ii) M is the Ricci flat with respect to
the Schouten-van Kampen connection, iii) M is flat with respect to the Schouten-van Kampen connection.

In a 3-dimensional trans-Sasakian manifold the conharmonic curvature tensor with respect to the Schouten-van Kampen connection is given
by

R(X,Y)Z=R(X,Y)Z—{S(Y,2)X —S(X,2)Y +¢(Y,Z2)0X — g(X,Z)QY }. 5.7
If K = 0, then the manifold M is called conharmonically flat manifold with respect to the Schouten-van Kampen connection. Then we have

RX,Y)Z={5(Y,2)X -§(X,Z)Y +g(Y,Z)0X —g(X,Z)QY}. (5.8)
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Let M be conharmonically flat trans-Sasakian manifold with respect to the Schouten-van Kampen connection. Then using (4.3), (4.4) and
(4.5) in (5.8), we get

+a? {g(0Y.Z)g(9X, W) — g(§Y,W)g(9X,Z) + g(¥,W)n(X)n(Z)
(X, W)n(¥)n(z) —gY,Z)n(X)n(W) +g(X,Z)n(Y)n(W)}

—  S(Y,Z2)e(X,W)—S(X,Z)a(Y,W) (5.9)
(X, W)g(Y,Z) — S(Y,W)g(X,Z)
+4B*{g(Y,2)8(X, W) — g(X,Z)g(¥,W)}
=20 {g(X,W)n(Y)n(Z) - g(¥.W)n(X)n(Z)
+e(¥,Z)n(X)n(W) —g(X,Z)n(Y)n(W)}

Taking W = £ in (5.9), we obtain

R(X7Y7Z>§) + (ﬁz - az){g(yvz)n(x) _g(sz)n(Y)}
= SIZ)nX)-SX,Z)n(Y) +g(Y,.Z2)S(X,¢) —g(X,Z)S(Y,¢)
+(4B% —207){g(Y,Z)n(X) —g(X, Z)n(Y)}, (5.10)

0=S(¥.Z)n(X) - S(X,Z)n(¥) +2B*{g(Y.Z)n(X) - g(X,Z)n(¥)}. (5.11)
Again taking X = £ and using (2.14) in (5.11), we have
S(v,Z) = —4B*g(Y.Z) +2(a* + ) (Y)n(2). (5.12)
Now using (5.12) in (4.4), we get
S(v,z)=0.
Thus the manifold M is the Ricci-flat with respect to the Schouten-van Kampen connection. From (5.8), we have
R=0.

Now we can say the manifold M is flat with respect to the Schouten-van Kampen connection.

Conversely, if M is flat manifold with respect to the Schouten-van Kampen connection then M is the Ricci-flat with respect to the Schouten-van
Kampen connection. From (5.7), M is conharmonically flat with respect to the Schouten-van Kampen connection.

Thus we have the following:

Theorem 5.2. Let M be a 3-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection. Then the following
statements are equivalent: i) M is conharmonically flat with respect to the Schouten-van Kampen connection, ii) M is the Ricci flat with
respect to the Schouten-van Kampen connection, iii) M is flat with respect to the Schouten-van Kampen connection.

6. Example

We consider the 3-dimensional manifold M = {(x,y,z) € R3, z # 0}, where (x,y,z) are the standard coordinates in R>. The vector fields
T T |
l_zax7 2_Z8y7 3_Zaz

are linearly independent at each point of M. Let g be the Riemannian metric defined by

gler,e3) = gler,e3) = gler,e2) =0,
gler,e1) = glez,er) = glez,e3) =1

Let 17 be the 1-form defined by 1(Z) = g(Z,e3) for any Z € y(M). Let ¢ be the (1,1) tensor field defined by ¢(e]) = —ea, ¢ (e2) = ey,
¢ (e3) = 0. Then using linearity of ¢ and g we have

Nies) =1, ¢*Z=-Z+n(Z)es,

8(0Z,0W) = ¢(Z,W) —n(Z)n(W),
for any Z,W € x(M). Thus for e3 = £, (¢,&, 1, g) defines an almost contact metric structure on M. Now, by direct computations we obtain
le1,e2] =0, [er,e3]=—en, le1,e3] = —ey.
The Riemannian connection V of the metric tensor g is given by the Koszul’s formula which is

Zg(VXYaZ) :Xg(YvZ)+Yg(Z7X) 7Zg(X’Y) 7g(X’[Y’Z]) 7g(Y7 [sz])+g(zv [X’Y])' (61)
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Using (6.1), we have

zg(vele37el) = 2g(—€1,€1)7
Zg(vele3762) = 0:2g(761732)5
2g(Vele3,e3) = O:2g(761,€3).

Hence V., e3 = —e;. Similarly, V.,e3 = —es and V,,e3 = 0. (6.1) further yields

Velez = 07 Velel = 63,
V6‘2 e = e3, V6261 =0, (6.2)
Ve,eo = 0, Vese1 =0.
We see that
(Ve,9)er = Ve der —9Veer =—Veer—pe3=—V,er=0 (6.3)
= 0(g(er,e1)es —n(er)er) — 1(g(Per,e1)es —n(e1)der).
(Vel ¢)€2 = Ve —¢Veer=—Vee1—0=e3 (6.4)
= 0(g(er,e2)es —n(e2)er) — 1(g(Per,e2)es —M(e2)Per).
(Ve,9)es = Ve de3— Ve e3 =0+de; =—ey 6.5)

= 0(g(er,e3)es —Mn(ez)er) — 1(g(Per,e3)es —n(e3)Pe).

By (6.3), (6.4) and (6.5) we see that the manifold satisfies (2.5) for X = e;, @ =0, B = —1, and e3 = £. Similarly, it can be shown that for
X = e; and X = ej3 the manifold also satisfies (2.5) for « =0, B = —1, and e3 = &. Hence the manifold is a trans-Sasakian manifold of type
(0,—1). Using (6.2), we get

R(ej,er)e; = ex, R(ej,er)ep=—ey, R(ej,er)e3 =0,
R(ej,ez)e; = e3, R(ej,e3)er =0, R(e1,e3)e3 = —ey, (6.6)
R(ez,e3)er = 0, R(ex,e3)ex=e3,  R(ez,e3)e3 = —es.

Now we consider the Schouten-van Kampen connection to this example. Using (4.1) and (6.2), we calculate

@elel = (B+1)es, ﬁglezzot@7 66163:([3—5—1)61 —ae,
66261 = —aqes, 66232: (B+1)es, 63263 =oe;— (f+1)ey, 6.7)
66361 = 0, 66362 =0, 66363 =0.

Thus using (4.2) and (6.6), we get

Rler,e)e; = (1—a?—B2ey, R(er,er)er = (—1+a?+B%)e,

R(er,er)es = 0, R(er,e3)e; = (1 —a® —B?)es,

R(er,e3)e; = 0, R(ey,e3)ez = (—1— 062—1—[32)61, (6.8)
R(ez,ez)e; = 0, R(es,e3)er = (1— a? —[32)63,

R(es,e3)es = (—1—a?+p%)es.

From (6.7), we can see that ﬁeiej =0(1<i,j<3)for§ =e3and @ =0, =F1. Hence M is a 3-dimensional trans-Sasakian manifold
of type (0, —1) with respect to the Schouten-van Kampen connection. Also using (6.8), it can be seen that R = 0. Thus the manifold M
is flat manifold with respect to the Schouten-van Kampen connection. Since a flat manifold is the Ricci-flat manifold with respect to the
Schouten-van Kampen connection, the manifold M is both projectively flat and conharmonically flat 3-dimensional f3-Kenmotsu manifold
with respect to the Schouten-van Kampen connection. So, from Theorem 5.1 and Theorem 5.2, the manifold M is an n-Einstein manifold
with respect to the Levi-Civita connection.
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