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Abstract: This study aimed to investigate the corrosion behaviour of annealed stainless steel mesh. 

Thermal oxidation treatments were applied to steel mesh in a muffle furnace at 500 °C, 700 °C and 900 °C. 

Surface morphology of annealed and non-annealed stainless steel meshes was compared before and after 

polarization. The roughness of the steel surface was increased after heat-treatment. The corrosion properties 

of non-annealed and annealed steel were determined using linear sweep voltammetry. The corrosion 

behaviour of annealed stainless steel was examined utilizing a potentiostat in a 3.5 wt.% NaCl, 1 M H2SO4 

and 1 M KOH electrolytes. The corrosion susceptibility of heat-treated stainless steel was more than that 

of non-heat treated stainless steel in alkaline electrolyte. While pitting corrosion of non-annealed and 

annealed stainless steel was different, corrosion potential and current of steel mesh without heat treatment 

were the same as the steel meshes annealed at 500 °C and 700 °C. Corrosion current and corrosion potential 

of non-annealed steel were the same as 500 °C annealed steel mesh in acidic medium. 
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Paslanmaz Çelik Ağının Farklı Elektrolitler İçerisindeki Elektrokimyasal Davranışları  

 

Öz: Bu çalışmanın amacı, tavlanmış paslanmaz çelik ağın korozyon davranışını incelemektir. Çelik ağa 

500 °C, 700 °C ve 900 °C'de bir kül fırını içerisinde termal oksidasyon işlemleri uygulanmıştır. Tavlanmış 

ve tavlanmamış paslanmaz çelik ağların yüzey morfolojisi Elektrokimyasal polarizasyondan önce ve sonra 

karşılaştırılmıştır. Isıl işlemden sonra çelik yüzeyin pürüzlülüğü artmıştır. Tavlanmamış ve tavlanmış 

çeliğin korozyon özellikleri doğrusal tarama voltametrisi kullanılarak belirlenmiştir. Tavlı paslanmaz 

çeliğin korozyon davranışı, ağırlıkça % 3,5'lik NaCl, 1 M H2SO4 ve 1 M KOH elektrolitlerinde bir 

potansiyostat ile incelenmiştir. Isıl işlem görmüş paslanmaz çeliğin korozyon duyarlılığı, alkalin elektrolitte 

ısıl işlem görmemiş paslanmaz çeliğinkinden daha fazlaydı. Tavlanmamış ve tavlanmış paslanmaz çeliğin 

çukur korozyonu farklıyken, ısıl işlem uygulanmayan çelik ağın korozyon akımı ve korozyon potansiyeli 

500 °C ve 700 °C'de tavlanan çelik ağlarla aynıydı. Tavlanmamış çeliğin korozyon akımı ve korozyon 

potansiyeli asidik ortamda 500 °C tavlanmış çelik ağınkiyle aynıydı. 
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1. INTRODUCTION 

Stainless steel bulk materials have been used in various engineering applications because of 

their passivation behaviour and lack of environmental degradation (Hermas et al., 1995). Different 

types of stainless steel are used for appropriate demands. The main elements (after iron) in 

stainless steel is chromium and nickel. Generally, they are classified into four groups (duplex, 

austenitic, martensitic and ferritic) depending on their structure (Lo et al., 2009). It is known that 

the density of stainless steels is higher than some common engineering metals including 

aluminium, magnesium and titanium. However, specific strength of stainless steels is high and 

stainless steels possess high stiffness and high corrosion prevention (Eskandari et al., 2009). 

Surface treatments such as boronizing, nitriding and carburizing could change properties of 

stainless steel (Lindner et al., 2018). Electrochemical and physical properties of materials with 

the environment they are exposed could be related to the life of the material. Properties of 

materials could be tailored by surface treatments such as thermal and electrochemical treatments 

(Pippenger et al., 2019).  

Metal oxides can be generated as they can be used in various applications including magnetic 

devices, catalysts, sensors, energy storage devices (Tartaj et al., 2011). Metal oxide/hydroxide 

have been used as corrosion prevention (Muhaffel and Cimenoglu, 2019; Zhang et al., 2018). 

Among metal oxides, iron-based oxides (FeO, Fe2O3 and Fe3O4) are of scientific and 

technological importance as they are inexpensive, highly abundant, generally stable and easy to 

prepare (Fiore et al., 2018). 

Various preparation techniques including pyrolysis (Hassanien and Akl, 2018), chemical 

precipitation (Lassoued et al., 2018), solvo and hydrothermal (Köçkar et al., 2019), 

electrodeposition (Martinez et al., 2007), sol-gel (López-Sánchez et al., 2019) and RF sputtering 

(Lin et al., 1985) have been applied to obtain iron oxides. Surface morphology with various 

structure can be controlled by the formation route. Studies related to synthesis, structure and 

morphology of iron oxides were reported in the literature (Phul et al., 2019; Yu et al., 2018). In 

this study, iron oxide has been obtained by thermal oxidation and its corrosion behavior has been 

studied in acidic, neutral and alkaline electrolytes. 

Metals/alloys can corrode because of their nature and formation process. Increasing annealing 

temperature cause easier oxidation (Zhou and Yang, 2004). Corrosion behaviors of different types 

of stainless steel have been studied (Bregliozzi et al., 2005; Pardo et al., 2008). Oxide forms of 

iron (FeO and Fe2O3) and chromium (Cr2O3) could occur on the outer surface of stainless steel 

with annealing temperature between 500 °C and 700 °C (Ferreira et al., 2001; Vesel et al., 2008).  

However, Cr2O3 coating could generally cover the stainless steel surface at the higher temperature 

(typically 800 °C) (Karlsson and Ribbing, 1982). The goal of this work is to measure the corrosion 

properties of heat-treated stainless steel mesh electrodes in NaCl, H2SO4 and KOH electrolyte. 

2. EXPERIMENTAL 

Potassium hydroxide (90 % purity, Tekkim), NaCl, (purity 99 %, Tekkim) and H2SO4 (purity 

96 %, Merck) were used without purification. The stainless steel mesh was cut and each of them 

was 4 cm × 1 cm size. Thermal treatment of samples was performed at 500 °C, 700 °C and 900 

°C for 30 minutes in a muffle furnace to produce oxidized surface. The corrosion properties of 

the annealed meshes were studied using a potentiostat measurement system (AMATEK, 

Princeton Applied Research, the USA). The results were checked by a different potentiostat 

(Gamry 1010E, the USA) to prove its reliability. Before the experiment, the samples were not 

ground and not washed. They were directly immersed in polarization electrolytes. Annealed 

samples of 1 cm × 1 cm were immersed in polarization solution for linear sweep voltammetry 

analysis. The polarization experiment was conducted in a three electrodes configuration of the 

electrochemical cell. Annealed samples were used as working electrodes. Ag/Ag+ (saturated KCl 

solution) was the reference electrode. Platinum coated titanium mesh was a counter electrode. All 
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polarization tests were carried out at room temperature (20 ± 2 °C) Linear sweep voltammetry 

curves were obtained directly after the annealed samples were immersed in polarization solution. 

The polarization was started from the cathodic side to the direction of corrosion potential and 

anodic side. Images of the samples after polarization were taken by using Nikon LV150NL optical 

microscope. 

3. RESULTS AND DISCUSSION 

Stainless steel meshes were annealed in a muffle furnace and then transferred into the 

different electrolyte to measure their corrosion current and potential. The image of stainless steel 

mesh before annealing is given in Figure 1a. The surface of the non-annealed steel mesh was 

metallic shiny and smooth. After annealing at 300 °C, the colour of the stainless steel electrode 

was not shiny and changed to black as shown in Figure 1b. The surface colour of 500 °C annealed 

steel mesh was similar to that of 300 °C annealed steel mesh presented in Figure 1c. However, 

the surface of the steel mesh annealed at 800 °C was changed significantly (see Figure 1d). Heat 

treatment could cause different surface characteristics. 

 

  
(a)        (b) 

  
(c)        (d) 

Figure 1:  

Images of steel mesh electrode a) without heat treatments; b) annealed at 500 °C; c) annealed 

at 700 °C and; c) annealed at 900 °C. Images were magnified 100× 

 

Thermal oxidation of an alloy could create metal oxide layers. Heat treatment of stainless 

steel could form oxide layers of chromium and iron. Fe2O3 and Cr2O3 layers are most likely 
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surface coating after annealing of stainless steel at high temperatures (Hamadou et al., 2010). It 

has been reported that Fe2O3 itself is formed on the surface of stainless steel up to around 400 °C. 

When the temperature is higher than 800 °C, the outer surface is generally Cr2O3 as it was studied 

in detail (Karlsson and Ribbing, 1982). The surface of stainless steel consists of both at the 

temperature between 400 °C and 800 °C. Therefore, the outer surface of stainless steel mesh 

annealed at 500 °C (Figure 1b) and 700 °C (Figure 1c) is a combination of Fe2O3 and Cr2O3. 

However, the surface of the steel mesh annealed at 900 °C (Figure 1d) has mainly Cr2O3. Heat-

treated steel mesh was transferred to a different environment (acidic, alkaline and neutral) to 

characterize their corrosion behaviour and these results were compared with corrosion behaviour 

of non-annealed steel mesh. 
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Figure 2:  

Linear sweep voltammetry of non-annealed and annealed steel mesh in 1 M KOH electrolyte. 

Annealed steel mesh was immersed in alkaline (1 M KOH) solution and linear sweep 

voltammetry technique were applied to investigate its corrosion behaviours. Figure 2 illustrates 

Tafel plot of non-annealed and annealed stainless steel meshes. Corrosion current of non-annealed 

mesh was increased from 0.4 µA cm-2 to 2.5 µA cm-2 after annealing at 500 °C. Corrosion current 

of non-annealed and annealed steels in KOH electrolyte is tabulated in Table 1. Corrosion current 

of 700 °C annealed steel even increased to 7.9 µA cm-2. Corrosion current is directly proportional 

to the corrosion rate. As annealing temperature of stainless steel mesh increases, corrosion current 

(and corrosion rate) increases in alkaline electrolyte. Non-annealed stainless steel is about six and 

twenty times less electroactive than 500 °C and 700 °C annealed stainless steel mesh. This means 

that oxide forms of iron are more active than bare iron in alkaline solution. Therefore iron oxide-

based electrodes in alkaline electrolyte could be used in electrochemical applications such as 
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energy storage devices (Du et al., 2009; Liu et al., 2016) and hydrogen evolution reaction (Askari 

et al., 2019). 

 

Table 1: corrosion current (icorr) values of non-annealed and annealed steel mesh in the 

different electrolyte. 

 In KOH In NaCl In H2SO4 

Non-annealed 0.4 µA cm-2 2.5 µA cm-2 2.5 mA cm-2 

500 °C annealed 2.5 µA cm-2 2.3 µA cm-2 2.4 mA cm-2 

700 °C annealed 7.9 µA cm-2 2.2 µA cm-2 1.6 mA cm-2 

900 °C annealed 25 µA cm-2 26 µA cm-2 1.2 mA cm-2 

Annealing temperature also increased the corrosion potential of stainless steel. While the 

corrosion potential of non-heated steel mesh was -0.30 V, that of 500 °C and 700 °C annealed 

stainless steel mesh was -0.17 V and -0.12 V, respectively. It is shown that Fe2O3 surface increases 

the rate of corrosion. Corrosion potential of 900 °C annealed steel mesh did not follow the same 

trend because the surface of 900 °C annealed steel mesh mainly consists of Cr2O3. Corrosion 

potential of Cr2O3 coated stainless steel was -0.20 V. However, corrosion current of 900 °C 

annealed steel mesh was much greater than that of 500 °C and 700 °C annealed stainless steel 

mesh and these results show that Cr2O3 coated steel can be more active in alkaline media. The 

corrosion rate of Cr2O3 coated steel is more than 60 times greater than that of bare steel in alkaline 

media as corrosion current of non-annealed steel was 0.4 µA cm-2 and corrosion rate of 900 °C 

annealed steel mesh was 25 µA cm-2. 900 °C annealed steel mesh (photographed in Figure 3) was 

polarized in alkaline media utilizing linear sweep voltammetry and its surface was not changed 

significantly as shown in Figure 3b.  

 

Table 2: corrosion potential (Ecorr) values of non-annealed and annealed steel mesh in the 

different electrolyte. 

 In KOH In NaCl In H2SO4 

Non-annealed -0.30 V -0.39 V -0.40 V 

500 °C annealed -0.17 V -0.39 V -0.40 V 

700 °C annealed -0.12 V -0.39 V -0.37 V 

900 °C annealed -0.20 V -0.35 V -0.35 V 

Corrosion behaviour of steel generally was investigated in NaCl solution (Devikala et al., 

2019; Yang et al., 2018). Stainless steel mesh electrodes were immersed in 3 wt. % NaCl solution. 

Linear sweep voltammetry for stainless steel mesh electrode in NaCl solution is presented in 

Figure 4. Black line of Figure 4 is the Tafel plot of non-annealed steel mesh in NaCl solution. 

Corrosion potential of non-annealed steel mesh was -0.39 V. The value of corrosion potential of 

500 °C and 700 °C annealed steel mesh (-0.39 V) was the same as that of non-annealed steel 

mesh. The main difference between annealed steel mesh (at 500 °C and 700 °C) and non-annealed 

steel mesh was pitting corrosion potential. Pitting corrosion (sudden anodic increase) of non-

annealed stainless was started at around +0.1 V (see black line of Figure 4). However, an anodic 

increase of annealed steel directly started after corrosion potential of -0.39 V. No passive 

behaviour of annealed stainless steel (at 500 °C and 700 °C) was observed. 
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        (a)                   (b)                     (c)                   (d) 

Figure 3:  

Images of a) polarized steel mesh annealed at 900 °C; b) polarized mesh in KOH; c) polarized 

mesh in NaCl and; d) polarized mesh in H2SO4  

As it was indicated before, surface coating of stainless steel after annealing is the mixture of 

iron oxide and chromium oxide. Corrosion current density of bare stainless steel (2.5 µA cm-2) 

was close to that of Fe2O3 and Cr2O3 coated stainless steel annealed at 500 °C and 700 °C. 

However, corrosion current density of (26 µA cm-2) was more than ten times greater than non-

annealed stainless steel (2.5 µA cm-2) due to coated Cr2O3 surface. The surface area of steel 

(Figure 3a) was increased when the steel was heated at 900 °C (see Figure 3c). The colour of 

homogenous electrolyte containing NaCl salt (left photo of Figure 4 inlet)  became brownish after 

polarization experiment (right photo of Figure 4 inlet)   given in Figure 4 because iron was 

oxidized to its ionic forms and dissolved in aqueous media.  
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Figure 4:  

Tafel plot of non-annealed and annealed steel mesh in 3 wt.% NaCl solution 
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The corrosion rate of steel in acidic medium is quite high and investigated in the literature 

(Biswas et al., 2018; Hassan et al., 2019; Saad et al., 2018) and generally, inhibitors have been 

suggested to decrease the corrosion rate of stainless steel. Stainless steel mesh electrodes were 

immersed in 1 M H2SO4 solution. Polarization of stainless steel mesh electrode in H2SO4 solution 

is presented in Figure 5. The Tafel plot of non-annealed steel mesh in H2SO4 solution is presented 

in Figure 5. Corrosion potential of non-annealed steel and 500 °C annealed steel mesh was the 

same (-0.40 V) in acidic medium. All corrosion potential of non-annealed and annealed (at a 

different temperature) is presented in Table 2. Corrosion characteristic of non-annealed and 500 

°C annealed steel mesh is the same as their current decrease at around -0.4 V is the same as iron 

dominates the corrosion behaviour of thin iron oxide solution. However, high annealed 

temperature cause a positive shift in potential value and a negative shift in current value indicating 

that electroactivity of 500 °C and 700 °C annealed steel meshes is lower than that of non-heated 

steel mesh. Corrosion current of non-annealed and 500 °C annealed steel started to decrease at 

around -0.3 V after Tafel area. However, corrosion current of 700 °C and 900 °C annealed steel 

mesh continued to increase. 
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Figure 5:  

Linear sweep polarization of non-annealed and annealed steel mesh in H2SO4 

4. CONCLUSION 

Stainless steel meshes were heated at 500 °C, 700 °C and 900 °C in a muffle furnace to obtain 

an oxidized surface. The surface of the non-annealed steel mesh became rougher after annealing. 

Increasing annealing temperature caused a darker surface. Steel meshes were transferred into the 

different electrolyte (acidic, alkaline and neutral) for corrosion studies. Corrosion behaviour of 

annealed stainless steel mesh was compared with that of non-annealed steel mesh. Corrosion 

current of annealed stainless steel increases in an alkaline electrolyte (1 M KOH) when annealing 

temperature of stainless steel mesh increases. The corrosion potential of stainless steel increased 

upon increasing the annealing temperature. Therefore, annealed stainless steel (oxidized form of 

iron) is more active than non-annealed stainless steel (iron) in alkaline electrolyte. 

Corrosion behaviour of stainless steel mesh electrodes was investigated in 3 wt.% NaCl 

electrolyte utilizing linear sweep voltammetry technique. The value of corrosion potential and 

corrosion current of non-annealed steel mesh was the same as that of 500 °C and 700 °C annealed 
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steel mesh but pitting corrosion potential of them are different. The colour of polarization 

electrolyte containing NaCl salt was changed to brownish after linear sweep voltammetry 

(corrosion) experiment. Corrosion behaviour (corrosion current and corrosion potential) of non-

annealed steel and 500 °C annealed steel mesh was the same in acidic medium. The potential and 

current value of stainless steel meshes obtained at high annealing temperature were shifted to 

more active sides. The research illustrates that heat-treated stainless steel (without surface 

removal) can be used in acidic media as corrosion behaviour of stainless steel has similar 

behaviour with and without heat treatment. However, corrosion susceptibility of heat-treated 

stainless steel is higher than non-heated stainless steel in alkaline and neutral environment. 
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