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Abstract

We define SP-iteration procedure associated with three selfmaps T1, T2, T3 defined on a nonempty convex
subset of a convex metric space X and prove ∆-convergence of this iteration procedure to a common fixed
point of T1, T2, T3 under the hypotheses that each Ti is either an α-nonexpansive map or a Suzuki nonex-
pansive map in the setting of uniformly convex metric spaces. Also, we prove the strong convergence of this
iteration procedure to a common fixed point of T1, T2, T3 under certain additional hypotheses namely either
semi-compact or condition (D).
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1. Introduction

In 1965, Browder [4] and Göhde [13] proved that every nonexpansive selfmap of a nonempty closed convex
and bounded subset of a uniformly convex Banach space has a fixed point. Browder and Petryshyn [5, 6],
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Senter and Dotson [19] used iteration procedures to approximate fixed points of nonexpansive maps in the
setting of Banach spaces.

In 1970, Takahashi [22] introduced the concept of convexity in metric spaces as follows.

Definition 1.1. Let (X, d) be a metric space. A map W : X × X × [0, 1] → X is said to be a ‘convex
structure’ on X if

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y) (1)

for x, y, u ∈ X and λ ∈ [0, 1].

By a convex metric space, we mean a metric space (X, d) together with a
convex structure W and we denote it by (X, d,W ).

Remark 1.2. Every normed linear space (X, ||.||) is a convex metric space. But there are convex metric
spaces which are not normed linear spaces [3, 16, 22].

A nonempty subset K of X is said to be ‘convex’ if W (x, y, λ) ∈ K for x, y ∈ K and λ ∈ [0, 1].
Das and Debata [7] studied the convergence of common fixed points of a pair of quasi nonexpansive maps

T1, T2 by using the following iteration procedure in the setting of Banach spaces under certain hypotheses.
Let X be a Banach space, K a nonempty convex subset of X, T1, T2 : K → K be selfmaps of K. For x1 ∈ K,

xn+1 = (1− αn)xn + αnT1(βnT2xn + (1− βn)xn) (2)

where αn, βn ∈ [0, 1] for n ∈ N, where N denote the set of all natural numbers.
Shimizu and Takahashi [20] introduced the notion of uniform convexity in convex metric spaces as follows.

Definition 1.3. [20] A convex metric space (X, d,W ) is said to be uniformly convex if for any ε > 0, there
exists α = α(ε) such that for all r > 0 and x, y, z ∈ X with d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε,

d(z,W (x, y,
1

2
)) ≤ r(1− α) < r.

Takahashi and Tamura [23] studied the weak convergence of the iteration procedure (2) when both T1
and T2 are nonexpansive maps in the setting of Banach spaces, provided 0 < a ≤ αn, βn ≤ b < 1 for n ∈ N.

Let T : K → K be a map and K, a nonempty subset of a metric space (X, d). We denote F (T ) = {x ∈
K : Tx = x}, the set of all fixed points of T .

A map T : K → K is said to be a quasi nonexpansive map if F (T ) 6= ∅ and d(Tx, p) ≤ d(x, p) for all
x ∈ K and p ∈ F (T ).

Suzuki [21] introduced a map with condition (C) in Banach spaces and under metric space setting it is as
follows. Let K be a nonempty subset of a metric space (X, d). A map T : K → K is said to satisfy condition
(C) if

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K. (3)

We call a map that satisfies condition (C), a Suzuki nonexpansive map. Aoyama and Kohsaka [1] introduced
α-nonexpansive maps in Banach spaces and under metric space setting it is as follows. Let K be a nonempty
subset of a metric space X. A map T : K → K is said to be an
α-nonexpansive map for some α < 1 if

d(Tx, Ty)2 ≤ αd(Tx, y)2 + αd(x, Ty)2 + (1− 2α)d(x, y)2 for x, y ∈ K. (4)

Aoyama and Kohsaka [1] observed the following facts :

(i) 0-nonexpansive map is called a nonexpansive map,
(ii) 1

2 -nonexpansive map is called a nonspreading map,
(iii) 1

3 -nonexpansive map is called a hybrid map.
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Remark 1.4. Either a Suzuki nonexpansive map or an α-nonexpansive map with a nonempty fixed point set
is a quasi nonexpansive map.

For any bounded sequence {xn} in a metric space (X, d), the asymptotic radius with respect to K ⊆ X
is defined by rK({xn}) = inf

x∈K
{r(x, {xn})}

where r(x, {xn})} = lim sup
n→∞

d(x, xn) and the asymptotic center of {xn} with respect to K is defined by

AK({xn}) = {y ∈ K : r(y, {xn}) = rK({xn})}.
A sequence {xn} in a metric space (X, d) is said to ∆−converges to a point x in X if x is the unique

asymptotic center for every subsequence {xnk
} of the sequence {xn}. In this case, we write ∆− lim

n→∞
xn = x.

A map T : K → K is said to be semi-compact if every bounded sequence {xn} inK with lim
n→∞

d(xn, Txn) =

0 has a convergent subsequence.
Dhompongsa, Inthakon and Takahashi [8] proved that the sequence {xn} generated by the iteration

procedure (2) converges weakly to a common fixed point of T1 and T2, where T1 is a nonspreading map and
T2 is a Suzuki nonexpansive map in the setting of Hilbert spaces, provided
lim inf
n→∞

αn(1− αn) > 0 and lim inf
n→∞

βn(1− βn) > 0.
In 2011, Phuengrattana and Suantai [18] introduced a three step iteration procedure namely SP-iteration

procedure to approximate fixed points of a continuous nondecreasing function defined on a closed interval on
the real line and proved that this iteration procedure converges faster than Mann iteration procedure [15],
Ishikawa iteration procedure [14] and Noor iteration procedure [17]. In the setting of normed linear spaces,
SP-iteration procedure is defined as follows.

Let K be a nonempty convex subset of a normed linear space X,
T : K → K be a selfmap of K and for any x0 ∈ K,

zn = (1− γn)xn + γnTxn
yn = (1− βn)zn + βnTzn
xn+1 = (1− αn)yn + αnTyn

(5)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].
In 2013, Wattanawitoon and Khamlae [25] considered the iteration procedure (2) to approximate common

fixed point of T1 and T2, where T1 is an α−nonexpansive map and T2 is a Suzuki nonexpansive map in the
setting of Hilbert spaces, provided 0 < a ≤ αn, βn ≤ b < 1.

Uddin and Imdad [24] studied ∆-convergence and strong convergence of SP-iteration procedure to com-
pute fixed points of Suzuki nonexpansive
mappings in Hadamard spaces.

Recently, Hafiz Fukhar-ud-din [11] considered one step iteration procedure and proved the following
convergence theorem in the setting of convex metric spaces.

Theorem 1.5. Let K be a nonempty, closed and convex subset of a complete and uniformly convex metric
space X with continuous convex structure W . Let T be an α-nonexpansive selfmap on K, S a selfmap of K
satisfying condition (C). For x1 ∈ K, define

xn+1 = W (Txn,W (Sxn, xn,
βn

1−αn
), αn) (6)

where 0 < a ≤ αn, βn ≤ b < 1 for n ∈ N .
Let F be the set of all common fixed points of S and T . If F 6= ∅ then ∆ − lim

n→∞
xn = x ∈ F . Moreover, if

either S or T is semi-compact then {xn} converges strongly to a point of F .

For more literature on this topic, we refer to [10, 12] and related references there in.
The following lemmas are useful in developing this paper.

Lemma 1.6. [21] Let T be a selfmap defined on a nonempty subset K of a metric space (X, d). If T satisfies
condition (C) then d(x, Ty) ≤ 3d(Tx, x) + d(x, y) for all x, y ∈ K.
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Lemma 1.7. [12] Let K be a nonempty, closed and convex subset of a metric space X and T be an α-
nonexpansive mapping on K. For any x, y ∈ K, the following two assertions hold:

(i) If 0 ≤ α < 1 then d(x, Ty)2 ≤ 1+α
1−αd(x, Tx)2 + 2

1−α{αd(x, y)

+ d(Tx, Ty)}d(x, Tx) + d(x, y)2.
(ii) If α < 0 then d(x, Ty)2 ≤ d(x, Tx)2 + 2

1−α{d(Tx, Ty)− αd(Tx, y)}
d(x, Tx) + d(x, y)2.

A sequence {xn}∞n=0 in a metric space (X, d) is said to be a Féjer monotone sequence with respect to a
subset C of X if d(xn+1, p) ≤ d(xn, p) for all p ∈ C and n ∈ N ∪ {0} .

For any subset A of a metric space (X, d) and x ∈ X, we denote
dist(x,A) = inf

y∈A
{d(x, y)}.

Lemma 1.8. [2] Let K be a nonempty closed subset of a complete metric space (X, d) and {xn} a Fej́er mono-
tone sequence with respect to K. Then {xn} converges to some point x ∈ K if and only if lim

n→∞
dist(xn,K) =

0.

Lemma 1.9. [9] Let K be a nonempty, closed and convex subset of a uniformly convex complete metric space
(X, d,W ). Then every bounded sequence {xn} in X has a unique asymptotic center with respect to K.

Lemma 1.10. [10] Let X be a uniformly convex metric space with continuous convex structure W . Let
x ∈ X and {an} be a sequence in [b, c] for some b, c ∈ (0, 1). If {un} and {vn} are sequences in X such
that lim sup

n→∞
d(un, x) ≤ r, lim sup

n→∞
d(vn, x) ≤ r and lim

n→∞
d(W (un, vn, an), x) = r for some r ≥ 0, then

lim
n→∞

d(un, vn) = 0.

Motivated by the works of Das and Debata [7], Takahashi and Tamura [23], Dhompongsa, Inthakon and
Takahashi [8], Wattanawitoon and Khamlae [25], Uddin and Imdad [24] and Hafiz Fukhar-ud-din [11], in this
paper, we define SP-iteration procedure associated with three selfmaps T1, T2, T3 in convex metric spaces
and prove the ∆-convergence of this iteration procedure to a common fixed point of T1, T2, T3 under the
hypotheses that each Ti is either an α-nonexpansive map or a Suzuki nonexpansive map. Further, with an
additional assumption that either any one of T1, T2, T3 is semi-compact or T1, T2, T3 satisfies condition (D),
we prove the strong convergence of this iteration procedure to a common fixed point of T1, T2 and T3.

2. Convergence of SP-iteration associated with three maps

Let (X, d,W ) be a convex metric space andK, a nonempty convex subset ofX. Let T1, T2, T3 : K → K
be three selfmaps ofK. A point x ∈ K is said to be a common fixed point of T1, T2, T3 if T1x = T2x = T3x = x.

We denote the set of all common fixed points of T1, T2, and T3 by F =
3⋂
i=1

F (Ti).

We define SP-iteration procedure associated with three selfmaps in the setting of convex metric spaces
as follows. Let K be a nonempty convex subset of a convex metric space X, and T1, T2, T3 : K → K be three
selfmaps. For x0 ∈ K,

zn = W (T1xn, xn, γn)
yn = W (T2zn, zn, βn)
xn+1 = W (T3yn, yn, αn)

(7)

where αn, βn, γn ∈ [0, 1] for n ∈ N ∪ {0}.

Lemma 2.1. Let K be a nonempty convex subset of a convex metric space (X, d,W ). Let T1, T2, T3 : K → K
be selfmaps of K such that F 6= ∅. Assume that each Ti is either an α-nonexpansive or a Suzuki nonexpansive
map. For any x0 ∈ K, let {xn}∞n=0 be the sequence generated by SP-iteration procedure associated with three
selfmaps (7). Then
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(i) {xn} is a Fej́er monotone sequence with respect to F ,
(ii) lim

n→∞
d(xn, p) exists for each p ∈ F , and

(iii) lim
n→∞

dist(xn, F ) exists.

Proof. Let p ∈ F and n ∈ N ∪ {0} . We consider
d(xn+1, p) = d(W (T3yn, yn, αn), p)

≤ αnd(T3yn, p) + (1− αn)d(yn, p)
≤ αnd(yn, p) + (1− αn)d(yn, p) (since T3 is quasi nonexpansive)

= d(yn, p). (8)

We now consider
d(yn, p) = d(W (T2zn, zn, βn), p)

≤ βnd(T2zn, p) + (1− βn)d(zn, p)
≤ βnd(zn, p) + (1− βn)d(zn, p) (since T2 is quasi nonexpansive)

= d(zn, p). (9)

Now, we consider
d(zn, p) = d(W (T1xn, xn, γn), p)

≤ γnd(T1xn, p) + (1− γn)d(xn, p)
≤ γnd(xn, p) + (1− γn)d(xn, p) (since T1 is quasi nonexpansive)

= d(xn, p) for n ∈ N ∪ {0} . (10)

Therefore from the inequalities (8), (9) and (10), we have

d(xn+1, p) ≤ d(xn, p) (11)

for all p ∈ F and n ∈ N ∪ {0}, that is, {xn} is a Féjer monotone sequence with respect to F .
We observe from the inequality (11) that the sequence {d(xn, p)}∞n=0 is a decreasing sequence of nonneg-

ative real numbers so that lim
n→∞

d(xn, p) exists for each p ∈ F .
By using the inequality (11), it is easy to see that dist(xn+1, F ) ≤ d(xn, p) for all p ∈ F so that

dist(xn+1, F ) ≤ dist(xn, F ) for n ∈ N ∪ {0} and hence lim
n→∞

dist(xn, F ) exists.

Lemma 2.2. Let K be a nonempty closed and convex subset of a uniformly convex metric space X with
continuous convex structure W . Let T1, T2, T3 : K → K be selfmaps and assume that each Ti is either an
α-nonexpansive map or a Suzuki nonexpansive map. Assume that F 6= ∅. Let αn, βn, γn ∈ [a, b] ⊆ (0, 1) for
n ∈ N∪{0}. For any x0 ∈ K, let {xn}∞n=0 be the sequence generated by the SP-iteration procedure associated
with three selfmaps (7). Then lim

n→∞
d(xn, Tixn) = 0 for i = 1, 2, 3.

Proof. It follows from (ii) of Lemma 2.1 that for each p ∈ F , there exists c ≥ 0 such that

lim
n→∞

d(xn, p) = c.

Therefore from the inequalities (8), (9) and (10), we have
d(xn+1, p) ≤ d(yn, p) ≤ d(zn, p) ≤ d(xn, p) and hence

lim
n→∞

d(yn, p) = c, and lim
n→∞

d(zn, p) = c.

Since lim
n→∞

d(zn, p) = c, we have lim
n→∞

d(W (T1xn, xn, γn), p) = c.
Since T1 is a quasi nonexpansive map, we have
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lim sup
n→∞

d(T1xn, p) ≤ lim sup
n→∞

d(xn, p) = c.

Now by applying Lemma 1.10, we have

lim
n→∞

d(xn, T1xn) = 0. (12)

We consider
d(zn, xn) = d(W (T1xn, xn, γn), xn) ≤ γn d(T1xn, xn) ≤ b d(T1xn, xn).
On letting n→∞, we have

lim
n→∞

d(zn, xn) = 0. (13)

Since lim
n→∞

d(yn, p) = c, we have lim
n→∞

d(W (T2zn, zn, βn), p) = c.
Since T2 is a quasi nonexpansive map, we have
lim sup
n→∞

d(T2zn, p) ≤ lim sup
n→∞

d(zn, p) = c.

Therefore by Lemma 1.10, we have
lim
n→∞

d(zn, T2zn) = 0. (14)

We consider
d(yn, xn) = d(W (T2zn, zn, βn), xn)

≤ βnd(T2zn, xn) + (1− βn)d(zn, xn)
≤ βnd(T2zn, zn) + d(zn, xn) for n ∈ N ∪ {0}.

Now, on letting n→∞ it follows from (13) and (14) that

lim
n→∞

d(yn, xn) = 0. (15)

Since lim
n→∞

d(xn+1, p) = c, we have lim
n→∞

d(W (T3yn, yn, αn), p) = c.
Since T3 is a quasi nonexpansive map, we have
lim sup
n→∞

d(T3yn, p) ≤ lim sup
n→∞

d(yn, p) = c.

Again by Lemma 1.10, we have
lim
n→∞

d(yn, T3yn) = 0. (16)

Now, we prove lim
n→∞

d(xn, Tixn) = 0 for i = 2, 3 by considering the following cases.
Case (i) : T2 is a Suzuki nonexpansive map.
By using triangle inequality and Lemma 1.6, it is easy to see that
d(xn, T2xn) ≤ d(xn, zn) + d(zn, T2xn)

= 2d(zn, xn) + 3d(zn, T2zn) for n ∈ N ∪ {0}.
Therefore it follows from (13) and (14) that lim

n→∞
d(xn, T2xn) = 0.

Case (ii) : T2 is an α-nonexpansive map for 0 ≤ α < 1.
By (i) of Lemma 1.7, we have
d(zn, T2xn)2 ≤ 1+α

1−αd(zn, T2zn)2 + 2
1−α{αd(zn, xn) +A}d(zn, T2zn) + d(zn, xn)2

where A = sup{d(T2zn, T2xn) : n ∈ N ∪ {0}}.
On letting n→∞, it follows from (13) and (14) that lim

n→∞
d(zn, T2xn) = 0.

Now by using the triangle inequality, it follows that lim
n→∞

d(xn, T2xn) = 0.
Case (iii) : T2 is an α-nonexpansive map for α < 0.
By (ii) of Lemma 1.7, we have
d(zn, T2xn)2 ≤ d(zn, T2zn)2 + 2

1−α{d(T2zn, T2xn)− αd(T2zn, xn)}d(zn, T2zn)

+ d(zn, xn)2

≤ d(zn, T2zn)2 + 2
1−α{A− αd(T2zn, zn)− αd(zn, xn)}d(zn, T2zn)

+ d(zn, xn)2

where A is defined as in case (ii).
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On letting n→∞, it is easy to see from (13) and (14) that
lim
n→∞

d(zn, T2xn) = 0 and hence lim
n→∞

d(xn, T2xn) = 0.
Case (iv) : T3 is either a Suzuki nonexpansive map or an α-nonexpansive map for α < 1.
By proceeding as in the above cases, it follows from (15) and (16) that
lim
n→∞

d(xn, T3xn) = 0.

Theorem 2.3. Let K be a nonempty, closed and convex subset of a complete and uniformly convex metric
space X with continuous convex structure W . Let T1, T2, T3 : K → K be three selfmaps of K such that
each Ti is either an α-nonexpansive map or a Suzuki nonexpansive map. Assume that F 6= ∅ and let
αn, βn, γn ∈ [a, b] ⊆ (0, 1) for n ∈ N ∪ {0}. For any x0 ∈ K, let {xn} be the sequence generated by SP-
iteration procedure associated with three selfmaps (7). Then there exists x ∈ F such that ∆− limn xn = x.

Proof. By Lemma 2.1, we have {xn} is bounded. Therefore by Lemma 1.9, the sequence {xn} has a unique
asymptotic center with respect to K, i. e., AK({xn}) = {x} for some x ∈ K. Similarly, if {xnk

} is a
subsequence of the sequence {xn} then there exists u ∈ K such that AK({xnk

}) = {u}.
We substitute x = xn and y = x in Lemma 1.6 if Ti a Suzuki nonexpansive map, and in Lemma 1.7

if Ti is an α-nonexpansive map through which it follows that lim sup
n→∞

d(xn, Tix) ≤ lim sup
n→∞

d(xn, x) so that

rK({xn}) = lim sup
n→∞

d(xn, Tix) for i = 1, 2, 3. Therefore Tix ∈ AK({xn}) = {x} for i = 1, 2, 3 so that x ∈ F .
Similarly, we have u ∈ F .

Now, we prove that x = u. On the contrary, let x 6= u.
Since u ∈ F , it follows from Lemma 2.1 that lim

n→∞
d(xn, u) exists.

Now, we consider
lim sup
k→∞

d(xnk
, u) < lim sup

k→∞
d(xnk

, x) (since AK({xnk
}) = {u})

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u) (since AK({xn}) = {x})

= lim
n→∞

d(xn, u) = lim
k→∞

d(xnk
, u) = lim sup

k→∞
d(xnk

, u),

a contradiction.
Therefore AK({xnk

}) = {x} for every subsequence {xnk
} of the sequence {xn}, that is, ∆− lim

n→∞
xn = x.

Theorem 2.4. Under the hypotheses of Theorem 2.3, if any one of T1, T2, or T3 is semi-compact then for
x0 ∈ K, the sequence {xn} generated by SP-iteration procedure (7) associated with three selfmaps converges
strongly to a common fixed point of T1, T2, and T3.

Proof. Let Ti be semi-compact for some i = 1, 2, 3.
Now by Lemma 2.1 and Lemma 2.2, we have the sequence {xn} is bounded and lim

n→∞
d(xn, Tixn) = 0. Since

Ti is semi-compact, the sequence {xn} has a subsequence {xnk
} such that lim

k→∞
d(xnk

, x) = 0 for some x ∈ K.
Now we prove that x ∈ F .

Case (i) : Tj is a Suzuki nonexpansive map for j = 1, 2, 3.
By using Lemma 1.6, we have d(xnk

, Tjx) ≤ 3d(xnk
, Tjxnk

) + d(xnk
, x) for all k so that lim

k→∞
d(xnk

, Tjx) = 0

and hence x ∈ F (Tj).
Case (ii) : Tj is an α-nonexpansive map for 0 ≤ α < 1 and j = 1, 2, 3.
By Lemma 1.7, we have
d(xnk

, Tjx)2 ≤ 1+α
1−αd(xnk

, Tjxnk
)2 + 2

1−α{αd(xnk
, x) + d(Tjxnk

, Tjx)}
d(xnk

, Tjxnk
) + d(xnk

, x)2

≤ 1+α
1−αd(xnk

, Tjxnk
)2 + 2

1−α{αd(xnk
, x) + d(Tjxnk

, xnk
)

+ d(xnk
, Tjx)}d(xnk

, Tjxnk
) + d(xnk

, x)2.
On letting k →∞, we have lim

k→∞
d(xnk

, Tjx) = 0 and hence x ∈ F (Tj).
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Case (iii) : Tj is an α-nonexpansive map for α < 0 and j = 1, 2, 3.
By proceeding as in case (ii), it follows from Lemma 1.7 that x ∈ F (Tj).
Hence by considering all the above cases, we have x ∈ F .

Therefore by Lemma 2.1, we have lim
n→∞

d(xn, x) exists and hence the
sequence {xn} converges strongly to a point x ∈ F .

We say that three selfmaps T1, T2, T3 : K → K are said to satisfy condition (D) with respect to a subset
C of K if there exists a nondecreasing fuction f : [0,∞) → [0,∞) with f(0) = 0 and f(t) > 0 for all t > 0
such that

f(dist(x,C)) ≤
3∑
i=1

d(x, Tix) for all x ∈ K. (17)

Theorem 2.5. Under the hypotheses of Theorem 2.3, if T1, T2, and T3 satisfy condition (D) with respect to
F then the sequence {xn}∞n=0 generated by SP-iteration procedure (7) associated with three selfmaps converges
strongly to a common fixed point of T1, T2, and T3.

Proof. By Lemma 2.2, we have lim
n→∞

d(xn, Tixn) = 0 for i = 1, 2, 3 so that

lim
n→∞

3∑
i=1

d(xn, Tixn) = 0. Therefore from the inequality (17), we have

lim
n→∞

f(dist(xn, F )) = 0.
We now prove that lim

n→∞
dist(xn, F ) = 0. On the contrary,

if lim
n→∞

dist(xn, F ) 6= 0 then there exist an ε > 0 and a subsequence {xnk
} of the sequence {xn} such that

dist(xnk
, F ) ≥ ε for all k.

Therefore f(dist(xnk
, F )) ≥ f(ε) > 0 for all k so that

lim
n→∞

f(dist(xn, F )) 6= 0,
a contradiction.

Therefore lim
n→∞

dist(xn, F ) = 0.

By Lemma 2.1, we have the sequence {xn} is a Féjer monotone sequence with respect to F . Since T1, T2
and T3 are quasi nonexpansive maps, we have F is closed. Therefore by using Lemma 1.8, we have the
sequence {xn} converges strongly to a point of F .

By choosing α = 1
2 or α = 1

3 in Theorem 2.3, Theorem 2.4 and
Theorem 2.5, we have the following corollary.

Corollary 2.6. Let K be a nonempty, closed and convex subset of a complete and uniformly convex metric
space X with continuous convex structure W . Let T1, T2, T3 : K → K be three selfmaps of K such that
each Ti is a nonspreading map, a hybrid map, or a Suzuki nonexpansive map. Assume that F 6= ∅. Let
αn, βn, γn ∈ [a, b] ⊆ (0, 1) for n ∈ N ∪ {0}. For any x0 ∈ K, let {xn} be the sequence generated by SP-
iteration procedure (7) associated with three selfmaps. Then

(a) there exists x ∈ F such that ∆− limn xn = x,
(b) if any one of T1, T2 and T3 is semi-compact then {xn} converges strongly to a common fixed point of

T1, T2, T3, and
(c) if T1, T2, and T3 satisfy condition (D) with respect to F then the sequence {xn}∞n=0 converges strongly

to a common fixed point of T1, T2, and T3.
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