Advances in the Theory of Nonlinear Analysis and its Applications 4 (2020) No. 2, 112–120. https://doi.org/10.31197/atnaa.649269 Available online at www.atnaa.org Research Article



# Iterative approximation of common fixed points of generalized nonexpansive maps in convex metric spaces

Venkata Ravindranadh Babu Gutti<sup>a</sup>, Satyanarayana Gedala<sup>b</sup>

<sup>a</sup>Department of Mathematics, Andhra University, Visakhapatnam-530 003, India. <sup>b</sup>Present address: Department of Mathematics, Andhra University, Visakhapatnam-530 003, India. Permanent address: Department of Mathematics, Dr. Lankapalli Bullayya college, Visakhapatnam-530 013, India.

# Abstract

We define SP-iteration procedure associated with three selfmaps  $T_1, T_2, T_3$  defined on a nonempty convex subset of a convex metric space X and prove  $\Delta$ -convergence of this iteration procedure to a common fixed point of  $T_1, T_2, T_3$  under the hypotheses that each  $T_i$  is either an  $\alpha$ -nonexpansive map or a Suzuki nonexpansive map in the setting of uniformly convex metric spaces. Also, we prove the strong convergence of this iteration procedure to a common fixed point of  $T_1, T_2, T_3$  under certain additional hypotheses namely either semi-compact or condition (D).

Keywords: SP-iteration procedure,  $\alpha$ -nonexpansive map,

Suzuki nonexpansive map, common fixed point,  $\Delta$ -convergence, strong convergence, uniformly convex metric space.

2010 MSC: 47H10, 54H25.

# 1. Introduction

In 1965, Browder [4] and Göhde [13] proved that every nonexpansive selfmap of a nonempty closed convex and bounded subset of a uniformly convex Banach space has a fixed point. Browder and Petryshyn [5, 6],

*Email addresses:* gvr\_babu@hotmail.com (Venkata Ravindranadh Babu Gutti), gedalasatyam@gmail.com (Satyanarayana Gedala)

Received Nov. 20, 2019, Accepted: April 24, 2020, Online: April 26, 2020.

Senter and Dotson [19] used iteration procedures to approximate fixed points of nonexpansive maps in the setting of Banach spaces.

In 1970, Takahashi [22] introduced the concept of convexity in metric spaces as follows.

**Definition 1.1.** Let (X,d) be a metric space. A map  $W : X \times X \times [0,1] \to X$  is said to be a 'convex structure' on X if

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y) \tag{1}$$

for  $x, y, u \in X$  and  $\lambda \in [0, 1]$ .

By a convex metric space, we mean a metric space (X, d) together with a convex structure W and we denote it by (X, d, W).

**Remark 1.2.** Every normed linear space (X, ||.||) is a convex metric space. But there are convex metric spaces which are not normed linear spaces [3, 16, 22].

A nonempty subset K of X is said to be 'convex' if  $W(x, y, \lambda) \in K$  for  $x, y \in K$  and  $\lambda \in [0, 1]$ .

Das and Debata [7] studied the convergence of common fixed points of a pair of quasi nonexpansive maps  $T_1, T_2$  by using the following iteration procedure in the setting of Banach spaces under certain hypotheses. Let X be a Banach space, K a nonempty convex subset of  $X, T_1, T_2 : K \to K$  be selfmaps of K. For  $x_1 \in K$ ,

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T_1(\beta_n T_2 x_n + (1 - \beta_n)x_n)$$
(2)

where  $\alpha_n, \beta_n \in [0, 1]$  for  $n \in \mathbb{N}$ , where  $\mathbb{N}$  denote the set of all natural numbers.

Shimizu and Takahashi [20] introduced the notion of uniform convexity in convex metric spaces as follows.

**Definition 1.3.** [20] A convex metric space (X, d, W) is said to be uniformly convex if for any  $\epsilon > 0$ , there exists  $\alpha = \alpha(\epsilon)$  such that for all r > 0 and  $x, y, z \in X$  with  $d(z, x) \leq r$ ,  $d(z, y) \leq r$  and  $d(x, y) \geq r\epsilon$ ,

$$d(z, W(x, y, \frac{1}{2})) \le r(1 - \alpha) < r.$$

Takahashi and Tamura [23] studied the weak convergence of the iteration procedure (2) when both  $T_1$ and  $T_2$  are nonexpansive maps in the setting of Banach spaces, provided  $0 < a \leq \alpha_n, \beta_n \leq b < 1$  for  $n \in \mathbb{N}$ .

Let  $T: K \to K$  be a map and K, a nonempty subset of a metric space (X, d). We denote  $F(T) = \{x \in K : Tx = x\}$ , the set of all fixed points of T.

A map  $T: K \to K$  is said to be a quasi nonexpansive map if  $F(T) \neq \emptyset$  and  $d(Tx, p) \leq d(x, p)$  for all  $x \in K$  and  $p \in F(T)$ .

Suzuki [21] introduced a map with condition (C) in Banach spaces and under metric space setting it is as follows. Let K be a nonempty subset of a metric space (X, d). A map  $T : K \to K$  is said to satisfy condition (C) if

$$\frac{1}{2}d(x,Tx) \le d(x,y) \quad implies \quad d(Tx,Ty) \le d(x,y) \quad for \quad all \quad x,y \in K.$$
(3)

We call a map that satisfies condition (C), a Suzuki nonexpansive map. Aoyama and Kohsaka [1] introduced  $\alpha$ -nonexpansive maps in Banach spaces and under metric space setting it is as follows. Let K be a nonempty subset of a metric space X. A map  $T: K \to K$  is said to be an  $\alpha$ -nonexpansive map for some  $\alpha < 1$  if

$$d(Tx, Ty)^{2} \leq \alpha d(Tx, y)^{2} + \alpha d(x, Ty)^{2} + (1 - 2\alpha)d(x, y)^{2} \quad for \ x, y \in K.$$
(4)

Aoyama and Kohsaka [1] observed the following facts :

- (i) 0-nonexpansive map is called a nonexpansive map,
- (ii)  $\frac{1}{2}$ -nonexpansive map is called a nonspreading map,
- (iii)  $\frac{1}{3}$ -nonexpansive map is called a hybrid map.

**Remark 1.4.** Either a Suzuki nonexpansive map or an  $\alpha$ -nonexpansive map with a nonempty fixed point set is a quasi nonexpansive map.

For any bounded sequence  $\{x_n\}$  in a metric space (X, d), the asymptotic radius with respect to  $K \subseteq X$ is defined by  $r_K(\{x_n\}) = \inf_{x \in K} \{r(x, \{x_n\})\}$ 

where  $r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n)$  and the asymptotic center of  $\{x_n\}$  with respect to K is defined by  $A_K(\{x_n\}) = \{y \in K : r(y, \{x_n\}) = r_K(\{x_n\})\}.$ 

A sequence  $\{x_n\}$  in a metric space (X, d) is said to  $\Delta$ -converges to a point x in X if x is the unique asymptotic center for every subsequence  $\{x_{n_k}\}$  of the sequence  $\{x_n\}$ . In this case, we write  $\Delta - \lim_{n \to \infty} x_n = x$ . A map  $T: K \to K$  is said to be *semi-compact* if every bounded sequence  $\{x_n\}$  in K with  $\lim_{n \to \infty} d(x_n, Tx_n) =$ 

0 has a convergent subsequence.

Dhompongsa, Inthakon and Takahashi [8] proved that the sequence  $\{x_n\}$  generated by the iteration procedure (2) converges weakly to a common fixed point of  $T_1$  and  $T_2$ , where  $T_1$  is a nonspreading map and  $T_2$  is a Suzuki nonexpansive map in the setting of Hilbert spaces, provided

 $\liminf_{n \to \infty} \alpha_n(1 - \alpha_n) > 0 \text{ and } \liminf_{n \to \infty} \beta_n(1 - \beta_n) > 0.$ 

 $_{\rightarrow\infty}^{n\rightarrow\infty}$  In 2011, Phuengrattana and Suantai [18] introduced a three step iteration procedure namely SP-iteration procedure to approximate fixed points of a continuous nondecreasing function defined on a closed interval on the real line and proved that this iteration procedure converges faster than Mann iteration procedure [15], Ishikawa iteration procedure [14] and Noor iteration procedure [17]. In the setting of normed linear spaces, SP-iteration procedure is defined as follows.

Let K be a nonempty convex subset of a normed linear space X,  $T: K \to K$  be a selfmap of K and for any  $x_0 \in K$ ,

$$z_n = (1 - \gamma_n) x_n + \gamma_n T x_n$$
  

$$y_n = (1 - \beta_n) z_n + \beta_n T z_n$$
  

$$x_{n+1} = (1 - \alpha_n) y_n + \alpha_n T y_n$$
(5)

where  $\{\alpha_n\}_{n=0}^{\infty}$ ,  $\{\beta_n\}_{n=0}^{\infty}$  and  $\{\gamma_n\}_{n=0}^{\infty}$  are sequences in [0, 1].

In 2013, Wattanawitoon and Khamlae [25] considered the iteration procedure (2) to approximate common fixed point of  $T_1$  and  $T_2$ , where  $T_1$  is an  $\alpha$ -nonexpansive map and  $T_2$  is a Suzuki nonexpansive map in the setting of Hilbert spaces, provided  $0 < a \leq \alpha_n, \beta_n \leq b < 1$ .

Uddin and Imdad [24] studied  $\Delta$ -convergence and strong convergence of SP-iteration procedure to compute fixed points of Suzuki nonexpansive

mappings in Hadamard spaces.

Recently, Hafiz Fukhar-ud-din [11] considered one step iteration procedure and proved the following convergence theorem in the setting of convex metric spaces.

**Theorem 1.5.** Let K be a nonempty, closed and convex subset of a complete and uniformly convex metric space X with continuous convex structure W. Let T be an  $\alpha$ -nonexpansive selfmap on K, S a selfmap of K satisfying condition (C). For  $x_1 \in K$ , define

$$x_{n+1} = W(Tx_n, W(Sx_n, x_n, \frac{\beta_n}{1-\alpha_n}), \alpha_n)$$
(6)

where  $0 < a \leq \alpha_n, \beta_n \leq b < 1$  for  $n \in \mathbb{N}$ .

Let F be the set of all common fixed points of S and T. If  $F \neq \emptyset$  then  $\Delta - \lim_{n \to \infty} x_n = x \in F$ . Moreover, if either S or T is semi-compact then  $\{x_n\}$  converges strongly to a point of F.

For more literature on this topic, we refer to [10, 12] and related references there in.

The following lemmas are useful in developing this paper.

**Lemma 1.6.** [21] Let T be a selfmap defined on a nonempty subset K of a metric space (X, d). If T satisfies condition (C) then  $d(x,Ty) \leq 3d(Tx,x) + d(x,y)$  for all  $x, y \in K$ .

(i) If 
$$0 \le \alpha < 1$$
 then  $d(x, Ty)^2 \le \frac{1+\alpha}{1-\alpha} d(x, Tx)^2 + \frac{2}{1-\alpha} \{\alpha d(x, y) + d(Tx, Ty)\} d(x, Tx) + d(x, y)^2$ .  
(ii) If  $\alpha < 0$  then  $d(x, Ty)^2 \le d(x, Tx)^2 + \frac{2}{1-\alpha} \{d(Tx, Ty) - \alpha d(Tx, y)\} d(x, Tx) + d(x, y)^2$ .

A sequence  $\{x_n\}_{n=0}^{\infty}$  in a metric space (X, d) is said to be a Fejer monotone sequence with respect to a subset C of X if  $d(x_{n+1}, p) \leq d(x_n, p)$  for all  $p \in C$  and  $n \in \mathbb{N} \cup \{0\}$ .

For any subset A of a metric space (X, d) and  $x \in X$ , we denote  $dist(x,A) = \inf_{y \in A} \{ d(x,y) \}.$ 

**Lemma 1.8.** [2] Let K be a nonempty closed subset of a complete metric space (X, d) and  $\{x_n\}$  a Fejer monotone sequence with respect to K. Then  $\{x_n\}$  converges to some point  $x \in K$  if and only if  $\lim_{n \to \infty} dist(x_n, K) =$ 0.

**Lemma 1.9.** [9] Let K be a nonempty, closed and convex subset of a uniformly convex complete metric space (X, d, W). Then every bounded sequence  $\{x_n\}$  in X has a unique asymptotic center with respect to K.

**Lemma 1.10.** [10] Let X be a uniformly convex metric space with continuous convex structure W. Let  $x \in X$  and  $\{a_n\}$  be a sequence in [b,c] for some  $b,c \in (0,1)$ . If  $\{u_n\}$  and  $\{v_n\}$  are sequences in X such that  $\limsup_{n \to \infty} d(u_n, x) \leq r$ ,  $\limsup_{n \to \infty} d(v_n, x) \leq r$  and  $\lim_{n \to \infty} d(W(u_n, v_n, a_n), x) = r$  for some  $r \geq 0$ , then  $\lim d(u_n, v_n) = 0.$ 

Motivated by the works of Das and Debata [7], Takahashi and Tamura [23], Dhompongsa, Inthakon and Takahashi [8], Wattanawitoon and Khamlae [25], Uddin and Imdad [24] and Hafiz Fukhar-ud-din [11], in this paper, we define SP-iteration procedure associated with three selfmaps  $T_1, T_2, T_3$  in convex metric spaces and prove the  $\Delta$ -convergence of this iteration procedure to a common fixed point of  $T_1, T_2, T_3$  under the hypotheses that each  $T_i$  is either an  $\alpha$ -nonexpansive map or a Suzuki nonexpansive map. Further, with an additional assumption that either any one of  $T_1, T_2, T_3$  is semi-compact or  $T_1, T_2, T_3$  satisfies condition (D), we prove the strong convergence of this iteration procedure to a common fixed point of  $T_1, T_2$  and  $T_3$ .

# 2. Convergence of SP-iteration associated with three maps

Let (X, d, W) be a convex metric space and K, a nonempty convex subset of X. Let  $T_1, T_2, T_3 : K \to K$ be three selfmaps of K. A point  $x \in K$  is said to be a common fixed point of  $T_1, T_2, T_3$  if  $T_1x = T_2x = T_3x = x$ . We denote the set of all common fixed points of  $T_1, T_2$ , and  $T_3$  by  $F = \bigcap_{i=1}^{3} F(T_i)$ .

We define SP-iteration procedure associated with three selfmaps in the setting of convex metric spaces as follows. Let K be a nonempty convex subset of a convex metric space X, and  $T_1, T_2, T_3: K \to K$  be three selfmaps. For  $x_0 \in K$ ,

$$z_n = W(T_1 x_n, x_n, \gamma_n)$$
  

$$y_n = W(T_2 z_n, z_n, \beta_n)$$
  

$$x_{n+1} = W(T_3 y_n, y_n, \alpha_n)$$
(7)

where  $\alpha_n, \beta_n, \gamma_n \in [0, 1]$  for  $n \in \mathbb{N} \cup \{0\}$ .

**Lemma 2.1.** Let K be a nonempty convex subset of a convex metric space (X, d, W). Let  $T_1, T_2, T_3 : K \to K$ be selfmaps of K such that  $F \neq \emptyset$ . Assume that each  $T_i$  is either an  $\alpha$ -nonexpansive or a Suzuki nonexpansive map. For any  $x_0 \in K$ , let  $\{x_n\}_{n=0}^{\infty}$  be the sequence generated by SP-iteration procedure associated with three selfmaps (7). Then

- (i)  $\{x_n\}$  is a Fejer monotone sequence with respect to F,
- (ii)  $\lim_{n \to \infty} d(x_n, p)$  exists for each  $p \in F$ , and
- (iii)  $\lim_{n \to \infty} dist(x_n, F)$  exists.

Proof. Let  $p \in F$  and  $n \in \mathbb{N} \cup \{0\}$ . We consider  $d(x_{n+1}, p) = d(W(T_3y_n, y_n, \alpha_n), p)$   $\leq \alpha_n d(T_3y_n, p) + (1 - \alpha_n) d(y_n, p)$  $\leq \alpha_n d(y_n, p) + (1 - \alpha_n) d(y_n, p)$  (since  $T_3$  is quasi nonexpansive)

$$=d(y_n,p).$$
(8)

We now consider

 $d(y_n, p) = d(W(T_2z_n, z_n, \beta_n), p)$   $\leq \beta_n d(T_2z_n, p) + (1 - \beta_n)d(z_n, p)$  $\leq \beta_n d(z_n, p) + (1 - \beta_n)d(z_n, p) \text{ (since } T_2 \text{ is quasi nonexpansive)}$ 

$$=d(z_n,p). (9)$$

Now, we consider

 $d(z_n, p) = d(W(T_1x_n, x_n, \gamma_n), p)$   $\leq \gamma_n d(T_1x_n, p) + (1 - \gamma_n)d(x_n, p)$   $\leq \gamma_n d(x_n, p) + (1 - \gamma_n)d(x_n, p) \text{ (since } T_1 \text{ is quasi nonexpansive)}$  $= d(x_n, p) \text{ for } n \in \mathbb{N} \cup \{0\}$ 

$$= d(x_n, p) \text{ for } n \in \mathbb{N} \cup \{0\} .$$

$$\tag{10}$$

Therefore from the inequalities (8), (9) and (10), we have

$$d(x_{n+1}, p) \le d(x_n, p) \tag{11}$$

for all  $p \in F$  and  $n \in \mathbb{N} \cup \{0\}$ , that is,  $\{x_n\}$  is a Fejer monotone sequence with respect to F.

We observe from the inequality (11) that the sequence  $\{d(x_n, p)\}_{n=0}^{\infty}$  is a decreasing sequence of nonnegative real numbers so that  $\lim_{n\to\infty} d(x_n, p)$  exists for each  $p \in F$ .

By using the inequality (11), it is easy to see that  $dist(x_{n+1}, F) \leq d(x_n, p)$  for all  $p \in F$  so that  $dist(x_{n+1}, F) \leq dist(x_n, F)$  for  $n \in \mathbb{N} \cup \{0\}$  and hence  $\lim_{n \to \infty} dist(x_n, F)$  exists.

**Lemma 2.2.** Let K be a nonempty closed and convex subset of a uniformly convex metric space X with continuous convex structure W. Let  $T_1, T_2, T_3 : K \to K$  be selfmaps and assume that each  $T_i$  is either an  $\alpha$ -nonexpansive map or a Suzuki nonexpansive map. Assume that  $F \neq \emptyset$ . Let  $\alpha_n, \beta_n, \gamma_n \in [a,b] \subseteq (0,1)$  for  $n \in \mathbb{N} \cup \{0\}$ . For any  $x_0 \in K$ , let  $\{x_n\}_{n=0}^{\infty}$  be the sequence generated by the SP-iteration procedure associated with three selfmaps (7). Then  $\lim_{n \to \infty} d(x_n, T_i x_n) = 0$  for i = 1, 2, 3.

*Proof.* It follows from (ii) of Lemma 2.1 that for each  $p \in F$ , there exists  $c \ge 0$  such that

$$\lim_{n \to \infty} d(x_n, p) = c$$

Therefore from the inequalities (8), (9) and (10), we have  $d(x_{n+1}, p) \leq d(y_n, p) \leq d(z_n, p) \leq d(x_n, p)$  and hence

$$\lim_{n \to \infty} d(y_n, p) = c, \text{ and } \lim_{n \to \infty} d(z_n, p) = c.$$

Since  $\lim_{n\to\infty} d(z_n, p) = c$ , we have  $\lim_{n\to\infty} d(W(T_1x_n, x_n, \gamma_n), p) = c$ . Since  $T_1$  is a quasi nonexpansive map, we have  $\limsup_{n \to \infty} d(T_1 x_n, p) \le \limsup_{n \to \infty} d(x_n, p) = c.$ Now by applying Lemma 1.10, we have

$$\lim_{n \to \infty} d(x_n, T_1 x_n) = 0. \tag{12}$$

We consider

 $d(z_n, x_n) = d(W(T_1x_n, x_n, \gamma_n), x_n) \le \gamma_n \ d(T_1x_n, x_n) \le b \ d(T_1x_n, x_n).$ On letting  $n \to \infty$ , we have

$$\lim_{n \to \infty} d(z_n, x_n) = 0. \tag{13}$$

Since  $\lim_{n\to\infty} d(y_n, p) = c$ , we have  $\lim_{n\to\infty} d(W(T_2z_n, z_n, \beta_n), p) = c$ . Since  $T_2$  is a quasi nonexpansive map, we have  $\limsup_{n\to\infty} d(T_2z_n, p) \leq \limsup_{n\to\infty} d(z_n, p) = c$ . Therefore by Lemma 1.10, we have

$$\lim_{n \to \infty} d(z_n, T_2 z_n) = 0. \tag{14}$$

We consider

 $d(y_n, x_n) = d(W(T_2 z_n, z_n, \beta_n), x_n)$   $\leq \beta_n d(T_2 z_n, x_n) + (1 - \beta_n) d(z_n, x_n)$   $\leq \beta_n d(T_2 z_n, z_n) + d(z_n, x_n) \text{ for } n \in \mathbb{N} \cup \{0\}.$ Now, on letting  $n \to \infty$  it follows from (13) and (14) that

$$\lim_{n \to \infty} d(y_n, x_n) = 0.$$
(15)

Since  $\lim_{n \to \infty} d(x_{n+1}, p) = c$ , we have  $\lim_{n \to \infty} d(W(T_3y_n, y_n, \alpha_n), p) = c$ . Since  $T_3$  is a quasi nonexpansive map, we have  $\limsup_{n \to \infty} d(T_3y_n, p) \leq \limsup_{n \to \infty} d(y_n, p) = c$ . Again by Lemma 1.10, we have

$$\lim_{n \to \infty} d(y_n, T_3 y_n) = 0. \tag{16}$$

Now, we prove  $\lim_{n\to\infty} d(x_n, T_i x_n) = 0$  for i = 2, 3 by considering the following cases. Case  $(i): T_2$  is a Suzuki nonexpansive map.

 $\begin{array}{l} \begin{array}{l} \hline Case~(i): 1_2 \text{ is a Suzuki nonexpansive map.} \\ \hline \text{By using triangle inequality and Lemma 1.6, it is easy to see that} \\ d(x_n, T_2x_n) \leq d(x_n, z_n) + d(z_n, T_2x_n) \\ &= 2d(z_n, x_n) + 3d(z_n, T_2z_n) \text{ for } n \in \mathbb{N} \cup \{0\}. \\ \hline \text{Therefore it follows from (13) and (14) that } \lim_{n \to \infty} d(x_n, T_2x_n) = 0. \\ \hline Case~(ii): T_2 \text{ is an } \alpha \text{-nonexpansive map for } 0 \leq \alpha < 1. \\ \hline \text{By (i) of Lemma 1.7, we have} \\ d(z_n, T_2x_n)^2 \leq \frac{1+\alpha}{1-\alpha}d(z_n, T_2z_n)^2 + \frac{2}{1-\alpha}\{\alpha d(z_n, x_n) + A\}d(z_n, T_2z_n) + d(z_n, x_n)^2 \\ \text{where } A = \sup\{d(T_2z_n, T_2x_n): n \in \mathbb{N} \cup \{0\}\}. \\ \hline \text{On letting } n \to \infty, \text{ it follows from (13) and (14) that } \lim_{n \to \infty} d(x_n, T_2x_n) = 0. \\ \hline \text{Now by using the triangle inequality, it follows that } \lim_{n \to \infty} d(x_n, T_2x_n) = 0. \\ \hline \text{By (ii) of Lemma 1.7, we have} \\ d(z_n, T_2x_n)^2 \leq d(z_n, T_2z_n)^2 + \frac{2}{1-\alpha}\{d(T_2z_n, T_2x_n) - \alpha d(T_2z_n, x_n)\}d(z_n, T_2z_n) \\ &+ d(z_n, x_n)^2 \\ \leq d(z_n, T_2z_n)^2 + \frac{2}{1-\alpha}\{A - \alpha d(T_2z_n, z_n) - \alpha d(z_n, x_n)\}d(z_n, T_2z_n) \\ &+ d(z_n, x_n)^2 \end{array}$ 

where A is defined as in case (*ii*).

**Theorem 2.3.** Let K be a nonempty, closed and convex subset of a complete and uniformly convex metric space X with continuous convex structure W. Let  $T_1, T_2, T_3 : K \to K$  be three selfmaps of K such that each  $T_i$  is either an  $\alpha$ -nonexpansive map or a Suzuki nonexpansive map. Assume that  $F \neq \emptyset$  and let  $\alpha_n, \beta_n, \gamma_n \in [a, b] \subseteq (0, 1)$  for  $n \in \mathbb{N} \cup \{0\}$ . For any  $x_0 \in K$ , let  $\{x_n\}$  be the sequence generated by SPiteration procedure associated with three selfmaps (7). Then there exists  $x \in F$  such that  $\Delta - \lim_{n \to \infty} x_n = x$ .

*Proof.* By Lemma 2.1, we have  $\{x_n\}$  is bounded. Therefore by Lemma 1.9, the sequence  $\{x_n\}$  has a unique asymptotic center with respect to K, i. e.,  $A_K(\{x_n\}) = \{x\}$  for some  $x \in K$ . Similarly, if  $\{x_{n_k}\}$  is a subsequence of the sequence  $\{x_n\}$  then there exists  $u \in K$  such that  $A_K(\{x_{n_k}\}) = \{u\}$ .

We substitute  $x = x_n$  and y = x in Lemma 1.6 if  $T_i$  a Suzuki nonexpansive map, and in Lemma 1.7 if  $T_i$  is an  $\alpha$ -nonexpansive map through which it follows that  $\limsup d(x_n, T_i x) \leq \limsup d(x_n, x)$  so that  $r_K(\{x_n\}) = \limsup_{n \to \infty} d(x_n, T_i x) \text{ for } i = 1, 2, 3.$  Therefore  $T_i x \in A_K(\{x_n\}) = \{x\}$  for i = 1, 2, 3 so that  $x \in F$ . Similarly, we have  $u \in F$ .

Now, we prove that x = u. On the contrary, let  $x \neq u$ . Since  $u \in F$ , it follows from Lemma 2.1 that  $\lim_{n \to \infty} d(x_n, u)$  exists. Now, we consider  $\limsup d(x_n, .u) < \limsup d(x_n, .u) < \lim \sup d(x_n, .u) < \lim (x_n, .u) < \lim (x$ r) (since  $A_{k}(\{r_{n}, \}) - \{y\}$ )

$$\begin{aligned} & (x_{n_k}, u) < \liminf_{k \to \infty} p \, d(x_{n_k}, x) \text{ (since } A_K(\{x_{n_k}\}) - \{u\}) \\ & \leq \limsup_{n \to \infty} d(x_n, x) \\ & < \limsup_{n \to \infty} d(x_n, u) \text{ (since } A_K(\{x_n\}) = \{x\}) \\ & = \lim_{n \to \infty} d(x_n, u) = \lim_{k \to \infty} d(x_{n_k}, u) = \limsup_{k \to \infty} d(x_{n_k}, u), \end{aligned}$$

a contradiction.

 $k{
ightarrow}\infty$ 

Therefore  $A_K(\{x_{n_k}\}) = \{x\}$  for every subsequence  $\{x_{n_k}\}$  of the sequence  $\{x_n\}$ , that is,  $\Delta - \lim_{n \to \infty} x_n = x$ .  $\Box$ 

**Theorem 2.4.** Under the hypotheses of Theorem 2.3, if any one of  $T_1, T_2$ , or  $T_3$  is semi-compact then for  $x_0 \in K$ , the sequence  $\{x_n\}$  generated by SP-iteration procedure (7) associated with three selfmaps converges strongly to a common fixed point of  $T_1, T_2$ , and  $T_3$ .

*Proof.* Let  $T_i$  be semi-compact for some i = 1, 2, 3.

Now by Lemma 2.1 and Lemma 2.2, we have the sequence  $\{x_n\}$  is bounded and  $\lim d(x_n, T_i x_n) = 0$ . Since  $T_i$  is semi-compact, the sequence  $\{x_n\}$  has a subsequence  $\{x_{n_k}\}$  such that  $\lim_{k \to \infty} d(x_{n_k}, x) = 0$  for some  $x \in K$ . Now we prove that  $x \in F$ 

Now we prove that  $x \in F$ .

Case (i):  $T_j$  is a Suzuki nonexpansive map for j = 1, 2, 3. By using Lemma 1.6, we have  $d(x_{n_k}, T_j x) \leq 3d(x_{n_k}, T_j x_{n_k}) + d(x_{n_k}, x)$  for all k so that  $\lim_{k \to \infty} d(x_{n_k}, T_j x) = 0$ and hence  $x \in F(T_i)$ .

Case (ii) :  $T_j$  is an  $\alpha$ -nonexpansive map for  $0 \le \alpha < 1$  and j = 1, 2, 3. By Lemma 1.7, we have  $\begin{aligned} d(x_{n_k}, T_j x)^2 &\leq \frac{1+\alpha}{1-\alpha} d(x_{n_k}, T_j x_{n_k})^2 + \frac{2}{1-\alpha} \{ \alpha d(x_{n_k}, x) + d(T_j x_{n_k}, T_j x) \} \\ &\quad d(x_{n_k}, T_j x_{n_k}) + d(x_{n_k}, x)^2 \\ &\leq \frac{1+\alpha}{1-\alpha} d(x_{n_k}, T_j x_{n_k})^2 + \frac{2}{1-\alpha} \{ \alpha d(x_{n_k}, x) + d(T_j x_{n_k}, x_{n_k}) \\ &\quad + d(x_{n_k}, T_j x) \} d(x_{n_k}, T_j x_{n_k}) + d(x_{n_k}, x)^2. \end{aligned}$ 

On letting  $k \to \infty$ , we have  $\lim_{k \to \infty} d(x_{n_k}, T_j x) = 0$  and hence  $x \in F(T_j)$ .

Case (iii):  $T_j$  is an  $\alpha$ -nonexpansive map for  $\alpha < 0$  and j = 1, 2, 3. By proceeding as in case (ii), it follows from Lemma 1.7 that  $x \in F(T_j)$ . Hence by considering all the above cases, we have  $x \in F$ .

Therefore by Lemma 2.1, we have  $\lim_{n\to\infty} d(x_n, x)$  exists and hence the sequence  $\{x_n\}$  converges strongly to a point  $x \in F$ .

We say that three selfmaps  $T_1, T_2, T_3 : K \to K$  are said to satisfy *condition* (D) with respect to a subset C of K if there exists a nondecreasing function  $f : [0, \infty) \to [0, \infty)$  with f(0) = 0 and f(t) > 0 for all t > 0 such that

$$f(dist(x,C)) \le \sum_{i=1}^{3} d(x,T_ix) \text{ for all } x \in K.$$
(17)

**Theorem 2.5.** Under the hypotheses of Theorem 2.3, if  $T_1, T_2$ , and  $T_3$  satisfy condition (D) with respect to F then the sequence  $\{x_n\}_{n=0}^{\infty}$  generated by SP-iteration procedure (7) associated with three selfmaps converges strongly to a common fixed point of  $T_1, T_2$ , and  $T_3$ .

*Proof.* By Lemma 2.2, we have  $\lim_{n\to\infty} d(x_n, T_i x_n) = 0$  for i = 1, 2, 3 so that

 $\lim_{n \to \infty} \sum_{i=1}^{3} d(x_n, T_i x_n) = 0.$  Therefore from the inequality (17), we have  $\lim_{n \to \infty} f(dist(x_n, F)) = 0.$ 

We now prove that  $\lim_{n \to \infty} dist(x_n, F) = 0$ . On the contrary,

if  $\lim_{n\to\infty} dist(x_n, F) \neq 0$  then there exist an  $\epsilon > 0$  and a subsequence  $\{x_{n_k}\}$  of the sequence  $\{x_n\}$  such that  $dist(x_{n_k}, F) \geq \epsilon$  for all k.

Therefore  $f(dist(x_{n_k}, F)) \ge f(\epsilon) > 0$  for all k so that  $\lim_{n \to \infty} f(dist(x_n, F)) \ne 0$ ,

a contradiction.

Therefore  $\lim_{n \to \infty} dist(x_n, F) = 0.$ 

By Lemma 2.1, we have the sequence  $\{x_n\}$  is a Fejer monotone sequence with respect to F. Since  $T_1, T_2$  and  $T_3$  are quasi nonexpansive maps, we have F is closed. Therefore by using Lemma 1.8, we have the sequence  $\{x_n\}$  converges strongly to a point of F.

By choosing  $\alpha = \frac{1}{2}$  or  $\alpha = \frac{1}{3}$  in Theorem 2.3, Theorem 2.4 and Theorem 2.5, we have the following corollary.

**Corollary 2.6.** Let K be a nonempty, closed and convex subset of a complete and uniformly convex metric space X with continuous convex structure W. Let  $T_1, T_2, T_3 : K \to K$  be three selfmaps of K such that each  $T_i$  is a nonspreading map, a hybrid map, or a Suzuki nonexpansive map. Assume that  $F \neq \emptyset$ . Let  $\alpha_n, \beta_n, \gamma_n \in [a, b] \subseteq (0, 1)$  for  $n \in \mathbb{N} \cup \{0\}$ . For any  $x_0 \in K$ , let  $\{x_n\}$  be the sequence generated by SPiteration procedure (7) associated with three selfmaps. Then

- (a) there exists  $x \in F$  such that  $\Delta \lim_n x_n = x$ ,
- (b) if any one of  $T_1, T_2$  and  $T_3$  is semi-compact then  $\{x_n\}$  converges strongly to a common fixed point of  $T_1, T_2, T_3$ , and
- (c) if  $T_1, T_2$ , and  $T_3$  satisfy condition (D) with respect to F then the sequence  $\{x_n\}_{n=0}^{\infty}$  converges strongly to a common fixed point of  $T_1, T_2$ , and  $T_3$ .

## Acknowledgements

The authors are thankful to the referee for his/her careful reading and valuable suggestions which improved the presentation of the paper.

### References

- [1] K. Aoyama and F. Kohsaka, Fixed point theorem for  $\alpha$ -nonexpansive mappings in Banach spaces, Nonlinear Anal., 74(13)(2011), 4387-4391.
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert spaces, Springer-Verlag, New York, 2011.
- [3] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
- [4] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA, 54(4)(1965), 1041-1044.
- [5] F.E. Browder and W.V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc., 72(3)(1966), 571-575.
- [6] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(2)(1967), 197-228.
- [7] G. Das and J.P. Debata, Fixed points of quasinonexpansive mappings, Indian J. Pure Appl. Math., 17(11)(1986), 1263-1269.
- [8] S. Dhompongsa, W. Inthakon, and W. Takahashi, A weak convergence theorem for common fixed points of some generalized nonexpansive mappings and nonspreading mappings in a Hilbert space, Optimization, 60(6)(2011), 769-779.
- H. Fukhar-ud-din, Existence and approximation of fixed points in convex metric spaces, Carpathian J. Math., 30(2)(2014), 175-185.
- [10] H. Fukhar-ud-din, One step iterative scheme for a pair of nonexpansive mappings in a convex metric space, Hacet. J. Math. Stat.,44(5)(2015), 1023-1031.
- [11] H. Fukhar-ud-din, Iterative Process for an α-Nonexpansive Mapping and a Mapping Satisfying Condition (C) in a Convex Metric space, Iranian Journal of Mathematical Sciences and Informatics, 14(1) (2019), 167-179.
- [12] H. Fukhar-ud-din and A.R. Khan, Approximation of common fixed point of two quasi nonexpansive mappings in convex metric spaces, Mediterr. J. Math., (2018)15:77.
- [13] D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30(1965), 251-258.
- [14] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
- [15] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3) (1953), 506-510.
- [16] M. Moosaei, Fixed point theorems in convex metric spaces, Fixed Point Theory Appl., 2012, Article 164, (2012), 6 pages.
- [17] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(1)(2000), 217-229.
- [18] W. Phuengrattana and S. Suantai, "On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval", J. Comput. Appl. Math., 235(9) (2011), 3006-3014.
- [19] H.F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc.,44(2) (1974), 375-380.
- [20] T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., 8 (1996), 197-203.
- [21] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2)(2008), 1088-1095.
- [22] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22(2)(1970), 142-149.
- [23] W. Takahashi and T. Tamura, Convergence theorems for a pair of nonexpansive mappings, J. Convex Anal., 5(1)(1998), 45-56.
- [24] I. Uddin and M. Imdad, Convergence of SP-iteration for generalized nonexpansive mapping in Hadamard spaces, Hacet. J. Math. Stat., 47(6) (2018), 1595-1604.
- [25] K. Wattanawitoon and Y. Khamlae, Weak and Strong Convergence Theorems for an  $\alpha$ -nonexpansive mapping and a generalized Nonexpansive Mapping in Hilbert spaces, Thai J. Math., 11(3) (2013),633-643.