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ÖZ 

Allee etkisi altındaki avın büyüme katkısının baskılandığı  ve avcı ölüm oranının zaman içinde doğrusal olarak 
değiştiği av-avcı  modelinin zamana bağlı  dinamikleri   ele alınmıştır.  Bu çalışmada, av-avcı sisteminin zamana 
bağlı dinamik yapısı ikili adi diferansiyel denklem ile incelenmiştir.  Çok sayıdaki nümerik simülasyonlar 
sayesinde sistemin çeşitli zamansal yapıya sahip olduğu ve sistemin avcının ölüm katsayısındaki değişim ile 
dengelenebileceği gösterilmiştir.  Elde edilen sonuçlar göstermektedir ki Allee etkisi altında ve avcı 
popülasyonunun artmasıyla birlikte av üzerindeki baskının artması ile system, avı neslinin tükenmesine 
zorlamıştır ve dolayısıyla avın olmaması avcının neslini de tüketmiştir. 
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Temporal Response of Predator-Prey System  

with the Allee Effect 
 

ABSTRACT 

Temporal dynamics of a predator-prey model, in which predator mortality rate varies linearly in time, is 
considered with the assumption that prey growth is stressed by the strong Allee effect. In this work, temporal 
structure of prey-predator system consisting of two coupled ordinary differential equations is examined. By 
means of extensive numerical simulations it is shown that the system has rich temporal structure and the system 
can be stabilizes with the change in predator mortality rate. Obtained results show that with an increasing stress 
on prey due to Allee affect and the increase in predator population size, the system push the prey to extinct and 
then the system is extinct due to absence of prey for predator. 

Keywords- Predator-Prey system, Allee Effect, Mathematical Modelling 
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I. INTRODUCTION 

The origin of the Allee term is based on an experimental study carried by Warder Clyde Allee. Alee has 
shown that when there are more individuals within the tank goldfish grow faster [1]. Further experiment and 
observations prompted him to believe that grouping will increase the individuals survivals rate and that 
cooperation can be essential to the overal survival of society [1, 2]. When the ‘Allee principle’ was presented, 
the first focus of this issue was the competition role between species and within the species [1, 3].  

The traditional population dynamics indicate that due to cooperation for same limited resources, the 
population undergo a diminished total growth rate at a higher density and and higher growth rate at lower density 
[4-9]. On the otherhand, Allee effect defences the reverse idea. According to this idea, members within a group 
require support from another member in order to survive, and this idea is assisted by a group defence against 
predators or by feeding together on prey. Hence this term can be defined as positive density dependence between 
any component of population density [3, 10]. Odum [11] refers to it as Allee’s Principle, the idea was turned into 
what we now commonly consider Allee effect. 

In brief, the Allee effect means that the growth rate per capita rises rather than declines with population 
density over a certain distance. Strong Allee effect corresponds to the growth rate per capita is negative once the 
density is zero and weak Allee effect corresponds to the growth rate is close to zero [1]. The Allee effect of 
social mammals was first described by [12], and named after the ecologist Allee [1,13-15] it has been applied to 
a large variety of species. Much attention has been paid to the corresponding temporal models in [16,17] and to 
the corresponding spatial models of predator–prey systems with spatial pattern formation have been observed in 
such systems [18-23]. Petrovskii et al. [24] have analyzed the effect of Allee as a potential lagging process. For a 
particular set of parameters, they reveal three types of regimes in which the invasive prey is influenced by the 
Allee effect. One of this regime is anomalous extinction which it is observed in this work in temporal case. To 
reveal the structure of this regime, a map is introduced to detail the different domain corresponding to different 
regime under the effect of Allee effect [24]. 

      Spatial patterning of prey-predator model is examined in [24] and the temporal structure of the model is 
explained as a parameter plane. Hence in this work temporal structure of a predator-prey model is detailed with 
the addition of varying mortality rate of predator. Base on the obtained parameter plane map in [24], the Allee 
effect stress on the existence of species is discussed. 

    In this work, a model describing predator-prey interactions are studied. Temporal variations of predator 
mortality rate is discussed to detail the temporal response of the model which is already under the stress of strong 
Allee effect. Based on extensive numerical simulations, it is obtained that temporal structure of this model has 
rich dynamics. 

II. MAIN EQUATION &  EQUILIBRIUM ANALYSIS  

We consider one dimension predator-prey model studied earlier in spatial case [24-27]. The nonspatial 
counterpart of the system is as follows: 

( )(1 ) ,
1

du uv
u u u

dt u
γ β

α
= − − −

+  (1) 

.
1

dv uv
v

dt u
δ

α
= −

+
 (2) 

Here u  and v  are the densities of prey and predator, respectively, at time t  and δ  is the predator 
mortality rate. Due to biological meanings all components of the system are positive. For more details on system 
parametrizations and its dimensional version and the procedure for being dimensionless see [24]. The systems` 
(1-2) steady state is a solution of the following equations: 
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( )(1 ) 0,
1

uv
u u u

u
γ β

α
− − − =

+
 (3) 

0.
1

uv
v

u
δ

α
− =

+
 (4) 

One of the steady states is extinction 1 (0,0)E =  is always stable for any values of possitive system 

parameters. Other is semi-trivial equilibrium 2 ( ,0)E β= , 3 (1,0)E = , extinction of predator case. The predator 

free steady state is saddle. See [24] for more details on the stability of these boundary states and the phase plane 
of the system. 4 ( , )E u v=  is the last steady state of the system. The steady state of the coexistence system is as 

follows: 

( )(1 )(1 ), .
1

v u u u u
δγ β α
δα

= − − + =
−

 (5) 

Jacobian matrix of the system (1-2) is as follows: 

11 12

21 22

J J
J

J J

 
=  
 

 

where 

( )
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+
 

( )12 2 ;
1

u
J
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= −

+
 

( )21 2 ;
1
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J
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+
 

( )22 2 .
1

u
J

u
δ

α
= −

+
 

The eigenvalues are the solutions of the following characteristic equation 

( )det 0,iJ Iλ− =  

where iJ is the jacobian matrix (6), 1,2,3,4i = , and I  is the unit matrix. See [24] for further details on the 

stability analysis of the system. 

It is presumed that at the beginning of the distribution, the domain already includes all communities at 
the density rate corresponding to the stationary state ( , )u v% %  with a slight perturbation in prey density. Therefore 

the initial condition takes the following constant form, i.e., 

( ,0) , ( ,0) ,u x u v x vε= + =% %  (7) 

where u% , v%  are the steady states of the system dynamics, given by Eq. (11) with 0.1ε = .  



  

BŞEÜ Fen Bilimleri Dergisi  
7(1), 54-65, 2020 

 

BSEU Journal of Science  
DOI: 10.35193/bseufbd.648992 

 
 
 

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd) 

 

 58 

 

, (1 )( )(1 ).
1

u v u u u
δ γ α β
αδ

= = + − −
−

% % % % %  (8) 

Finite difference scheme is used for ordinary differential equations with the steps of the numerical mesh 
are chosen as 0.05t∆ = . It is checked that these values are small enough not to results in any numerical artifacts. 
Since the main purpose of this work is to detail the temporal structure of the system under the light of the work is 
carried by [24], Fig. 14 in [24] is used as a bifurcation diagram of the system. So the parameters are chosen 
accordingly as 0.5α = , 0.28β =  and 7γ = . 

III.  NUMERICAL SIMULATIONS 

The prey-predator system is examined that prey growth is damped by a strong Allee effect with the 
attention on changing mortality rate of predator. The rate of zooplankton mortality, i.e., δ , is defined differently 
in this study. The mortality rate is specified as a function of time and keep the other system parameters 
unchanged. 

Here it is assumed the mortality rate to be a linearly decreasing function meaning that predator mortality 
decreases over time and this condition raises stress on prey. And then this mortality rate is taken as an increasing 
function to see the systems' temporal response. The reason for choosing the predator mortality rate as a different 
function is therefore to show a change in the dynamic structure of the system. The possible choice of δ  is given 
as follows: 

(a) (b) 

(c) (d) 

Figure 1. Snapshots of the prey (solid line) and predator (dashed-dotted line) versus time obtained for a) 0.5tδ = ,b) 0.497tδ = , c) 

0.495tδ = and d) 0.494tδ = for 500t =  obtained for parameters 0ω = . The initial values of the system are obtained from Eqs.7-8 

for given system parameters defined in Section II. 
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 (a) (b) 

(c)     (d) 

Figure 2. Phase plane structure for prey and predator for fixed values of delta in time a) 0.5tδ = , b) 0.497tδ = , c) 0.495tδ =  and 

d) 0.494tδ = for 500t =  obtained for parameters 0ω = . The initial values of the system are obtained from Eqs.7-8 for given system 

parameters defined in Section II. 

1for 0, ( ) for 0.t t t tδ δ ω δ δ ω ω= = = ± − >  (9) 

Here, 1t  is initial time, i.e., 1 0t = , tδ  is predator mortality rate before the temporal change starts, and 

the ω quantifies the slope of the temporal change. This study aims to reveal the temporal structure of the species, 
both the decreasing and the increasing values of mortality rate of predator is considered. 

Therefore, we give some numerical simulations for three possible approaches. The first is without a 
temporal change, i.e., ( 0)ω =  in Figs. 1-2. Second is with the case of the decrease in mortality rate for ( 0)ω >  

in Figs. 3-4. The last one is the case of the increase in mortality rate for the values of ( 0)ω >  in Figs. 5-6. It 

should be emphasized here that, contrary to [24], δ  is taken as a function of time to see the bifurcation behavior 
of the system. 

Figure 1 shows snapshots of prey and predator temporal distributions obtained at different values of δ  
for 500t = . For the values of 0.5tδ = , the system has damping oscillations and with a decrease in δ , i.e., 

0.497tδ = , the system develops periodic oscillations and the system has a Hopf bifurcation between these 

values. For a decrease in δ , i.e., , the size of oscillations are increased. For a slightly further decrease 
in δ , i.e., 0.494tδ = , the species are extinct and the system goes to extinct after few oscillations. Fig. 2 shows 

the corresponding phase plane structure of the prey-predator system over given time. 
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Figure 3 exhibits snapshots of prey and predator temporal distributions obtained at different values of 

ω  for 2000t =  and for the values of 0.5tδ = . Here 1( )t t tδ δ ω= − − . For 61 10xω −= , the system has 

damping oscillations for the beginning of the time and then the system stabilizes for a while at its coexistence 
steady state and then the system develops oscillations with an increase in size. With a slight increase in ω , i.e., 

62 10xω −= , the system develops oscillations for different sort of size. With an increase in ω , i.e., 63 10xω −=  , 
the developing oscillations are extinct suddenly between the time values 1900t ≈ . With a further increase in ω , 

i.e., 64 10xω −= , the time for extinction observed is observed earlier than previous value of ω . And for the last 

value of ω , i.e., 44 10xω −=  , the system only develops few oscillations and the species go extinct. Fig. 4 shows 
the corresponding phase plane structure of the prey-predator system over given time in three dimensions. 

Fig. 5 displays snapshots of prey and predator temporal distributions obtained at different values of ω  

for 2000t =  and for the values of 0.495tδ = . Here 1( )t t tδ δ ω= + −  for 63 10xω −=  , the system has damping 

oscillations for the beginning of the system and then the system stabilizes for a while at its coexistence steady 
state. With a decrease in ω , i.e., 51 10xω −=  , the system again has a damping oscillations but in this case the 

stabilisation of the system happens earlier. With an increase in ω , i.e., 655 10xω −= , the damping oscillations 
are not stabilise at the systems' steady state. The population of the prey increase and correspondingly the 
population density of predator decrease in time. Finally they merge each other between the time values 1800t =  

and 2000t =  . With a further increase in ω , i.e., 42 10xω −=  , due to the decrease in predator population the 
prey population increase first and then the system reach its carrying capacity and the population level of prey is 
stabilise. Fig. 6 shows the corresponding phase plane structure of the prey-predator system over given time in 
three dimensions to show the phase plane evolution in time. 
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(a) (b)

(c) (d)

        
(e)                                                                                 (f) 

Figure 3. Snapshots of the prey (solid line) and predator (dashed-dotted line) versus time obtained for 0.5tδ =  a) 61 10xω −= , b) 

62 10xω −= , c) 63 10xω −= , d) 64 10xω −=  , e)  and f)  for 2000t = . The initial values of the system are 
obtained from Eqs.7-8 for given system parameters defined in Section II. 
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(a) (b)

(c) (d)

(e) (f) 

Figure 4. Phase plane structure for prey and predator for fixed values of delta in time 0.5tδ =  a) 61 10xω −= , b) 62 10xω −= , c) 

63 10xω −= , d) 64 10xω −=  e)  and f)  for 2000t = . The initial values of the system are obtained from 
Eqs.7-8 for given system parameters defined in Section II. 



  

BŞEÜ Fen Bilimleri Dergisi  
7(1), 54-65, 2020 

 

BSEU Journal of Science  
DOI: 10.35193/bseufbd.648992 

 
 
 

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd) 

 

 63 

 

(a) (b)   

(c) (d) 

Figure 5. Snapshots of the prey (solid line) and predator (dashed-dotted line) versus time obtained for 0.495tδ =  a) 63 10xω −= , b) 

51 10xω −= , c) 655 10xω −= and d) 42 10xω −= . The initial values of the system are obtained from Eqs.7-8 for given system 
parameters defined in Section II. 

(a) (b)

(c) (d) 

Figure 6. Phase plane structure for prey and predator for fixed values of delta in time 0.495tδ =  a) 63 10xω −= , b) 51 10xω −= , c) 

655 10xω −= and d) 42 10xω −=  for 2000t = . The initial values of the system are obtained from Eqs.7-8 for given system parameters 
defined in Section II. 
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IV.  CONCLUDING REMARKS 

In this work it is shown that using predator-prey system [24], the temporal dynamics can become 
stabilise under the effect of the temporal change in predator mortality rate. By means of numerical simulations, 
the structure of system temporal distribution is revealed for linearly decreasing or increasing values of δ  in 
time. The temporal structure of the system gives important information when the predator mortality rate is closer 
to the extinction point. Here it is observed that the system has rich temporal dynamics depending on both Allee 
effect and the varying mortality rate of predator. 

The obtained results show that species temporal variation and also the extinction of species can be 
interpreted with the slope in mortality rate of predator. If the mortality rate of predator is decreased, i.e., the case 
for 1( )t t tδ δ ω= − −  , the population density of predator is increased. Hence the stress on prey population 

increase and the system pushes the prey to extinct. And that is which it is obtained in the numerical simulations. 
Accordingly, if the mortality rate of predator is increased, i.e., the case for 1( )t t tδ δ ω= + − , the population 

density of predator is decreased and it facilitates the growth of prey. This result is coincide the results obtained in 
the numerical simulations. 

In conclusion, the most interesting question evokes here that whether increasing rate of predator 
mortality can prevent the prey extinction. This situation is examined in the case where δ  is chosen as an 
increasing function in time and it is observed that the extinction of predator facilitates the growth of prey and it 
reaches its carrying capacity. 
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