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Allee etkisi altindaki avin buyime katkisinin bédaskdigi ve avcl 6lim oraninin zaman igindegdgsal olarak
degistigi av-avcl modelinin zamana gla dinamikleri ele alinmgtir. Bu ¢alsmada, av-avci sisteminin zamana
bagli dinamik yapisi ikili adi diferansiyel denklemeilincelenmitir. Cok sayidaki numerik similasyonlar
sayesinde sistemin g#i zamansal yapiya sahip olgu ve sistemin avcinin 6lim katsayisindakgigien ile
dengelenebilegg@ gosterilmitir.  Elde edilen sonuglar gostermektedir ki Alleskisi altinda ve avci
popilasyonunun artmasiyla birlikte av Uzerindekskoain artmasi ile system, avi neslinin tikenmesine
zorlamstir ve dolayisiyla avin olmamasi avcinin neslintigleetmitir.
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Temporal Response of Predator-Prey System
with the Allee Effect

ABSTRACT

Temporal dynamics of a predator-prey model, in Whpredator mortality rate varies linearly in timis,

considered with the assumption that prey growthktiessed by the strong Allee effect. In this waeknporal

structure of prey-predator system consisting of teapled ordinary differential equations is exardinBy

means of extensive numerical simulations it is shélat the system has rich temporal structure hadystem
can be stabilizes with the change in predator rityrtaate. Obtained results show that with an imsiag stress
on prey due to Allee affect and the increase im@t@ population size, the system push the presxtimct and
then the system is extinct due to absence of mmegredator.

Keywords Predator-Prey system, Allee Effect, Mathematical ti#dling
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I. INTRODUCTION

The origin of the Allee term is based on an experital study carried by Warder Clyde Allee. Alee has
shown that when there are more individuals withie tank goldfish grow faster [1]. Further experitnand
observations prompted him to believe that groupivii increase the individuals survivals rate andatth
cooperation can be essential to the overal surdfabciety [1, 2]. When the ‘Allee principle’ wasesented,
the first focus of this issue was the competitiole between species and within the species [1, 3].

The traditional population dynamics indicate thatdo cooperation for same limited resources, the
population undergo a diminished total growth rata higher density and and higher growth rate &efadensity
[4-9]. On the otherhand, Allee effect defencesrtheerse idea. According to this idea, members withgroup
require support from another member in order twiser and this idea is assisted by a group defegaanst
predators or by feeding together on prey. Hencetdrim can be defined as positive density depemrdesetveen
any component of population density [3, 10]. Oddr][refers to it as Allee’s Principle, the idea wasnhed into
what we now commonly consider Allee effect.

In brief, the Allee effect means that the growttenaer capita rises rather than declines with patjpr
density over a certain distance. Strong Allee ¢ffecresponds to the growth rate per capita is thegance the
density is zero and weak Allee effect correspomdthé growth rate is close to zero [1]. The Alldea of
social mammals was first described by [12], and edhafter the ecologist Allee [1,13-15] it has beeplied to
a large variety of species. Much attention has lpeed to the corresponding temporal models in [Zpghd to
the corresponding spatial models of predator—pystesns with spatial pattern formation have beereoies in
such systems [18-23]. Petrovskii et al. [24] hanalyzed the effect of Allee as a potential laggdngcess. For a
particular set of parameters, they reveal threedyg regimes in which the invasive prey is infloet by the
Allee effect. One of this regime is anomalous estton which it is observed in this work in tempocalse. To
reveal the structure of this regime, a map is duced to detail the different domain correspondmdifferent
regime under the effect of Allee effect [24].

Spatial patterning of prey-predator modetxamined in [24] and the temporal structure of tiedel is
explained as a parameter plane. Hence in this vamporal structure of a predator-prey model isitéstavith
the addition of varying mortality rate of predatBase on the obtained parameter plane map in {@d]Allee
effect stress on the existence of species is discus

In this work, a model describing predator-pieteractions are studied. Temporal variations afdator
mortality rate is discussed to detail the tempogaponse of the model which is already under tlessiof strong
Allee effect. Based on extensive numerical simalaj it is obtained that temporal structure of thizdel has
rich dynamics.

II. MAIN EQUATION & EQUILIBRIUM ANALYSIS

We consider one dimension predator-prey model studarlier in spatial case [24-27]. The nonspatial
counterpart of the system is as follows:

du uv

—_—= _ 1— —_ ,

dt yiu-A-u) 1+au 1)
dv__w s, @)
dt 1+aqu

Here u and v are the densities of prey and predator, respdgtiae timet and o is the predator
mortality rate. Due to biological meanings all campnts of the system are positive. For more dedailsystem
parametrizations and its dimensional version aedptocedure for being dimensionless see [24]. Tkems’
(1-2) steady state is a solution of the followinations:
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yu(u=pB)1-u)- =0, 3)
l+au
W__sv=o. )
1+au

One of the steady states is extincti@n=(0,0) is always stable for any values of possitive syste

parameters. Other is semi-trivial equilibriuls, =(3,0), E; =(1,0), extinction of predator case. The predator
free steady state is saddle. See [24] for mordldeta the stability of these boundary states dmedphase plane
of the systemE, =(u,V) is the last steady state of the system. The stsiady of the coexistence system is as

follows:

v=p(u-B)1-u)(l+au), u= 1_550 . (5)

Jacobian matrix of the system (1-2) is as follows:

J - [ Jll Jle
‘]21 ‘]22
where

Jy = 2uy=38y - B+ ZLW—;'

(1+ua)’ ’
u
J == )
12 (1+ ua)Z
v
J - )
21 (1+ ua)Z
u
I :—2_5'
(1+ua)
The eigenvalues are the solutions of the followdhgracteristic equation
det(J, -A1)=0,

where J,is the jacobian matrix (6); =1,2,3,4, and | is the unit matrix. See [24] for further details the
stability analysis of the system.

It is presumed that at the beginning of the distidn, the domain already includes all communités
the density rate corresponding to the stationaateti, V) with a slight perturbation in prey density. Thewref

the initial condition takes the following constdotm, i.e.,

u(x0)=b+e, Vx0)=Y, (7)

whered, V are the steady states of the system dynamicsy giyéq. (11) withe =0.1.



I BSEU Fen Bilimleri Dergisi BSEU Journal of Science
I. 7(1), 54-65, 2020 DOI: 10.35193/bseufbd.648992

BILECIK SEYH EDEBALI

O§IVERSITES] e-ISSN2458-7575 (http://dergipark.gov.tr/bseufbd)
a=—2 , V= y@A+at)(u-B)1- ). (8)
1-ad

Finite difference scheme is used for ordinary dé#fgial equations with the steps of the numericasim
are chosen aAt =0.05. It is checked that these values are small enoaogko results in any numerical artifacts.
Since the main purpose of this work is to detal tdimporal structure of the system under the bighie work is
carried by [24], Fig. 14 in [24] is used as a lihtion diagram of the system. So the parameterstarsen
accordingly asoe =0.5, f=0.28and y=7.

I1l. NUMERICAL SIMULATIONS

The prey-predator system is examined that prey tirasvdamped by a strong Allee effect with the
attention on changing mortality rate of predatdre Tate of zooplankton mortality, i.e,, is defined differently
in this study. The mortality rate is specified aduaction of time and keep the other system pararset
unchanged.

Here it is assumed the mortality rate to be a Hiyedecreasing function meaning that predator ntibyta
decreases over time and this condition raisessstreprey. And then this mortality rate is takermasncreasing
function to see the systems' temporal responser@dssn for choosing the predator mortality rata diferent
function is therefore to show a change in the dyinatmucture of the system. The possible choic@ ak given
as follows:
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Figure 1. Snapshots of the prey (solid line) and predatost{dd-dotted line) versus time obtained fordy)= 0.5,b) J, = 0.497, c)

J, = 0.495and d) 6, = 0.494for t =500 obtained for parameter® = 0. The initial values of the system are obtainednfiqs.7-8
for given system parameters defined in Section II.
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Figure 2. Phase plane structure for prey and predator fedfivalues of delta in time &), = 0.5, b) 6, =0.497, ¢) J, =0.495 and

d) &, = 0.494for t =500 obtained for parameter®) = 0 . The initial values of the system are obtainednfiqs.7-8 for given system
parameters defined in Section II.

0=9 for w=0, 0=¢xw(t-t) for w>0. 9)

Here, t, is initial time, i.e.,t, =0, §, is predator mortality rate before the temporalngeastarts, and

the @ quantifies the slope of the temporal change. Thidysaims to reveal the temporal structure of fhec&s,
both the decreasing and the increasing values dftitg rate of predator is considered.

Therefore, we give some numerical simulations foee¢ possible approaches. The first is without a
temporal change, i.e(w=0) in Figs. 1-2. Second is with the case of the desén mortality rate fow > 0)

in Figs. 3-4. The last one is the case of the as®en mortality rate for the values @b>0) in Figs. 5-6. It

should be emphasized here that, contrary to [@4is taken as a function of time to see the bifuocabehavior
of the system.

Figure 1 shows snapshots of prey and predator teahdstributions obtained at different values df
for t =500. For the values o, =0.5, the system has damping oscillations and with aedese ind, i.e.,
J, =0.497, the system develops periodic oscillations and sygem has a Hopf bifurcation between these

values. For a decreasedn, i.e.,d, = 0.495, the size of oscillations are increased. Forghtlly further decrease
in J, i.e., §, =0.494, the species are extinct and the system goestiticeafter few oscillations. Fig. 2 shows
the corresponding phase plane structure of the-pregator system over given time.



I BSEU Fen Bilimleri Dergisi BSEU Journal of Science
I. 7(1), 54-65, 2020 DOI: 10.35193/bseufbd.648992

BILECIK SEYH EDEBALI

OMIVERSITESI e-ISSN2458-7575 (http://dergipark.gov.tr/bseufbd)

Figure 3 exhibits snapshots of prey and predatopteal distributions obtained at different valuds o
w for t=2000 and for the values of, =0.5. Here =0, —w(t-t). For w=1x10°, the system has

damping oscillations for the beginning of the tiared then the system stabilizes for a while at dgsxéstence
steady state and then the system develops ogmiltatiith an increase in size. With a slight inceemsw, i.e.,

w=2x10°, the system develops oscillations for different s6 size. With an increase iw, i.e., w=3x10° ,
the developing oscillations are extinct suddenigyveen the time values=1900. With a further increase iw,
i.e., w=4x10°, the time for extinction observed is observedieathan previous value af. And for the last

value of w, i.e., w=4x10" , the system only develops few oscillations amdgpecies go extinct. Fig. 4 shows
the corresponding phase plane structure of the-pregator system over given time in three dimerssion

Fig. 5 displays snapshots of prey and predator eeahmlistributions obtained at different valuescof
for t =2000 and for the values of;, = 0.495. Here =4, + w(t-t,) for w=3x10° , the system has damping
oscillations for the beginning of the system anentlthe system stabilizes for a while at its coexise¢ steady
state. With a decrease @, i.e., w=1x10" , the system again has a damping oscillationsrbthis case the
stabilisation of the system happens earlier. Withinerease inw, i.e., w=55x10°, the damping oscillations
are not stabilise at the systems' steady state.pbpailation of the prey increase and correspongirnigé
population density of predator decrease in timealy they merge each other between the time valuek300
and t = 2000 . With a further increase iw, i.e., w=2x10" , due to the decrease in predator population the
prey population increase first and then the systach its carrying capacity and the population lleferey is

stabilise. Fig. 6 shows the corresponding phaseepsiructure of the prey-predator system over giiree in
three dimensions to show the phase plane evolititime.
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Figure 3. Snapshots of the prey (solid line) and predatasiféd-dotted line) versus time obtained &r=0.5 a) w= 1x10°%, b)

w=2x10°, ¢) w=3x10°, d) w=4x10° , e)w = 1x10~7 and f)w = 4x10~* for t = 2000. The initial values of the system are
obtained from Eqgs.7-8 for given system parametefisied in Section II.
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Figure 4. Phase plane structure for prey and predator fedfivalues of delta in timej, = 0.5 a) w= 1x10°, b) w=2x10°, ¢)

w=3x10°, d) w=4x10° e)w = 1x10~% and f)w = 4x10~* for t = 2000. The initial values of the system are obtainednfro
Eqs.7-8 for given system parameters defined ini@edt
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w=1x10°, ¢) w=55x10%and d) w=2x10™. The initial values of the system are obtainednirEgs.7-8 for given system
parameters defined in Section II.
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w=55x10%and d)w=2x10" for t = 2000. The initial values of the system are obtainechfigs.7-8 for given system parameters

defined in Section II.
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IV. CONCLUDING REMARKS

In this work it is shown that using predator-pregstem [24], the temporal dynamics can become
stabilise under the effect of the temporal chamgpredator mortality rate. By means of numericaiugations,
the structure of system temporal distribution igeaded for linearly decreasing or increasing valoks in
time. The temporal structure of the system givgsartant information when the predator mortalityere closer
to the extinction point. Here it is observed that system has rich temporal dynamics dependingotin Allee
effect and the varying mortality rate of predator.

The obtained results show that species temporahtiar and also the extinction of species can be
interpreted with the slope in mortality rate of ghor. If the mortality rate of predator is decexhd.e., the case
for 0=9,—w(t-t) , the population density of predator is increadgdnce the stress on prey population

increase and the system pushes the prey to exfindtthat is which it is obtained in the numerisahulations.
Accordingly, if the mortality rate of predator iscreased, i.e., the case for=39 +w(t -t,), the population

density of predator is decreased and it facilitétesgrowth of prey. This result is coincide thsulés obtained in
the numerical simulations.

In conclusion, the most interesting question evokese that whether increasing rate of predator
mortality can prevent the prey extinction. Thisuation is examined in the case whedeis chosen as an
increasing function in time and it is observed tift extinction of predator facilitates the growthprey and it
reaches its carrying capacity.
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