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Abstract. In this study, we establish existence and uniqueness theorems of
best proximity points for new types of Z-proximal contractions defined on a
complete metric space. The presented results improve and generalize some
recent results in the literature. Several examples are constructed to demon-
strate the generality of our results. As applications of the obtained results, we
discuss suffi cient conditions to ensure the existence of a unique solution for a
variational inequality problem.

1. Introduction

Khojasteh et al. [14] presented the notion of Z-contraction involving a new class
of mappings namely simulation functions and proved new fixed point theorems by
using different methods than others in literature.

Definition 1.1 ( [14]). A simulation function is a mapping ζ : [0,∞)× [0,∞)→ R
satisfying the following conditions:

(ζ1) ζ(0, 0) = 0,
(ζ2) ζ(a, b) < b− a for all a, b > 0,
(ζ3) If (an), (bn) are sequences in (0,∞) such that limn→∞ an = limn→∞ bn > 0,

then

lim sup
n→∞

ζ(an, bn) < 0. (1.1)
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Theorem 1.2 ( [14]). Let (M,d) be a complete metric space and T : M → M be
a Z-contraction with respect to ζ satisfying the conditions (ζ1)-(ζ3) in Definition
1.1, that is,

ζ(d(T u, T v), d(u, v)) ≥ 0, for all u, v ∈M.

Then T has a unique fixed point and, for every initial point u0 ∈ M , the Picard
sequence {T nu0} converges to this fixed point.

Afterwards, Argoubi et al. [3] partly modified Definition 1.1, by removing the
condition (ζ1), because of the fact that the condition (ζ1) was not used in the proof
of Theorem 1.2. On the other hand, Roldan-Lopez-de-Hierro et al. [17] extended
the family of all simulation functions by replacing the condition (ζ3) in Definition
1.1 with the following proviso.

(ζ4) If (an), (bn) are sequences in (0,∞) such that lim
n→∞

an = lim
n→∞

bn > 0 and

an < bn for all n ∈ N, then the inequality (1.1) is satisfied.
In this study, we will consider simulation functions satisfying the conditions (ζ2)

and (ζ4). For the sake of openness, we identify the following families of function.

Z1 = {ζ : ζ satisfies conditions (ζ1), (ζ2) and (ζ3)} ,
Z2 = {ζ : ζ satisfies conditions (ζ2) and (ζ3)} ,
Z3 = {ζ : ζ satisfies conditions (ζ1), (ζ2) and (ζ4)} ,
Z4 = {ζ : ζ satisfies conditions (ζ2) and (ζ4)} .

Remark 1.3. It is obvious that Z1 ⊂ Z2 ⊂ Z4 and also Z3 ⊂ Z4.

Example 1.4. Let ζ : [0,∞)× [0,∞)→ R be a function defined by

ζ(t, s) =


1 if (s, t) = (0, 0),

2(s− t) if s < t,

λs− t otherwise,

where λ ∈ (0, 1). Then it is easy to see that ζ ∈ Z4, but ζ /∈ Z1,Z2,Z3.

The main concern of the paper is to establish existence and uniqueness theorems
of best proximity points for new types of Z-proximal contractions in complete metric
spaces. The obtained results extend and complement some known results from the
literature. Several examples are constructed to demonstrate the new concepts and
the generality of our results. Also, suffi cient conditions to guarantee the existence
of a unique solution to the problem of variational inequality are discussed.

2. Preliminaries

A best proximity point generates to a fixed point if the mapping under consid-
eration is a self-mapping. For more details on this research subject, we refer the
reader to [1, 2, 4—7,9—13,16,18—22].
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Let P and Q two nonempty subsets of a metric space (M,d). We will use the
following notations:

d(P,Q) := inf {d(p, q) : p ∈ P, q ∈ Q} ;
P0 := {p ∈ P : d(p, q) = d(P,Q) for some q ∈ Q} ;
Q0 := {q ∈ Q : d(p, q) = d(P,Q) for some p ∈ P} .

Throughout this study, the set of all best proximity points of a non-self-mapping
T : P → Q will be denoted by

Best(T ) = {u ∈ P : d(u, T u) = d(P,Q)} .
Jleli and Samet [12] introduced the concepts of α-ψ-proximal contractive and

α-proximal admissible mappings and established best proximity point theorems
for such mappings defined on complete metric spaces. Subsequently, Hussain et
al. [9] modified the aforesaid notions and substantiated certain best proximity point
theorems.

Definition 2.1 ( [12]). Let T : P → Q and α : P ×P → [0,∞) be given mappings.
Then T is said to be α-proximal admissible, if

α(u1, u2) ≥ 1
d(p1, T u1) = d(P,Q)
d(p2, T u2) = d(P,Q)

 =⇒ α(p1, p2) ≥ 1,

for all u1, u2, p1, p2 ∈ P.

Definition 2.2 ( [9]). Let T : P → Q and α, η : P×P → [0,∞) be given mappings.
Then T is said to be (α, η)-proximal admissible, if

α(u1, u2) ≥ η(u1, u2)
d(p1, T u1) = d(P,Q)
d(p2, T u2) = d(P,Q)

 =⇒ α(p1, p2) ≥ η(p1, p2),

for all u1, u2, p1, p2 ∈ P.

Note that if we take η(u, v) = 1 for all u, v ∈ P, then the previous definition
reduces to Definition 2.1.
Very recently, Tchier et al. [22] introduced the concept of Z-proximal contrac-

tions as follows.

Definition 2.3 ( [22]). Let P and Q be two nonempty subsets of a metric space
(M,d). A non-self-mapping T : P → Q is said to be a Z-proximal contraction, if
there exists a simulation function ζ ∈ Z2 such that

d(p, T u) = d(P,Q)
d(q, T v) = d(P,Q)

}
=⇒ ζ(d(p, q), d(u, v)) ≥ 0, (2.1)

for all p, q, u, v ∈ P.

Let us introduce the following notions which will be used in our main results.
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Definition 2.4. Let T : P → Q and α, η : P × P → [0,∞) be given mappings.
Then T is said to be triangular (α, η)-proximal admissible, if

(1) T is (α, η)-proximal admissible;
(2) α(u, v) ≥ η(u, v) and α(v, z) ≥ η(v, z) implies that α(u, z) ≥ η(u, z), for all

u, v, z ∈ P.

Definition 2.5. Let P and Q be two nonempty subsets of a metric space (M,d),
ζ ∈ Z4 and α, η : P × P → [0,∞) be mappings. A non-self mapping T : P → Q is
said to be (α, η)-Z-proximal contraction, if

α(u, v) ≥ η(u, v)
d(p, T u) = d(P,Q)
d(q, T v) = d(P,Q)

 =⇒ ζ(d(p, q), d(u, v)) ≥ 0, (2.2)

for all p, q, u, v ∈ P.

We provide the following examples illustrating Definition 2.5 where Definition
2.3 is not applicable.

Example 2.6. Let M = R be endowed with the usual metric d, P = [0, 12 ]∪{1, 10}
and Q = [0, 16 ] ∪ {1, 10}. Define a mapping T : P → Q by

T u =


10, if u = 1,

1, if u = 10,
u
6 , if u ∈

[
0, 12
]
.

It is obvious that d(P,Q) = 0 and P0 = Q0 = Q. Now, define α, η : P ×P → [0,∞)
by

α(u, v) =

{
4, if u, v ∈

[
0, 12
]
,

0, otherwise,
and η(u, v) = 2.

Then T is (α, η)-Z-proximal contraction, but not a Z-proximal contraction where
ζ(t, s) = 1

2s− t for all t, s ∈ [0,∞). Indeed, let us consider

α(u, v) ≥ η(u, v),
d(p, T u) = d(q, T v) = d(P,Q).

(2.3)

Taking into account (2.3), we get that u, v ∈
[
0, 12
]
, and so p = T u = u

6 and
q = T v = v

6 . Then

ζ (d(p, q), d(u, v)) =
1

2
d(u, v)− d(p, q)

=
1

2
|u− v| − 1

6
|u− v| ≥ 0.

It means that T is (α, η)-Z-proximal contraction. On the other hand, let
d(0, T 0) = d(P,Q) = 0,
d(10, T 1) = d(P,Q) = 0.
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Then

ζ (d(0, 10), d(0, 1)) =
1

2
d(0, 1)− d(0, 10)

=
1

2
− 10 6≥ 0,

and hence T is not a Z-proximal contraction.

Example 2.7. Let M = {(0, 1), (1, 0), (−1, 0), (0,−1)} be endowed with the Euclid-
ian metric d. Consider P = {(0, 1), (1, 0)} and Q = {(0,−1), (−1, 0)}. We
have d(P,Q) =

√
2. Let T : P → Q be given as T (u, v) = (−v,−u). Choose

ζ(t, s) = ks− t for s, t ≥ 0, with k ∈ (0, 1). Take α, η : P × P → [0,∞) as

α(u, v) =

{
1, if u = v,

0, otherwise,
and η(u, v) =

{
1
4 , if u = v,

3, otherwise.

Let u, v, p, q ∈ P such that

α(u, v) ≥ η(u, v) and d(p, T u) = d(q, T v) = d(P,Q) =
√
2.

We should have u = v = p = q = (0, 1) or u = v = p = q = (1, 0). Then,
ζ(d(p, q), d(u, v)) = ζ(0, 0) = 0, that is, T is (α, η)-Z-proximal contraction.
On the other hand, by taking u = p = (0, 1) and q = v = (1, 0), we have

d(p, T u) = d(q, T v) = d(P,Q),

but ζ(d(p, q), d(u, v)) = ζ(
√
2,
√
2) = (k− 1)

√
2 < 0, that is, T is not a Z-proximal

contraction.

3. Main Results

The first result of this study is the following.

Theorem 3.1. Let (P,Q) be a pair of nonempty subsets of a complete metric space
(M,d) such that P0 is nonempty, T : P → Q and α, η : P × P → [0,∞) be given
mappings. Suppose the following conditions are satisfied:

(i) P0 is closed and T (P0) ⊆ Q0;
(ii) T is triangular (α, η)-proximal admissible;
(iii) there exist u0, u1 ∈ P0 such that d(u1, T u0) = d(P,Q) and α (u0, u1) ≥

η (u0, u1);
(iv) T is a continuous (α, η)-Z-proximal contraction.
Then T has a best proximity point in P. If α(u, v) ≥ η(u, v) for all u, v ∈ Best(T ),

then T has a unique best proximity point u∗ ∈ P. Moreover, for each u ∈ M, we
have limn→∞ T nu = u∗.

Proof. By virtue of the assertion (iii), there exist u0, u1 ∈ P0 such that
d(u1, T u0) = d(P,Q) and α (u0, u1) ≥ η (u0, u1) .
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Since T (P0) ⊆ Q0, there exists u2 ∈ P0 such that
d(u2, T u1) = d(P,Q).

Thus, we get
α(u0, u1) ≥ η(u0, u1),
d(u1, T u0) = d(u2, T u1) = d(P,Q).

Since T is an (α, η)-proximal admissible, we conclude that α (u1, u2) ≥ η (u1, u2) .
Now, we have

d(u2, T u1) = d(P,Q) and α (u1, u2) ≥ η (u1, u2) .
Again, since T (P0) ⊆ Q0, there exists u3 ∈ P0 such that

d(u3, T u2) = d(P,Q),

and thus
α(u1, u2) ≥ η(u1, u2),
d(u2, T u1) = d(u3, T u2) = d(P,Q).

Since T is (α, η)-proximal admissible, this implies that α (u2, u3) ≥ η (u2, u3) .
Thereby, we have

d(u3, T u2) = d(P,Q) and α (u2, u3) ≥ η (u2, u3) .
By repeating this process, a sequence {un} in P0 can be constituted by the following
way:

d(un+1, T un) = d(P,Q) and α (un, un+1) ≥ η (un, un+1) , (3.1)
for all n ∈ N ∪ {0} . If there exists n0 such that un0 = un0+1, then

d(un0 , T un0) = d(un0+1, T un0) = d(P,Q).

This means that un0 is a best proximity point of T and the proof is finalized. Due
to this reason, we suppose that un 6= un+1 for all n. Using (3.1), for all n ∈ N, we
get

α (un−1, un) ≥ η (un−1, un) ,
d(un, T un−1) = d(un+1, T un) = d(P,Q).

Since T is an (α, η)-Z-proximal contraction, for all n ∈ N, we obtain
0 ≤ ζ(d(un, un+1), d(un−1, un)) < d(un−1, un)− d(un, un+1). (3.2)

It follows from the above inequality that

0 < d(un, un+1) < d(un−1, un), for all n ∈ N.
Therefore the sequence {d(un, un+1)} is decreasing and so there exists r ≥ 0 such
that limn→∞ d (un, un+1) = r. Now, our purpose is to show that r = 0. On the
contrary, assume that r > 0. Set the sequences {an} and {bn} as an = d(un, un+1)
and bn = d(un−1, un). Then since limn→∞ an = limn→∞ bn = r and an < bn for all
n, by the axiom (ζ4), we deduce

0 ≤ lim sup
n→∞

ζ (d(un, un+1), d(un−1, un)) < 0,
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which is a contradiction. That’s why r = 0, that is,

lim
n→∞

d (un, un+1) = 0. (3.3)

Let us prove now that {un} is a Cauchy sequence in P0. Suppose, to the contrary,
that {un} is not a Cauchy sequence. Then there exists an ε > 0 for which we can
find two subsequences {umk

} and {unk} of {un} such that nk is the smallest index
for which nk > mk > k and

d (umk
, unk) ≥ ε and d (umk

, unk−1) < ε. (3.4)

Using the triangular inequality and (3.4), we have

ε ≤ d (umk
, unk) ≤ d (umk

, unk−1) + d (unk−1, unk)

< ε+ d (unk−1, unk) .

Letting k →∞ in the above inequality and using (3.3 ), we obtain

lim
k→∞

d (umk
, unk) = ε. (3.5)

Again, using the triangular inequality,

|d (umk+1, unk+1)− d (umk
, unk)| ≤ d (umk+1, umk

) + d (unk , unk+1) ,

which yields that
lim
k→∞

d (umk+1, unk+1) = ε. (3.6)

Since T is triangular (α, η)-proximal admissible, by using (3.1), we infer that
α(um, un) ≥ η(um, un), for all n,m ∈ N ∪ {0} with m < n. (3.7)

By combining (3.1) and (3.7), for all k ∈ N ∪ {0}, we have
α(umk

, unk) ≥ η(umk
, unk),

d(umk+1, T umk
) = d(unk+1, T unk) = d(P,Q).

Since T is an (α, η)-Z-proximal contraction, the last equation gives us that, for all
k ∈ N ∪ {0}

0 ≤ ζ(d(umk+1, unk+1), d(umk
, unk)) < d(umk

, unk)− d(umk+1, unk+1). (3.8)

Choose the sequences {ak = d(umk+1, unk+1)} and {bk = d(umk
, unk)}. Then, from

(3.5), (3.6) and (3.8), we conclude that limk→∞ ak = limk→∞ bk = ε and ak < bk
for all k. Taking lim sup of (3.8) and considering (ζ4), we get

0 ≤ lim sup
n→∞

ζ ((d(umk+1, unk+1), d(umk
, unk)) < 0,

which is a contradiction. Accordingly, {un} is a Cauchy sequence in P0. Since P0 is
a closed subset of the complete metric space (M,d), there exists u ∈ P0 such that

lim
n→∞

d(un, u) = 0.

In view of the fact that T is continuous, we deduce that
lim
n→∞

d(T un, T u) = 0.
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Thus, using the last two equations and (3.1), we have

d(P,Q) = lim
n→∞

d(un+1, T un) = d(u, T u),

which means that u ∈ P0 ⊆ P is a best proximity point of T . As the final step,
we shall show that the set Best(T ) is a singleton. Assume that v is another best
proximity point of T . Then, by hypothesis, we have α(u, v) ≥ η(u, v), and thus

α(u, v) ≥ η(u, v),
d(u, T u) = d(v, T v) = d(P,Q).

Then, by the argument (iv), we infer that

0 ≤ ζ (d(u, v), d(u, v)) < d(u, v)− d(u, v) = 0,

which is a contradiction. Thus, the best proximity point of T is unique. �

The following example illustrates Theorem 3.1.

Example 3.2. LetM = [0,∞)×[0,∞) be endowed with the metric d((u1, u2), (v1, v2)) =
|u1 − v1| + |u2 − v2|. Take P = {1} × [0,∞) and Q = {0} × [0,∞). We mention
that d(P,Q) = 1, P0 = P and Q0 = Q. Consider the mapping T : P → Q as

T (1, u) =
{
(0, u

2+1
4 ) if 0 ≤ u ≤ 1

(0, u− 1
2 ) if u > 1.

Note that T is continuous at u0 = 1 and T (P0) ⊆ Q0. Consider ζ(a, b) = kb − a
with k ∈ ( 12 , 1), for all a, b ≥ 0. Define α, η : P × P → [0,∞) as follows{
α((1, u), (1, v)) = 1 if u, v ∈ [0, 1]
α((1, u), (1, v)) = 0 if not,

and

{
η((1, u), (1, v)) = 1

3 if u, v ∈ [0, 1]
η((1, u), (1, v)) = 2 if not.

Let (1, u), (1, v), (1, p) and (1, q) in P such that
α((1, u), (1, v)) ≥ η((1, u), (1, v))
d((1, p), T (1, u)) = d(P,Q) = 1,

d((1, q), T (1, v)) = d(P,Q) = 1.

Then, necessarily, (u, v) ∈ [0, 1] × [0, 1]. Also, p = 1+u2

4 and q = 1+v2

4 . Here, we
have that α((1, p), (1, q)) ≥ η((1, p), (1, q)), that is, T is (α, η)-proximal admissible.
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Moreover,

ζ(d((1, p), (1, q)), d((1, u), (1, v))) = ζ(d((1,
1 + u2

4
), (1,

1 + v2

4
)), d((1, u), (1, v)))

= ζ(|u
2

4
− v2

4
|, |u− v|)

= k|u− v| − |u
2

4
− v2

4
|

= k|u− v| − 1
4
(u+ v)|u− v|

≥ (k − 1
2
)|u− v| ≥ 0.

Then T is an (α, η)-Z-proximal contraction. Also, for u0 = (1, 1) and u1 = (1, 12 ),
we have

d(u1, T u0) = d((1,
1

2
), (0,

1

2
)) = 1 = d(P,Q) and α(u0, u1) ≥ η(u0, u1),

that is, condition (iii) holds. Moreover, it is obvious that T is triangular (α, η)-
proximal admissible. All hypotheses of Theorem 3.1 are verified, so T admits a best
proximity point, which is u = (1, 2−

√
3).

In the subsequent result, we replace the continuity assertion in the previous
theorem with the following condition in P :
(C) If a sequence {un} in P converges to u ∈ P such that α (un, un+1) ≥

η (un, un+1), then α (un, u) ≥ η (un, u) for all n ∈ N.
Theorem 3.3. Let (P,Q) be a pair of nonempty subsets of a complete metric space
(M,d) such that P0 is nonempty, T : P → Q and α, η : P × P → [0,∞) be given
mappings. Suppose the following conditions are satisfied:

(i) P0 is closed and T (P0) ⊆ Q0;
(ii) T is triangular (α, η)-proximal admissible;
(iii) there exist u0, u1 ∈ P0 such that d(u1, T u0) = d(P,Q) and α (u0, u1) ≥

η (u0, u1);
(iv) (C) holds and T is an (α, η)-Z-proximal contraction.
Then T has a best proximity point in P. If α(u, v) ≥ η(u, v) for all u, v ∈ Best(T ),

then T has a unique best proximity point u∗ ∈ P. Moreover, for each u ∈ M, we
have limn→∞ T nu = u∗.

Proof. By pursuing on the lines of the proof of Theorem 3.1, there exists a Cauchy
sequence {un} ⊂ P0 satisfying the expression (3.1) and un → p. In view of (i), P0
is closed and so p ∈ P0. Also, since T (P0) ⊆ Q0, there exists z ∈ P0 such that

d(z, T p) = d(P,Q). (3.9)

On the other hand, by (C), we get

α (un, p) ≥ η (un, p) , for all n ∈ N.
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Thus, from (3.1), we have

α(un, p) ≥ η(un, p),
d(un+1, T un) = d(z, T p) = d(P,Q).

Therefore, from the assertion (iv), we conclude

0 ≤ ζ(d(un+1, z), d(un, p)) < d(un, p)− d(un+1, z), (3.10)

and so

lim
n→∞

d(un+1, z) ≤ 0.

By the uniqueness of limit, we obtain z = p. Consequently, from (3.9), we have
d(p, T p) = d(P,Q). Uniqueness of the best proximity point follows from the proof
of Theorem 3.1. �

Example 3.4. Let X = R2 be endowed with the Euclidian metric,
P = {(0, u) : u ≥ 0} and Q = {(1, u) : u ≥ 0}. Note that d(P,Q) = 1, P0 = P
and Q0 = Q. Define T : P → Q and α : P × P → [0,∞) by

T (0, u) =
{
(1, u9 ), if 0 ≤ u ≤ 1,
(1, 12 ), if u > 1,

and

α((0, u), (0, v)) =

{
2η((0, u), (0, v)), if u, v ∈ [0, 1] or u = v,

0 = η((0, u), (0, v)), otherwise.

Choose ζ(a, b) = 2
3b− a for all a, b ∈ [0,∞). Let u, v, p, q ≥ 0 such that

α((0, u), (0, v)) ≥ η((0, u), (0, v))
d((0, p), T (0, u)) = d(P,Q) = 1

d((0, q), T (0, v)) = d(P,Q) = 1.

Then u, v ∈ [0, 1] or u = v. We distinguish the following cases.
Case 1: u, v ∈ [0, 1]. Here, T (0, u) = (1, u9 ) and T (0, v) = (1,

v
9 ). Also,√

1 + (p− u

9
)2 =

√
1 + (q − v

9
)2 = 1,

that is, p = u
9 and q =

v
9 . So, α((0, p), (0, q)) ≥ η((0, p), (0, q)). Moreover,

ζ(d((0, p), (0, q)), d((0, u), (0, v))) =
2

3
d((0, u), (0, v))− d((0, u

9
), (0,

v

9
))

=
2

3
|u− v| − |u− v|

9
≥ 0.

Case 2: u = v > 1. Here, T (0, u) = (1, 12 ) and T (0, v) = (1,
1
2 ). Similarly, we get

that p = q = 1
2 . So, α((0, p), (0, q)) ≥ η((0, p), (0, q)). Also, ζ(d((0, p), (0, q)), d((0, u), (0, v))) ≥

0.
Case 3: u, v > 1 with u 6= v. Then, the proof is similar to that in Case 2.
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In each case, we get that T is (α, η)-proximal admissible. It is also easy to
see that T is triangular (α, η)-proximal admissible. Also, T is (α, η)-Z-proximal
contraction. Moreover, if {un = (0, pn)} is a sequence in P such that α (un, un+1) ≥
η (un, un+1) for all n and un = (0, pn) → u = (0, p) as n → ∞, then pn → p. We
have pn, pn+1 ∈ [0, 1] or pn = pn+1. We get that p ∈ [0, 1] or pn = p. This implies
that α (un, u) ≥ η (un, u) for all n.
Also, there exists (u0, u1) = ((0, 1), (0, 19 )) ∈ P0 × P0 such that

d(u1, T u0) = 1 = d(P,Q) and α (u0, u1) ≥ η (u0, u1) .
Consequently, all conditions of Theorem 3.3 are satisfied. Therefore, T has a unique
best proximity point in P which is (0, 0).

Corollary 3.5. Let (P,Q) be a pair of nonempty subsets of a complete metric space
(M,d). Suppose that T : P → Q is a Z-proximal contraction and P0 is nonempty
closed subset of M with T (P0) ⊆ Q0. Then T has a unique best proximity point
u∗ ∈ P. Moreover, for each u ∈M, we have limn→∞ T nu = u∗.

Proof. The proof follows from Theorem 3.1 (Theorem 3.3), if we take α(u, v) =
η(u, v) = 1. �

Remark 3.6. Theorem 3.1 (Theorem 3.3) extend and improve various best prox-
imity point and fixed point results in complete metric spaces. Furthermore, some
best proximity point and fixed point results in metric spaces endowed with a graph or
a binary relation can be derived from our results under some suitable α-admissible
mappings.

4. A Variational Inequality Problem

Let C be a nonempty, closed and convex subset of a real Hilbert space H, with
inner product 〈·, ·〉 and corresponding norm ‖ · ‖. A variational inequality problem
can be stated as follows:

Find u ∈ C such that 〈Su, v − u〉 ≥ 0 for all v ∈ C, (4.1)

where S : H → H is a given operator. This problem has been a classical sub-
ject in economics, operations research and mathematical physics, particularly in
the calculus of variations associated with the minimization of infinite-dimensional
functionals; see, for instance, [15] and the references therein. It is closely related to
many problems of nonlinear analysis, such as optimization, complementarity and
equilibrium problems and finding fixed points; see, for instance, [8,15,23]. To solve
problem (4.1), we define the metric projection operator PC : H → C. Here, we
recall that for each u ∈ H, there exists a unique nearest point PCu ∈ C satisfying
the inequality

‖u− PCu‖ ≤ ‖u− v‖, for all v ∈ C.
The following lemmas correlate the solvability of a variational inequality problem

to the solvability of a special fixed point problem.
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Lemma 4.1. Let z ∈ H. Then u ∈ C satisfies the inequality 〈u − z, y − u〉 ≥ 0,
for all y ∈ C if and only if u = PCz.

Lemma 4.2. Let S : H → H. Then u ∈ C is a solution of 〈Su, v − u〉 ≥ 0, for all
v ∈ C, if and only if u = PC(u− λSu), with λ > 0.

Theorem 4.3. Let C be a nonempty closed and convex subset of a real Hilbert space
H. Suppose that S : H → H is such that PC(I − λS) : C → C is a Z-proximal
contraction. Then there exists a unique element u∗ ∈ C such that 〈Su∗, v−u∗〉 ≥ 0
for all v ∈ C. Moreover, for any arbitrary element u0 ∈ C, the sequence {un}
defined by un+1 = PC(un − λSun) where λ > 0 and n ∈ N ∪ {0}, converges to u∗.

Proof. We consider the operator F : C → C defined by Fx = PC(x − λSx) for
all x ∈ C. By Lemma 4.2, u ∈ C is a solution of 〈Su, v − u〉 ≥ 0 for all v ∈ C,
if and only if u = Fu. Now, F satisfies all the hypotheses of Corollary 3.5 with
P = Q = C. It now follows from Corollary 3.5 that the fixed point problem u = Fu
admits a unique solution u∗ ∈ C. �
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