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Abstract: Artificial intelligence (AI) is a computer science that tries to imitate human-like intelligence on machines using computer 
software and algorithms without direct human stimuli to perform certain tasks. Machine learning (ML) is the subunit of AI that uses 

data-driven algorithms that learn to emulate human behavior based on a previous example or experience. Deep learning (DL) is an 

ML technique that utilizes deep neural networks to construct a model. The growth and sharing of data, increased computing power, 
and developments in ML have initiated a transformation in healthcare. Advances in radiation oncology have generated substantial 

data that must be integrated with computed tomography (CT) imaging, dosimetry, and other imaging modalities before each 

fraction. There are many algorithms used in Radiation Oncology. Each of these methods has advantages and limitations and 
different computing requirements. In this paper, we aimed to review the radiotherapy (RT) process by identifying the specific areas 

in which the quality and efficiency of ML can be increased and a workflow chart can be created. The RT stage is divided into seven 

groups as patient assessment, simulation, contouring, planning, quality assessment (QA), treatment application, and patient follow-
up. A systematic evaluation of the applicability, limitations and advantages of ML algorithms was performed at each stage. 
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Özet: Yapay zeka (YZ), belirli görevleri yerine getirmek için doğrudan insan uyaranları olmadan bilgisayar yazılımı ve 

algoritmaları kullanan makinelerde insan benzeri zekayı taklit etmeye çalışan bir bilgisayar bilimidir. Makine öğrenimi (MÖ), 

önceki bir örneğe veya deneyime dayanarak insan davranışını taklit etmeyi öğrenen veri odaklı algoritmalar kullanan yapay zekanın 
alt birimidir. Derin öğrenme (DÖ), bir model oluşturmak için derin sinir ağlarını kullanan bir MÖ tekniğidir. Verilerin büyümesi ve 

paylaşımı, artan bilgi işlem gücü ve MÖ'deki gelişmeler sağlık hizmetlerinde bir dönüşüm başlatmıştır. Radyasyon onkolojisindeki 

ilerlemeler, her fraksiyon öncesi yapılan bilgisayarlı tomografi (BT) görüntülemesi, dozimetri ve görüntüleme ile entegre edilmesi 
gereken önemli miktarda veri üretmiştir. Radyasyon Onkolojisinde kullanılan birçok algoritma vardır. Bu yöntemlerin her birinin 

farklı hesaplama gücü gereksinimleriyle avantajları ve sınırlamaları vardır. Bu derlemede, radyoterapi (RT) sürecinin, MÖ ile 

kalitesinin ve verimliliğinin arttırılabileceği belirli alanları belirleyerek iş akışı sırası ile gözden geçirme amaçlanmıştır. RT aşaması, 
hasta değerlendirmesi, simülasyon, konturlama, planlama, kalite kontrol, tedavi uygulama ve hasta takibi olarak yedi gruba 

ayrılmıştır. Her aşamaya MÖ algoritmalarının uygulanabilirliği, sınırlamaları, avantajları ile ilgili sistematik bir değerlendirme 
yapılmıştır. 

 

Anahtar Kelimeler: Radyoterapi, makine öğrenmesi, derin öğrenme, yapay zeka 
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1. Introduction

Artificial intelligence (AI) is a computer 

science that tries to imitate human-like 

intelligence on machines using computer 

software and algorithms without direct human 

stimuli to perform certain tasks (1,2). Machine 

learning (ML) is the subunit of AI that uses 

data-driven algorithms that learn to emulate 

human behavior based on a previous example 

or experience (3). Deep learning (DL) is an 

ML technique that utilizes deep neural 

networks to construct a model. Increased 

computing power and reduced financial 

obstacles have eventually led to the 

emergence of the DL era (4). Figure 1 shows a 

schematic representation that reflects the 

overlapping areas of and relationships 

between AI, ML, and DL. 

 

Figure 1. Artificial intelligence 

 

The growth and sharing of data, increased 

computing power, and developments in ML 

have initiated a transformation in healthcare. 

Advances in radiation oncology have 

generated substantial data that must be 

integrated with computed tomography (CT) 

imaging, dosimetry, and other imaging 

modalities before each fraction. 

Evidence-based medicine relies on 

randomized controlled trials designed for a 

large patient population. However, increasing 

the number of clinical and biological 

parameters to be investigated makes it 

difficult to design research (5). New 

approaches are required for all patient 

populations. Clinicians should use all 

diagnostic tools, such as medical imaging, 

blood tests, and genetic tests to decide on the 

appropriate combination of treatments 

(radiotherapy, chemotherapy, targeted 

therapy, immunotherapy, etc.). There are a 

series of individual differences that are 

responsible for each patient’s disease or 

associated with the treatment response and 

clinical outcome. The concept of personalized 

treatment is based on identifying and using 

these factors in each case (6). The integration 

of such large and heterogeneous data is a 

problem that needs to be overcome to produce 

accurate models. Lambin et al. described in 

detail the features that should be included and 

considered in a prediction model as follows 

(7): 

 Clinical features; e.g., patient 

performance status, grade and stage of 

tumor, blood tests, and patient 

surveys, 

 Treatment features; e.g., dose 

distribution and chemotherapy, 

 Imaging features; e.g., tumor size and 

volume, metabolic uptake, and 

radiomics, 

 Molecular features; e.g., intrinsic 

radiosensivity, hypoxia, proliferation, 

and normal tissue reactions. 

Common algorithms used in radiation 

oncology: 

 Decision trees in which a simple 

algorithm answers questions in a 

predetermined order to create classes 

that exclude each other (8), 
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 Naive Bayes classifiers (9), which 

create probabilistic dependencies 

between variables (9), 

 K-nearest Neighbors, used for 

classification and regression, in which 

a feature is classified according to its 

closest neighbor in the dataset (10), 

 Support Vector Machine (SVM), in 

which a trained model categorizes 

new data (11), 

 Artificial Neural Networks (ANNs) 

inspired by biological neural networks 

(12), 

 DL, a variant of ANNs using multiple 

layers of neurons (2). 

Each of these methods has advantages and 

limitations and different computing 

requirements. 

In this paper, we aimed to review the 

radiotherapy (RT) process by identifying the 

specific areas in which the quality and 

efficiency of ML can be increased and a 

workflow chart can be created. The RT stage 

is divided into seven groups as patient 

assessment, simulation, contouring, planning, 

quality assessment (QA), treatment 

application, and patient follow-up, as shown 

in the flow chart given in Figure 2. A 

systematic evaluation of the applicability, 

limitations and advantages of ML algorithms 

was performed at each stage. 

 

 

Figure 2. Radiotherapy workflow chart 
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Evaluation of Stages in Radiation Oncology 

by Machine Learning 

Patient Assessment 

The RT process begins with the patient’s 

consultation, in which the radiation oncologist 

evaluates the risks and benefits of treatment 

and the clinical status of the patient to 

determine a treatment strategy. Tumor stage, 

mutation or genetic status (e.g., O6-

methylguanine DNA methyltransferase -

MGMT), viral status (e.g., HPV), previous 

and current treatments, surgical margin status, 

and general performance status are among the 

useful information to evaluate the potential 

benefit of treatment. At the same time, age, 

comorbidities, organ functions (e.g., kidney 

and liver), proximity between the tumor and 

normal critical tissues are parameters 

affecting tolerability to treatment. These are 

all features that can be used to construct 

treatment outcome and toxicity prediction 

models. These models can then be used to 

identify risks and benefits and guide doctors. 

Having sufficient information to define and 

classify the information available at this stage 

is important for the successful implementation 

of any prediction model (13). 

The radiation oncologist should consider 

many factors during the evaluation of the 

patient, as well the interactions between these 

factors, and make a treatment decision 

accordingly. At this point, data-based 

prediction models can guide the doctor and 

make the decision-making process faster and 

more accurate. For example, when a patient 

with lung cancer is evaluated for stereotactic 

RT, the patient’s respiratory functions, lung 

capacity, tumor size, proximity of the tumor 

to critical organs, comorbidities, and patient 

performance will affect both the treatment 

response and toxicity. If a model is 

constructed using these and other similar 

factors, the response and toxicity rates can be 

determined before starting treatment. As 

another example, in a patient that has 

undergone breast-sparing surgery after a left 

breast cancer diagnosis, a modeling including 

patient and treatment features can be 

established to predict whether this patient 

would benefit from the breath-hold technique. 

Big data is needed to create these prediction 

models. The transition to the use of ML will 

increase the cooperation between health 

centers during the data collection phase and 

also help standardize treatments (14). 

It has been suggested in various studies that 

logistic regression analysis and decision trees 

are equally effective in establishing a balance 

between the interpretability of the results and 

accurate predictions (15, 16) while for 

accuracy rates, random forest or gradient 

boosting and SVM algorithms are used 

(17,18). 

Simulation 

After the radiotherapy decision is made, a 

good simulation is required to select the 

correct treatment. The immobilization 

technique, scanning interval, and treatment 

area should be determined well. Preliminary 

preparations, such as whether fiducial use, 

full/empty bladder, and full/empty rectum are 

required for simulation, kidney function tests 

if intravenous contrast will be applied, and 

fasting status should be considered 

thoroughly. An accurate and good simulation 

is critical to obtaining a high-quality, robust 

treatment plan for the patient. In clinical 

practice, it is not uncommon to repeat CT due 

to deficiencies and inaccuracies during CT 

simulation, such as inadequate scanning 

interval, inadequate/incorrect immobilization 

technique, inappropriate level of 

bladder/rectum content, and hardware-related 

artifacts (14). 

There are many questions that can be 

answered with ML algorithms to increase the 

overall workflow efficiency; e.g., Will this 

patient benefit from the use of an intravenous 

contrast agent? Which immobilization 

technique should be used? Can 4DCT be 

beneficial for this patient? 

Contouring 

In the standard workflow, the target volume 

and organs at risk (OAR) are manually 

contoured section by section by the radiation 

oncologist. As a result, this is a long process 

and causes a high degree of variability among 

contours, which constitutes one of the greatest 
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sources of uncertainty in treatment planning 

(19). 

Various attempts have been undertaken for 

automatic contouring, with the most common 

in clinical practice being atlas-based 

segmentation. First, the target image is 

mapped to one or more selected reference 

images. Then, the contours in the reference 

image are transferred to the target image (20). 

Atlas-based methods depend on the choice of 

atlas and the accuracy of reference images 

(21). 

The ML approach in contouring directly 

learns the voxel structure of each image and 

combines it with previous information. 

Successful techniques include statistical and 

decision-learning classifiers, and DL has also 

recently been added to this list. Convolutional 

neural networks (CNNs) have been used for 

contouring organs at risk, and thoracic cancer, 

head and neck and prostate cancer (22-24). 

Table 1 presents the summary of the studies 

conducted. In a study by Lustberg et al., it was 

reported that ML and atlas-based contouring 

provided 61% and 22% time efficiency 

compared to manual contouring (22). This 

time saving is very important, especially when 

intensive clinics are considered. 

 

Table 1. Machine learning in organ contouring  

Publication Tumor 

localization 

Machine 

learning  

Contouring Patient 

number  

Results 

Lustberg et al., 2018 

(22) 

Lung Deep 

learning, 

CNNs 

Contoured by 

CT. 

OAR:  

*Lung 

*Esophagus 

*Heart 

*Mediasten 

* Spinal cord 

 

20 *Manual contouring: 20 

min 

*Atlas-based contouring: 

7.8 min 

*Deep learning 

contouring: 10 min 

User adjustment of 

contours generated by 

machine learning 

reduced contouring time 

of OAR in lung 

radiotherapy. 

Ibragimov and Xing, 

2017 (23) 

Head-neck Deep 

learning,  

CNNs 

Contoured by 

CT. 

OAR: 

* Spinal cord 

*Mandibula 

*Parotid gland 

*Submandibular 

gland 

*Larynx 

*Pharynx 

*Eyes 

*Optic nerves 

*Optic chiasm 

 

50 Superior or comparable 

performance was 

achieved by CNN 

contouring of ms, 

mandibula, larynx, 

pharynx, eyes, and optic 

nerves compared to 

existing systems. CNN 

had low performance in 

the contouring of parotid 

and submandibular 

glands and optic chiasm; 

thus, additional imaging 

modalities are needed for 

the contouring of these 

organs.  

Guo et al., 2016 (24) Prostate Deep 

learning 

Contouring of 

the prostate by 

MRI. 

 

 

66 Modern MRI achieved 

superior accuracy in 

prostate contouring 

compared to other 

methods.  

CNNs, Convolutional neural networks; CT, Computed tomography; OAR, Organs at risk; MRI, Magnetic resonance imaging 

 

Tumor volume contouring is often more 

difficult due to the different shape, size and  

 

localization of tumors, lack of clear 

boundaries, and dependence on the knowledge 
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and experience of the oncologist. However, 

there are tumor contouring studies on brain, 

breast, oropharyngeal and rectal cancers (25-

28), which are summarized and presented in 

Table 2. 

 

Table 2. Machine leaning in target volume contouring  

Publication Tumor 

localization 

Machine 

learning 

Contouring  Patient 

number 

Results 

Men et al., 2018 

(26) 

Breast  Deep dilated 

residual network 

(DD-ResNet) 

CTV 800 Two different deep 

learning methods 

were compared. The 

method proposed by 

the authors 

performed contouring 

in 15 sec per patient 

compared to 4 sec 

and 21 sec obtained 

from the other two 

DL methods. 

The DSC of the 

proposed method for 

contouring accuracy 

was 0.91. 

Cardenas et al., 

2018 (27) 

Oropharynx Deep learning 

(deep auto-

encoders) 

High-risk CTV 52 The median DSC for 

contouring accuracy 

was 0.81 (0.62-0.90). 

Automatic 

contouring can be 

undertaken to prevent 

variability in 

contouring data 

between clinicians. 

Men et al., 2017, 

(28) 

Rectum  Deep learning 

(deep dilated 

convolutional 

neural network) 

CTV 

OAR: 

Bladder 

Right and left 

femur heads 

Small intestine 

Colon 

 

 

278 The mean DSC 

values were  

87.7 for CTV, 93.4 % 

for the bladder, 

92.1% for the left 

femur head,  

92.3% for the right 

femur head, 65.3% 

for the small 

intestine, and 61.8% 

for the colon. 

CTV, Clinic target volume; OAR, Organs at risk; DSC, Dice similarity coefficient 

 

Learning algorithms are trained to maximize 

the similarity measures between outputs and 

the samples provided. Therefore, although 

these algorithms are increasingly skilled at 

imitating human-drawn contours, they are 

limited by the quality of the training samples. 

It is considered that machines cannot be more 

‘accurate' than the human input received as 

clinically essential facts, and their accuracy 

can only be meaningful in the context of 

individuals and institutional protocols until 

more concrete consensus definitions on 

threshold are specified (3). 

 

Planning 

The radiotherapy planning process is 

complicated. Failure in planning can cause 

life-threatening situations, such as missing the 

tumor or applying high doses of radiation to 

normal tissue. As the technology advances, 

the margin applied to the tumor decreases; 

thus, making it possible to miss a tumor even 

with a small margin of error. 

After the target volumes and RAOs are 

defined, the planning process continues with 
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the determination of targets and dosimetric 

targets for OAR, choosing an appropriate 

treatment technique (e.g., 3BKRT, IMRT, 

VMAT, and protons), achieving planning 

targets, and evaluating and approving the 

plan. Most ML practices focus on the stage of 

plan evaluation (29-31). Although related 

techniques are collectively called 'knowledge-

based planning (KBP)', both current academic 

research and commercial products are limited 

to the prediction of dose-volume histograms 

(DVH) at accepted intervals (32-35). KBP 

methods develop fixed relationships from the 

geometrical and dosimetric parameters of 

previous plans. Rather than making a new 

start for each patient, this method draws on 

previous experience related to the initiation of 

optimization parameters in order to predict 

applicable DVH or voxel dose distributions 

and serve as personalized starting points for 

dosimetric changes (36-38). Plans created in 

this way are generally reported to successfully 

wrap around the target volume similar to 

manual plans and have better OAR doses (39). 

The automatic generation of plans is also 

possible after the dosimetric targets are 

determined and the appropriate technique is 

selected. Studies have been conducted to 

solve various aspects of related problems; 

e.g., predicting the best beam directions (40, 

41). It is considered that automatic treatment 

planning is suitable for the 'reinforcement 

learning' technique, in which the algorithm 

can make decisions in the light of certain rules 

and restrictions. Basically, the algorithm will 

make a decision (e.g., it will increase the 

weight of a particular constraint) and learn 

from the treatment planning system whether 

the decision is in the right direction. The 

difficulty of automatic planning using 

reinforcement learning is its requirement of 

integration with the treatment planning 

systems (14). 

Quality Assessment  

QA is very important for the evaluation of 

planned RT, detection of errors, and reporting. 

The features of the radiotherapy QA program 

allowing error detection and prevention, and 

QA of treatment devices are very suitable for 

the application of ML (42-45). Li and Chan 

developed an application to predict the 

performance of linear accelerators (Linac) 

over time (43). The daily QA of RT in cancer 

treatment closely monitors Linac performance 

and is critical for the continuous improvement 

of patient safety and quality of care. 

Cumulative quality assessment measurements 

are valuable to understand Linac behavior and 

allow medical physicists to identify trends in 

output and take preventive actions. In their 

study, Li and Chan applied ANNs and the 

autoregressive moving average time series 

prediction model to five years of Linac QA 

data. Then, they performed verification tests 

and other evaluations for all models and 

concluded that ANNs algorithm could be 

applied accurately and effectively to 

dosimetry and QA (43). Valdes et al. 

developed ML applications to estimate the 

QA transition rates of IMRT and detect 

problems in the Linac imaging system 

automatically (42). Carlson et al. developed 

an ML approach to predict multi-leaf 

collimator (MLC) position errors (46). 

Inconsistencies between the planned and 

transmitted movements of MLCs are a major 

source of error in dose distribution during RT. 

In the study of Valdes et al., for the prediction 

models of ML, various factors, such as leaf 

movement parameters, leaf position and 

speed, and the movement of the leaf toward or 

away from isocenter of MLC were determined 

from the plan files. The position differences 

between synchronized DICOM-RT planning 

files and DynaLog files reported during QA 

delivery were used for the training of the 

models. To assess the effect on the patient, the 

planned and predicted DVHs were compared 

with the DVH in the positions that were 

applied treatment. In all cases, the DVH 

parameters predicted for OAR, especially 

around the treatment area were found to be 

closer to the DVH in the position given 

treatment compared to the planned parameters 

(46). 

Treatment Application 

During radiation therapy, adjustments to 

treatment may be needed to ensure the proper 

implementation of the plan. The adjustments 

may be required as a result of both online 

factors, such as the patient’s pretreatment 
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position, and longer-term factors related to 

anatomical changes and response to treatment. 

Images obtained before treatment should be 

aligned with those taken in the planning CT 

and they should be a perfect match. Today, 

many modern Linac devices incorporate daily 

“cone-beam” CT (CBCT) that uses mega-

voltage X-rays for treatment verification, but 

this imaging is not sufficient to distinguish 

soft tissue structures. However, since these 

images are used to adapt treatment plans to 

patients’ daily anatomy and reduce intra-

fractional shifts, they are considered suitable 

for image-guided radiotherapy. Before 

applying RT daily, CBCT needs to be 

reviewed before each treatment and two or at 

least one radiotherapy technique is required 

for this procedure. When there is an 

anatomical difference between CBCT and 

planning CT, radiotherapy technicians should 

notify the radiation oncologist and medical 

physicist. At this stage, it is necessary to 

decide whether to continue treatment with this 

difference or if a new CBCT is required. Each 

of these steps delays patient treatment and 

causes a significant increase in the workload 

of the RT department. They also lead to the 

growth of ML in parallel with the training 

program in radiation oncology. In addition to 

being able to cope with the growing workload 

of existing staff, innovations in modern 

technology and the ability to benefit from it 

depend on accessibility to sufficient human 

resources. ML has also been used for 

replanning; i.e., defining candidate patients 

for adaptive RT. With machine learning, the 

machine will shorten the time it takes to train 

the staff as they can “learn”. (47). Classifiers 

and clustering algorithms have been 

developed to predict patients that will most 

benefit from updated plans during fractionated 

RT, based on anatomical and dosimetric 

variations (tumor shrinkage, patient 

weakening, edema, etc.) (48-49). However, it 

should also be taken into account that since 

ML learns about previous patients, their plans, 

and adaptive RT from the available data, it 

will mimic past protocols rather than 

determining the ideal time for replanning. 

 

 

Patient Follow-up 

ML also has the potential to change the way 

radiation oncologists follow up patients 

undergoing definitive treatments. After 

surgery, the tumor may disappear during 

imaging and tumor markers can quickly 

normalize. In contrast, after RT, the changes 

in imaging (such as loss of contamination, 

PET involvement or diffusion restriction, and 

reduced tumor size) and the response of tumor 

markers are gradual. These characteristics are 

monitored regularly over time and response 

assessment is performed based on the changes 

that are considered to be indicative of 

therapeutic efficacy and complemented by 

clinical experience. This assessment takes 

time, but if patients not responding to 

treatment can be predicted earlier, the 

decision to implement an additional dose of 

RT or additional systemic treatments can be 

made earlier, which may improve oncological 

outcomes. In this context, early studies in the 

field of radiology are promising. In radiology, 

quantitative features are extracted to 

characterize an image based on size and 

shape, image density, texture, relationships 

between voxels, and some other 

characteristics. ML algorithms can be used to 

associate image-based features with biological 

observations or clinical results (50-55). 

Using techniques for response and survival 

prediction in radiotherapy patients presents an 

important opportunity to further improve 

decision support systems and to provide an 

objective assessment of the relative benefits of 

various treatment options for patients. Bryce 

et al. used ML to evaluate the data from a 

randomized phase II trial conducted with 95 

patients with advanced stage head and neck 

cancer who underwent RT ± KT and 

determined the important variables for two-

year survival as T stage, N stage, tumor size, 

tumor resectability, and hemoglobin value. 

The two-year survival was reported as AUC 

ROC 0.78 ± 0.05 (56). In another study 

related to prostate cancer, 119 cases were 

assessed, the RT dose, dose distribution, and 

associated biological factors were 

investigated, and biochemical control and 

bladder and rectum toxicity were predicted 

(57). 
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A promising area for implementing 

techniques in radiation oncology is to predict 

toxicity as a valuable decision support system 

for clinicians (58). The first ML study on 

toxicity was undertaken in 2009 by Zhang et 

al. to evaluate the complications of IMRT. A 

total of 120 plans were created for a head and 

neck cancer case and a further 256 plans were 

produced for a prostate cancer case to 

examine the prediction results of the saliva 

flow rate and grade 2 rectal bleeding. The 

absolute error rate in the estimation of the 

saliva flow rate was calculated as 0.42% and 

the accuracy of grade 2 rectal bleeding 

prediction was 97% (59). Pella et al. recorded 

the clinical and dosimetric data of 321 

prostate cancer patients, scored 

gastrointestinal and genitourinary acute 

toxicities, and classified the patients according 

to the mild and severe toxicity categories. 

Using ML algorithms, the accuracy was 

determined as AUC 0.7 (60). In another study 

evaluating rectal toxicity in cervical cancer, 

the authors predicted grade 2 rectal toxicity 

based on the dose distribution in the rectum 

using ML and found AUC as 0.7 (61). In 

another ML study, they predicted 

sensorineural hearing loss with 70% accuracy 

using CT radiomics in cases diagnosed with 

head and neck cancer and treated with RT + 

CT (62). 

2. Conclusion 

In radiation oncology, ML and DL can now 

be involved in every step from patient 

consultation to follow-up and contribute to 

clinicians and society, but there are still many 

challenges that need to be overcome and 

many problems to be solved. For ML, large 

data sets must be created and improved. It is 

considered that robust models cannot be 

constructed with data from a single institution, 

and data sharing is required. In addition, the 

data collection process should be 

standardized. Today, the accuracy and quality 

of data are of great importance since no ML 

algorithm is able to correct errors in training 

data. 
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