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1. Triangles of unit circumradius

How to choose a triangle randomly on the circumference of a unit circle? An answer is selecting three points A, B,C on the
circumference uniformly. Many questions arise regarding these triangles ABC. What is the average area or average perimeter
or average inradius of the triangles? The average area of these triangles is known to be % =0.47746.. ., see [2], while the
average perimeter is = = 3.81971 ..., see [1]. Our goal is to calculate the average value of the inradius of the triangles. We
use the same character1zat10n of the trlangle as in [2]. Suppose without loss of generality that the center of the circumcircle of
the triangle is 0(0,0), one vertex is A(1,0) and the other two vertices are determined by directed angles ZAOB = 6, € [0, 7]
and ZAOC = 6, € [0,27). Then the inradius of the triangle is equal to
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We calculate the average value of the inradius. First note that
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Simplify the integrand in /; as follows.
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Analogously, for the integrand in I,
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Using (1.1), we calculate /; similarly as in [2]:
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Therefore, integration by parts gives us
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and analogously,
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and we obtain the average value of the inradius as follows.

Formula 1.
7= [/ 11d61+/ Izdel} = —1=0.21585..

1.1. Variance of the inradius

Calculate the second moment of the inradius.
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Simplification for the integrand in Ji is
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Calculation shows that
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and we get the variance of the inradius.
Formula 2. 3 144
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2. Triangles of unit perimeter

Consider those triangles, whose perimeter is equal to 1. Our goal is to calculate the average area, average inradius and
average circumradius of these triangles. The first question is, how to choose a random triangle ABC of sides a,b,c with
P(AABC) = a+b+ ¢ = 1? Note that necessary and sufficient conditions for a,b, ¢ to generate such a triangle are a,b,¢ > 0,
a+b+c =1 and triangle inequalities a+b > ¢, a+ ¢ > b, b+ ¢ > a. These necessary and sufficient conditions become

1
a+b+c=1 and O<a,b7c<§. (2.1)

Our method of random choosing is the following. Choose number a uniformly from (0, %) , then choose number b uniformly

from (% —a, %) and then fix ¢ = 1 —a — b. This method ensures that (2.1) holds. Then the average value of area
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given by Heron’s formula is
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Calculation [3] gives us
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Formula 3.
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Since the inradius of triangle ABC is r(AABC) = FEAR 2A(AABC), we can easily obtain the average value and the

variance of the inradius.
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The circumradius of triangle ABC is equal to R(AABC) = %. Therefore, the average value of the circumradius is
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After some calculation [3] we have
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Finally, we get the average value of the circumradius.
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does not converge, the circumradius has infinite variance.

3. Conclusion

Our main aim in this study was to examine the average area, perimeter, inradius, circumradius of triangles. One approach for
considering certain triangles is to fix their circumradiuses to 1. Then the average area and perimeter of triangles were already
known to be % and % In the paper, we calculated the average inradius and the variance being 7% —1and % — %. Another
approach is to consider triangles of unit perimeter. We calculated the average area, inradius and circumradius of such triangles
being 1’85, 155 and 21 along with the accompanying variances. A possible extension of these results may be the calculation of
the average values of polygons with more than three sides.
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