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Abstract 

In this study, a recent concepts of soft quasilinear spaces and soft proper quasilinear spaces 

are presented. Further, soft quasi vectors in soft quasilinear spaces are investigated, and several 

related properties are examined such as quasilinear dependent and quasilinear independent. Also, 

the concept of soft quasi norm of soft quasilinear spaces is given. Lastly, soft quasilinear operators 

on soft normed quasilinear spaces are defined, and some results about the bounded soft quasilinear 

operators and continuous soft quasilinear operators are obtained.  

Keywords: Soft quasilinear space; Soft quasi vector; Soft normed quasilinear space; Soft 

quasilinear operator. 

Esnek Quasilineer Uzaylar ve Esnek Normlu Quasilineer Uzaylar  

Öz 

Bu çalışmada, yeni bir kavram olan esnek quasilineer uzay ve esnek proper quasilineer 

uzay kavramları sunulmuştur. Ayrıca esnek quasilineer uzayda bir esnek quasi vektör tanımı 

verilmiş ve bu yeni kavram ile ilgili quasilineer bağımlılık-bağımsızlık özellikleri ele alınmıştır. 

Esnek quasilineer uzaylarda esnek quasi norm kavramı tanıtılmıştır. Son olarak bir esnek normlu 

quasilineer uzayda esnek quasilineer operatör tanımı verilmiş ve sınırlı esnek quasilineer operatör 

ile sürekli esnek quasilineer operatörlerle ilgili bazı sonuçlar elde edilmiştir.  



 Bozkurt (2020)  ADYU J SCI, 10(2), 506-523 
 

 507 

Anahtar Kelimeler: Esnek quasilineer uzay; Esnek quasi vektör; Esnek normlu quasilineer 

uzay; Esnek quasilineer operatör. 

1. Introduction 

In [1], Molodtsov introduced the notion of soft sets which is an unexplored mathematical 

tool for dealing with ambiguities. After, many papers regarding soft sets were published. In the 

paper [2] and [3], the authors preferred the notion of soft element by handling a function and they 

investigated soft real number by using soft element, respectively. After then, in [2], soft vector 

space was presented by handling the notion of soft element and in [4, 5] they worked on soft 

normed spaces and soft linear operators and their fundamental properties.  

On the other hand, in the paper [6], Aseev offered the notions of quasilinear spaces and 

normed quasilinear spaces. Owing to these new definitions, he obtained some results consistent 

with linear spaces. In [7], they presented the idea of topological quasilinear spaces. In [8], they 

worked on proper quasilinear spaces and explored quasilinear dependence-independence. In [9], 

they worked on inner product quasilinear spaces. After, in [10, 11], the authors studied on some 

properties of quasilinear spaces.  

Actually, in the existing paper, we define the concepts of soft quasilinear spaces, soft 

normed quasilinear spaces and soft quasilinear operators. In section two, we give some 

preliminaries about the soft sets and quasilinear spaces. In section three, we give the soft 

quasilinear spaces as a new concept and search some of its properties with examples. Further, we 

study soft proper quasilinear spaces. In section four, we define the soft norm in soft quasilinear 

spaces and present soft quasilnear operators and its various properties. 

2. Preliminaries 

Firstly, we remember some notions in soft set theory and some basic concepts such as 

quasilinear spaces and normed quasilinear spaces. 

Let 𝑉 be an universe and 𝐹 be a set of all probable parameters. Let 𝑃(𝑉) indicate the power 

set of 𝑉 and 𝐵 be a non-empty subset of 𝐹. 

Definition 1. [1] A pair (𝐺, 𝐵) is called a soft set over 𝑉, where 𝐺 is a mapping defined by 

𝐺:𝐵 → 𝑃(𝑉). 

Definition 2. [12] A soft set (𝐺, 𝐵) over 𝑉 is said to be a null soft set represented by 𝛷, if 

for every 𝑏 ∈ 𝐵, 𝐺(𝑏) = ∅. 
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Definition 3. [13] For a soft set (𝐺, 𝐵) over 𝑉, the set 𝑆𝑢𝑝𝑝(𝐺, 𝐵) = {𝑏 ∈ 𝐵: 𝐺(𝑏) ≠ ∅} is 

called support of the soft set (𝐺, 𝐵). The null soft set is a soft set with an empty support. A soft 

set (𝐺, 𝐵) is non-null if 𝑆𝑢𝑝𝑝(𝐺, 𝐵) ≠ ∅. 

Definition 4. [12] A soft set (𝐺, 𝐵) over 𝑉 is said to be an absolute soft set represented by 

�̃�, if for every 𝑏 ∈ 𝐵, 𝐺(𝑏) = 𝑉. 

Definition 5. [3] Let 𝑉 ≠ ∅ and 𝐵 be a nonempty parameter set. Then a function 𝜀: 𝐵 → 𝑉 

is said to be soft element of 𝑉. 

Definition 6. [14, 15] A soft set (𝐺, 𝐵) over 𝑉 is said to be a soft point if there is certainly 

a 𝑏 ∈ 𝐵, such that 𝐺(𝑏) = {𝑣} for some 𝑣 ∈ 𝑉 and 𝐺(𝑏!) = ∅,  for every 𝑏! ∈ 𝑉/{𝑏}. It will be 

indicated by �̃�" . 

Definition 7. [6] A quasilinear space over a field ℝ is a set 𝑄 with a partial order relation 

≼, with the operations of addition 𝑄 × 𝑄 → 𝑄 and scalar multiplication ℝ× 𝑄 → 𝑄 satisfying the 

following conditions: 

(𝑄1) 𝑞 ≼ 𝑞, 

(𝑄2) 𝑞 ≼ 𝑧, if 𝑞 ≼ 𝑤 and 𝑤 ≼ 𝑧, 

(𝑄3) 𝑞 = 𝑤, if 𝑞 ≼ 𝑤 and 𝑤 ≼ 𝑞, 

(𝑄4) 𝑞 + 𝑤 = 𝑤 + 𝑞, 

(𝑄5) 𝑞 + (𝑤 + 𝑧) = (𝑞 + 𝑤) + 𝑧, 

(𝑄6) there exists an element 𝜃 ∈ 𝑄 such that 𝑞 + 𝜃 = 𝑞, 

(𝑄7) 𝛼 ⋅ (𝛽 ⋅ 𝑞) = (𝛼 ⋅ 𝛽) ⋅ 𝑞, 

(𝑄8) 𝛼 ⋅ (𝑞 + 𝑤) = 𝛼 ⋅ 𝑞 + 𝛼 ⋅ 𝑤, 

(𝑄9) 1 ⋅ 𝑞 = 𝑞, 

(𝑄10) 0 ⋅ 𝑞 = 𝜃, 

(𝑄11) (𝛼 + 𝛽) ⋅ 𝑞 ≼ 𝛼 ⋅ 𝑞 + 𝛽 ⋅ 𝑞, 

(𝑄12) 𝑞 + 𝑧 ≼ 𝑤 + 𝑣, if 𝑞 ≼ 𝑤 and 𝑧 ≼ 𝑣, 

(𝑄13) 𝛼 ⋅ 𝑞 ≼ 𝛼 ⋅ 𝑤, if 𝑞 ≼ 𝑤, 
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for every 𝑞,𝑤, 𝑧, 𝑣 ∈ 𝑄 and every 𝛼, 𝛽 ∈ ℝ. 

If an element 𝑞 has an inverse, then it is called regular. If an element 𝑞 has no inverse, then 

it is called singular. Also, 𝑄# express for the set of all regular elements in 𝑄 and 𝑄$ imply the sets 

of all singular elements in 𝑄. Besides, 𝑄# , 𝑄% and 𝑄$ ∪ {0} are subspaces of 𝑄, where 𝑄# regular 

subspace of 𝑄, 𝑄% symmetric subspace of 𝑄 and 𝑄$ ∪ {0} singular subspace of 𝑄. Further, let 𝑄 

be a quasilinear space, 𝑊 ⊆ 𝑄 and 𝑞 ∈ 𝑊. The set 

 𝐹&' = {𝑚 ∈ 𝑊#:𝑚 ≼ 𝑞}, 

is called floor in 𝑊 of 𝑞. In the case of 𝑊 = 𝑄 it is called only floor of 𝑞 and written briefly 𝐹& 

instead of 𝐹&
( [8]. 

Definition 8. [8] Let 𝑄 be a quasilinear space, 𝑊 ⊆ 𝑄 and 𝑞,𝑤 ∈ 𝑊. 𝑊 is called proper 

set if the following cases hold: 

(𝑃𝑄1) 𝐹&' ≠ ∅ for every 𝑞 ∈ 𝑊, 

(𝑃𝑄2) 𝐹&' ≠ 𝐹)' for all pair of points 𝑞,𝑤 such that 𝑞 ≠ 𝑤. 

Definition 9. [6] Let 𝑄 be a quasilinear space. A function ‖. ‖(: 𝑄 → ℝ is named a norm if 

the following circumstances hold: 

(𝑁𝑄1)	‖𝑞‖( > 0 if 𝑞 ≠ 0, 

(𝑁𝑄2) ‖𝑞 + 𝑤‖( ≤ ‖𝑞‖( + ‖𝑤‖( , 

(𝑁𝑄3) ‖𝛼 ⋅ 𝑞‖( = |𝛼| ⋅ ‖𝑞‖( , 

(𝑁𝑄4) if 𝑞 ≼ 𝑤, then ‖𝑞‖( ≤ ‖𝑤‖( , 

(𝑁𝑄5) if for any 𝜀 > 0 there exists an element 𝑞* ∈ 𝑄 such that, 𝑞 ≼ 𝑤 + 𝑞* and ‖𝑞*‖( ≤

𝜀 then 𝑞 ≼ 𝑤 for any elements 𝑞,𝑤 ∈ 𝑄 and any real number 𝛼 ∈ ℝ. 

A quasilinear space 𝑄 is called normed quasilinear space with a norm defined on it. Let 𝑄 

be a normed quasilinear space. Then, Hausdorff or norm metric on 𝑄 is defined by 

 ℎ((𝑞, 𝑤) = inf{𝑟 ≥ 0: 𝑞 ≼ 𝑤 + 𝑎+# , 𝑤 ≼ 𝑞 + 𝑎,# , ‖𝑎-#‖ ≤ 𝑟}. 

Definition 10. [6] Let 𝑄 and 𝑊 be quasilinear spaces. Then a quasilinear operator 𝜆: 𝑄 →

𝑊 is a function satisfying: 
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(𝑄𝑂1) 𝜆(𝛼 ⋅ 𝑞) = 𝛼 ⋅ 𝜆(𝑞), 

(𝑄𝑂2) 𝜆(𝑞 + 𝑤) ≼ 𝜆(𝑞) + 𝜆(𝑤), 

(𝑄𝑂3) 𝜆(𝑞) ≼ 𝜆(𝑤), if 𝑞 ≼ 𝑤 for any 𝑞,𝑤 ∈ 𝑄 and 𝛼 ∈ ℝ. 

3. Soft Quasilinear Spaces 

In this part, we present the definitions of soft quasilinear space and soft proper quasilinear 

space which are given the first time. 

Let 𝑄 be a quasilinear space over ℝ and 𝐵 be a parameter set. If we define a function 

𝐺:𝐵 → 𝑃(𝑄) such that 𝐺(𝑏) = 𝑃(𝑦) ∈ 𝑄 for every 𝑏 ∈ 𝐵, then (𝐺, 𝐵) is called a soft set over 𝑄. 

Definition 11. Let (𝐺, 𝐵) be a non-null soft set over a quasilinear space 𝑄. Then (𝐺, 𝐵) is 

called a soft quasilinear space over 𝑄 if 𝐺(𝑏) is a subquasilinear space of 𝑄 for every 𝑏 ∈

𝑆𝑢𝑝𝑝(𝐺, 𝐵). 

Example 12. Let 𝑄 = 𝛺.(ℝ) be the quasilinear space and f𝐺, g𝛺.(ℝ)h#i be a soft set over 

𝑄 and 𝐺: g𝛺.(ℝ)h# → 𝑃(𝑄) is a function described by 

 𝐺(𝑋) = k[−𝑋, 𝑋]: 𝑋 ∈ g𝛺.(ℝ)h#o. 

Since 𝐺(𝑋) is a subquasilinear space of 𝛺.(ℝ) for every 𝑋 ∈ 𝑆𝑢𝑝𝑝 f𝐺, g𝛺.(ℝ)h#i, 

f𝐺, g𝛺.(ℝ)h#i is called a soft quasilinear space over 𝛺.(ℝ). 

Example 13. Consider the intervals quasilinear space 𝐼ℝ, over ℝ and (𝐺, 𝐵) be a soft set 

over 𝐼ℝ,, where 𝐵 = 𝐼ℝ and 𝐺: 𝐼ℝ → 𝑃(𝐼ℝ,) be defined as follows: 

 𝐺(𝑋) = {(𝑋 ⋅ 𝑟, 0): 𝑟 ∈ ℝ}, 

for every 𝑋 ∈ 𝐼ℝ. Then 𝐺(𝑋) is a subquasilinear space of 𝐼ℝ, for every 𝑋 ∈ 𝑆𝑢𝑝𝑝(𝐺, 𝐼ℝ). Then 

(𝐺, 𝐼ℝ) is a soft quasilinear space of 𝐼ℝ,. If we define another function 𝐹: 𝐼ℝ → 𝐼ℝ, such that 

 𝐹(𝑋) = {(𝑋 ⋅ 𝑟, 1): 𝑟 ∈ ℝ}, 

for every (𝑋) ∈ 𝐼ℝ. Then 𝐹 is a not soft quasilinear space of 𝐼ℝ,. 

If every element in soft quasilinear space (𝐺, 𝐵) has an reverse element  in (𝐺, 𝐵) then 

notion of soft quasilinear space coincides with the soft linear space. 
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Definition 14. Assume that (𝐺, 𝐵) is a soft quasilinear space of 𝑄 over ℝ and (𝐹, 𝐵) ⊆

(𝐺, 𝐵) is a soft set over (𝐺, 𝐵). Then (𝐹, 𝐵) is called a soft subquasilinear space of (𝐺, 𝐵) 

whenever (𝐹, 𝐵) is quasilinear space with identical partial ordering and identical operations on 

𝑄. 

Theorem 15. A soft subset (𝐹, 𝐵) of a soft quasilinear space (𝐺, 𝐵) is a soft subquasilinear 

space of a soft quasilinear space (𝐺, 𝐵) if and only if 𝛼 ⋅ 𝐹 + 𝛽 ⋅ 𝐹 ⊂ 𝐹 for every 𝛼, 𝛽 ∈ ℝ. 

Proof. Let (𝐹, 𝐵) be a soft subquasilinear space of a soft quasilinear space (𝐺, 𝐵) of 𝑄 over 

ℝ and 𝑏 ∈ 𝐵. Then 

 (𝛼 ⋅ 𝐹 + 𝛽 ⋅ 𝐹)(𝑏) ⊂ 𝐹(𝑏), 

since 𝐹(𝑏) is a subquasilinear space and 𝛼 ⋅ 𝑀 + 𝛽 ⋅ 𝑁 ∈ 𝐹(𝑏) for every 𝑀,𝑁 ∈ 𝐹(𝑏) and 𝛼, 𝛽 ∈

ℝ. 

Let 𝛼 ⋅ 𝐹 + 𝛽 ⋅ 𝐹 ⊂ 𝐹 for all scalars 𝛼, 𝛽 ∈ ℝ. Then 

 (𝛼 ⋅ 𝐹 + 𝛽 ⋅ 𝐹)(𝑏) = {𝛼 ⋅ 𝑀 + 𝛽 ⋅ 𝑁:𝑀,𝑁 ∈ 𝐹(𝑏)} ⊂ 𝐹(𝑏), 

for every 𝛼, 𝛽 ∈ ℝ and for all 𝑏 ∈ 𝐵. From here, we get 𝛼 ⋅ 𝑀 + 𝛽 ⋅ 𝑁 ∈ 𝐹(𝑏) for all 𝑀,𝑁 ∈ 𝐹(𝑏) 

and 𝛼, 𝛽 ∈ ℝ. Hence, 𝐹(𝑏) is a subquasilinear space of 𝑄 over ℝ for all 𝑏 ∈ 𝐵. Since (𝐹, 𝐵) is a 

soft subset of (𝐺, 𝐵), 𝐹(𝑏) ⊂ 𝐺(𝑏) for every 𝑏 ∈ 𝐵. Thus, (𝐹, 𝐵) is a soft subquasilinear space of 

(𝐺, 𝐵). 

Definition 16. Let (𝐺, 𝐵) be a soft quasilinear space over 𝑄 and (𝐹, 𝐶) be a soft quasilinear 

space over 𝑃. The product of soft quasilinear spaces (𝐺, 𝐵) and (𝐹, 𝐶) is described as 

(𝐺, 𝐵) × (𝐹, 𝐶) = (𝑉, 𝐵 × 𝐶), where 𝑉(𝑏, 𝑐) = 𝐺(𝑏) × 𝐹(𝑐) for every (𝑏, 𝑐) ∈ 𝐵 × 𝐶. 

Theorem 17. Let (𝐺, 𝐵) be a soft quasilinear space over 𝑄 and (𝐹, 𝐶) be a soft quasilinear 

space over 𝑃. If it is non-null, then (𝐺, 𝐵) × (𝐹, 𝐶) is a soft quasilinear space over 𝑄 × 𝑃. 

Proof. Proof is similar to soft linear spaces. 

Definition 18. Let (𝐺, 𝐵) and (𝐹, 𝐶) be two soft quasilinear spaces over 𝑄. The algebraic 

sum operation of soft quasilinear spaces (𝐺, 𝐵) and (𝐹, 𝐶) is defined as (𝐺, 𝐵) + (𝐹, 𝐶) =

(𝐸, 𝐵 × 𝐶), where 

 𝐸(𝑏, 𝑐) = 𝐺(𝑏) + 𝐹(𝑐), 

for every (𝑏, 𝑐) ∈ 𝐵 × 𝐶. 



 Bozkurt (2020)  ADYU J SCI, 10(2), 506-523 
 

 512 

Theorem 19. Let (𝐺, 𝐵) and (𝐹, 𝐶) be two soft quasilinear spaces over 𝑄. If it is non-null, 

then (𝐺, 𝐵) + (𝐹, 𝐶) and 𝛼 ⋅ (𝐺, 𝐵) are soft quasilinear spaces over 𝑄. 

Proof. Proof is similar to soft linear spaces. 

Example 20. Let 𝑄 = 𝑀,g𝛺.(ℝ)h be the quasilinear space over ℝ, 𝐵 = 2 ⋅ 𝛺.(ℝ), 𝐶 =

4 ⋅ 𝛺.(ℝ). Consider the set-valued interval functions defined by 

 𝐺:𝐵 → 𝑃(𝑄) 

 𝐺(𝑋) = kv0 𝑘 ⋅ 𝑋
0 𝑘 ⋅ 𝑋x : 𝑘 ∈ ℝo, 

for every 𝑋 ∈ 2 ⋅ 𝛺.(ℝ) and 

 𝐹: 𝐶 → 𝑃(𝑄) 

 𝐹(𝑋) = kv0 𝑘 ⋅ 𝑋
0 0 x : 𝑘 ∈ ℝo, 

for every 𝑋 ∈ 4 ⋅ 𝛺.(ℝ). For every 𝑋 ∈ 4 ⋅ 𝛺.(ℝ), 𝐹(𝑋) is a subquasilinear space of 𝐺(𝑋). So, 

g𝐹, 4 ⋅ 𝛺.(ℝ)h is a soft subquasilinear space of g𝐺, 2 ⋅ 𝛺.(ℝ)h. Further, let (𝐹, 𝐷) be an another 

soft set over 𝑄 = 𝑀,g𝛺.(ℝ)h, where 𝐷 = 2 ⋅ 𝛺.(ℝ) and 

 𝐹:𝐷 → 𝑃(𝑄) 

 𝐹(𝑋) = kv0 0
0 𝑘 ⋅ 𝑋x : 𝑘 ∈ ℝo, 

for every 𝑋 ∈ 2 ⋅ 𝛺.(ℝ). Let (𝐹, 𝐶) + (𝐹, 𝐷) = (𝐸, 𝐶 × 𝐷), where 𝐸(𝑋, 𝑌) = 𝐹(𝑋) + 𝐹(𝑌) for 

every (𝑋, 𝑌) ∈ 𝐶 × 𝐷. Then 

 𝐸(𝑋, 𝑌) = kv0 𝑘 ⋅ 𝑋
0 𝑘 ⋅ 𝑋x : 𝑘 ∈ ℝo 

is a subquasilinear space of 𝑀,g𝛺.(ℝ)h for every (𝑋, 𝑌) ∈ 𝐶 × 𝐷. From here, we get (𝐸, 𝐶 × 𝐷) 

is a soft quasilinear space over 𝑀,g𝛺.(ℝ)h. 

Definition 21. Let (𝐺, 𝐵) be a non-null soft quasilinear spaces over a quasilinear space 𝑄. 

(𝐺, 𝐵) is called proper soft set if the following cases hold: 

a) 𝐹"
(0,2) ≠ ∅ for all 𝑏 ∈ 𝑆𝑢𝑝𝑝(𝐺, 𝐵), 
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b) 𝐹"!
(0,2) ≠ 𝐹""

(0,2) for every 𝑏+, 𝑏, ∈ 𝑆𝑢𝑝𝑝(𝐺, 𝐵) with 𝑏+ ≠ 𝑏,. 

Otherwise, (𝐺, 𝐵) is called improper soft set. If (𝐺, 𝐵) is proper soft set then (𝐺, 𝐵) is called 

proper soft quasilinear space. 

Clearly, every soft linear space is a proper soft quasilinear space with "=". 

Example 22. Let us consider the quasilinear space 𝛺.(ℝ). Let (𝐺, 𝐵) be a soft set over 

𝛺.(ℝ), where 𝐵 = g𝛺.(ℝ)h# and 𝐺: g𝛺.(ℝ)h# → 𝑃g𝛺.(ℝ)h is described by 𝐺(𝑏) = [−𝑏, 𝑏] for 

every 𝑏 ∈ g𝛺.(ℝ)h#. Clearly, f𝐺, g𝛺.(ℝ)h#i = g𝛺.(ℝ)h%. From here, f𝐺, g𝛺.(ℝ)h#i is a soft 

quasilinear space since g𝛺.(ℝ)h% is a subquasilinear space of 𝛺.(ℝ). Further, f𝐺, g𝛺.(ℝ)h#i is 

an improper soft quasilinear space since g𝛺.(ℝ)h% is an imroper. 

Example 23. Let 𝑄 = 𝛺.(ℝ) be quasilinear space over ℝ and (𝐺, 𝐵) be a soft set over 𝑄, 

where 𝐵 = 𝛺.(ℝ) and 𝐺:𝛺.(ℝ) → 𝑃(𝑄) is defined by 𝐺(𝑋) = {𝑋 ⋅ 𝑘: 𝑘 ∈ ℝ} for every 𝑋 ∈

𝛺.(ℝ). g𝐺, 𝛺.(ℝ)h is a soft quasilinear space since 𝐺(𝑋) is a subquasilinear space of 𝛺.(ℝ). 

Also, g𝐺, 𝛺.(ℝ)h is a proper soft quasilinear space since 𝛺.(ℝ) is a proper quasilinear space . If 

𝐵 = g𝛺.(ℝ)h$ and 𝐺: g𝛺.(ℝ)h$ → 𝑃(𝑄) is defined by 𝐺(𝑋) = {𝑋 ⋅ 𝑘: 𝑘 ∈ ℝ} for every 𝑋 ∈ 𝑄. 

f𝐺, g𝛺.(ℝ)h$i is a soft quasilinear space since 𝐺(𝑋) is a subquasilinear space of 𝛺.(ℝ). 

But, f𝐺, g𝛺.(ℝ)h$i is an improper soft quasilinear space since g𝛺.(ℝ)h$ is an improper 

quasilinear space. 

Example 24. Let 𝛺.(ℝ,) be the quasilinear space over ℝ and (𝐺, 𝐵) be a soft set over 

𝛺.(ℝ,), where 𝐵 = {{(𝑚, 𝑘)}:𝑚 = 0, 𝑘 ∈ ℝ| and 𝐺:𝐵 → 𝑃g𝛺.(ℝ,)h is a function defined by 

 𝐺(𝑋) = k𝑍 ∈ g𝛺.(ℝ,)h$ ∪ 𝐵:	𝑋 ⊆ 𝑍	for	a	𝑋 ∈ 𝐵o. 

Since 𝐺(𝑋) is a subquasilinear space of 𝛺.(ℝ,) for every 𝑋 ∈ 𝑆𝑢𝑝𝑝(𝐺, 𝐵), (𝐺, 𝐵) is a soft 

quasilinear space over 𝛺.(ℝ,). Further, if we take two different element in 𝑆𝑢𝑝𝑝(𝐺, 𝐵) such as 

 𝑋+ = {{(𝑚, 𝑘)}:𝑚 = 0,			1 ≤ 𝑘 ≤ 2|, 

 𝑋, = {{(𝑚, 𝑘)}: 0 ≤ 𝑚 ≤ 1,			1 ≤ 𝑘 ≤ 2|, 

we get 
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 𝐹4!
(0,2) = 𝐹4"

(0,2) = {{(𝑚,𝑘)}:𝑚 = 0,			1 ≤ 𝑘 ≤ 2|. 

Thus, (𝐺, 𝐵)  is an improper soft quasilinear subspace of proper quasilinear space 𝛺.(ℝ,). 

4. Soft Quasi Vectors and Soft Normed Quasilinear Spaces  

In this section, we will give the notion of soft normed quasilinear space which is one of the 

fundamental purposes of the study. Firstly, we will give the notion of soft normed quasilinear 

space and soft quasi vector and some results related this notions. Later, we present the definition 

of soft quasilinear operator. 

Definition 25. Let (𝐺, 𝐵) is a soft quasilinear space of 𝑄. A soft element of 𝑄 is said to be 

a soft quasi vector of (𝐺, 𝐵). A soft element of the soft set (ℝ, 𝐵) is said to be a soft scalar. 

Example 26. Let us consider the Example 12 and the soft quasilinear space f𝐺, g𝛺.(ℝ)h#i. 

Let �̃� is a soft element of 𝛺.(ℝ) as the following; 

 �̃� (𝑟) = [−𝑟, 𝑟] ∈ 𝛺.(ℝ). 

Then �̃� is a soft quasi vectors of f𝐺, g𝛺.(ℝ)h#i. 

A soft quasi vector �̃� in a soft quasilinear space (𝐺, 𝐵) is said to be null soft quasi vector if 

�̃� (𝑏) = 𝜃 for every 𝑏 ∈ 𝐵. The zero element of quasilinear space 𝑄 will be denoted by 𝛩. 

Let �̃� and �̃� be soft quasi vectors of (𝐺, 𝐵) and �̃� be a soft scalar. Then a partial order 

relation �̃� ≼ �̃�, the sum �̃� + �̃� of �̃� , �̃�, and scalar multiplication �̃� ⋅ �̃� are defined by 

 𝑞 ≼ �̃� ⇔ �̃� (𝑏) ≼ �̃� (𝑏),˜  

 (�̃� + �̃�)(𝑏) = �̃� (𝑏) + �̃� (𝑏), 

g�̃� ⋅ �̃�h(𝑏) = �̃� (𝑏) ⋅ �̃� (𝑏), for	all	𝑏 ∈ 𝐵. 

From here, we have �̃� + �̃� and �̃� ⋅ �̃� are soft quasi vectors of (𝐺, 𝐵). 

Proposition 27. Let (𝐺, 𝐵) be a soft quasilinear space over 𝑄. Then 

a) 0 ⋅ �̃� = 𝛩, for all �̃� ∈ (𝐺, 𝐵), 

b) �̃� ⋅ 𝛩 = 𝛩, for all soft scalar �̃�, 
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c) g− 1̃h ⋅ �̃� = − �̃�, for all �̃� ∈ (𝐺, 𝐵). 

Proof. The proof is similar to soft linear spaces. 

Definition 28. Let (𝐺, 𝐵) be a soft quasilinear space of quasilinear space 𝑄. Let 

�̃�+ , �̃�, , … , �̃�5 ∈ (𝐺, 𝐵) and �̃�+ , �̃�, , … , �̃�5 ∈ (ℝ, 𝐵). The element 

 �̃�+ ⋅ �̃�+ + �̃�, ⋅ �̃�, +⋯+ �̃�5 ⋅ �̃�5 = ∑ �̃�65
67+ ⋅ �̃�6 , 

of (𝐺, 𝐵) is said to be quasilinear combination of the soft quasi vectors �̃�+ , �̃�, , … , �̃�5. 

Example 29. Let us consider the soft quasilinear space f𝐺, g𝛺.(ℝ)h#i as Example 12. Let 

�̃�5 = [−𝑛, 𝑛] ∈ 𝛺.(ℝ) for 𝑛 = 1,2,3. Then �̃�+ + 2 ⋅ �̃�,, 3 ⋅ �̃�+ + �̃�, + �̃�8 are some quasilinear 

combinations of �̃�+ , �̃�, , �̃�8. 

Definition 30. Let (𝐺, 𝐵) be a soft quasilinear space of quasilinear space 𝑄. g�̃�6h67+
5 ⊂

(𝐺, 𝐵) and (�̃�6)67+5 ⊂ (ℝ, 𝐵). If 

 𝛩 ≼ �̃�+ ⋅ �̃�+ + �̃�, ⋅ �̃�, +⋯+ �̃�5 ⋅ �̃�5, 

implies �̃�+ = �̃�, = ⋯ = �̃�5 = 0, then g�̃�6h67+
5  is said to be quasilinear independent, otherwise 

g�̃�6h67+
5  is said to be quasilinear dependent. 

Example 31. Let us consider again the soft quasilinear space f𝐺, g𝛺.(ℝ)h#i as Example 

12 and 𝑍 = {�̃�5 = [−𝑛, 𝑛]: 𝑛 = 1,2,3| ⊂ (𝐺, 𝐵) and (�̃�6)67+8 ⊂ (ℝ, 𝐵). Then 

 𝛩 ≼ �̃�+ ⋅ �̃�+ + �̃�, ⋅ �̃�, + �̃�8 ⋅ �̃�8, 

is satisfied every (�̃�6)67+8 ⊂ (ℝ, 𝐵). So, 𝑍 is quasilinear dependent in f𝐺, g𝛺.(ℝ)h#i. 

Example 32. Let 𝐼ℝ, be the quasilinear space over ℝ, (𝐺, 𝐼ℝ) be a soft set over 𝐼ℝ, and 

𝐺: 𝐼ℝ → 𝑃(𝐼ℝ,) is function defined by 

 𝐺(𝑋) = {(0, 𝑋 ⋅ 𝑚):𝑚 ∈ ℝ}, 

for all (𝑋) ∈ 𝐼ℝ. Since (𝐺, 𝐼ℝ) is subquasilinear space of 𝐼ℝ,, (𝐺, 𝐼ℝ) is a soft quasilinear space 

over 𝐼ℝ,. The subset {�̃�5 = (0, [𝑛, 𝑛 + 1]): 𝑛 = 1,2,3| ⊂ (𝐺, 𝐵) is quasilinear independent in 

(𝐺, 𝐵) because of 
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 𝛩 ≼ �̃�+ ⋅ (0, [1,2]) + �̃�, ⋅ (0, [2,3]) + �̃�8 ⋅ (0, [3,4]), 

is satisfied if and only if �̃�+ = �̃�, = �̃�8 = 0. 

The set of all soft quasi vectors over �̃� will be denoted by 𝑆𝑄𝑉g�̃�h. 

Theorem 33. The set 𝑆𝑄𝑉g�̃�h is a quasilinear space with the relation “≼̃” 

 �̃�9! ≼̃ �̃�9" ⇔ �̃� ≼ �̃� 	and	𝑒+ ≤ 𝑒,, 

the sum operation 

 �̃�9! + �̃�9" = (𝑞 + 𝑤� )9!:9" , 

and the soft real-scalar multiplication 

 �̃� ⋅ �̃�9! = (𝛼 ∙ 𝑞�);9! , 

for every �̃�9! , �̃�9" ∈ 𝑆𝑄𝑉g�̃�h and for every soft real numbers �̃�. 

Proof. Clearly, �̃�9! ≼̃ �̃�9! for every �̃�9! ∈ 𝑆𝑄𝑉g�̃�h. Let �̃�9! ≼̃ �̃�9" and �̃�9" ≼̃ �̃�9# for every 

�̃�9! , �̃�9" , �̃�9# ∈ 𝑆𝑄𝑉g�̃�h. Since �̃� is an absolute soft quasilinear space, we obtain �̃�9! ≼ �̃�9# . 

 �̃�9! + �̃�9" = (𝑞 + 𝑤� )9!:9" = (𝑤 + 𝑞� )9":9! = �̃�9" + �̃�9! . 

 �̃�9! + (�̃�9" + �̃�9#) = �̃�9! + (𝑤 + 𝑧� )9":9# = (𝑞 + 𝑤 + 𝑧� )9!:9":9# = (�̃�9! + �̃�9") + �̃�9# . 

If 𝜃 ∈ 𝑄 is zero vector then �̃�9! + 𝜃< = (𝑞 + 𝜃� )9!:< = �̃�9! . So, 𝜃< is zero vector in 𝑆𝑄𝑉g�̃�h. 

 �̃� ⋅ (�̃� ⋅ �̃�9!) = �̃� ⋅ g𝛽 ∙ 𝑞�h=9! = (�̃� �̃�) ⋅ �̃�9! . 

 �̃� ⋅ f�̃�9! + �̃�9"i = �̃� ⋅ (𝑞 + 𝑤� )9!:9" = (𝛼 ∙ 𝑞 + 𝛼 ∙ 𝑤� );9!:;9" = �̃� ⋅ (�̃�)9! + �̃� ⋅ �̃�9" . 

 1̃ ⋅ �̃�9! = g1 ∙ 𝑞� h9! = �̃�9! . 

 𝜃< ⋅ �̃�9! = g𝜃 ∙ 𝑞�h<.9! = 𝜃<. 

 g�̃� + �̃�h ⋅ �̃�9! = g(𝛼 + 𝛽) ∙ 𝑞� h(;:=)9! ≼ g𝛼 ⋅ 𝑞 + 𝛽 ⋅ 𝑞� h;9!:=9! 

																																							= (𝛼 ∙ 𝑞�);9! + g𝛽 ∙ 𝑞�h=9! = �̃� ⋅ �̃�9! + �̃� ⋅ �̃�9! . 
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If �̃�9! ≼̃ �̃�9" and �̃�9# ≼̃ �̃�9$ , then �̃� ≼ �̃� and 𝑒+ ≤ 𝑒, and �̃� ≼ �̃� and 𝑒8 ≤ 𝑒?. From here, we get 

�̃� + �̃� ≼ �̃� + �̃� and 𝑒+ + 𝑒8 ≤ 𝑒, + 𝑒?. This gives �̃�9! + �̃�9# ≼̃ �̃�9" + �̃�9$ . 

If �̃�9! ≼̃ �̃�9" , then �̃� ≼ �̃� and 𝑒+ ≤ 𝑒,. Thus, we obtain �̃� ⋅ �̃�9! ≼̃ �̃� ⋅ �̃�9" since �̃� ⋅ �̃� ≼ �̃� ⋅ �̃� and 

𝛼𝑒+ ≤ 𝛼𝑒, for every �̃�9! , �̃�9" , �̃�9# , �̃�9$ ∈ 𝑆𝑄𝑉g�̃�h and for every soft real numbers �̃� , �̃�. 

Definition 34. Let 𝑆𝑄𝑉g�̃�h be a soft quasilinear space and �̃� ⊂ 𝑆𝑄𝑉g�̃�h be a subset. If �̃� 

is a soft quasilinear space, then �̃� is said to be a soft quasilinear subspace of 𝑆𝑄𝑉g�̃�h and stated 

by 𝑆𝑄𝑉(�̃�) ⊂ 𝑆𝑄𝑉g�̃�h. 

Definition 35. Let 𝑆𝑄𝑉g�̃�h be a soft quasilinear space. Then a mapping ‖. ‖: 𝑆𝑄𝑉g�̃�h →

ℝ:(ℝ) is said to be a soft norm on the soft quasilinear space 𝑆𝑄𝑉g�̃�h, if ‖. ‖ satisfies the 

following conditions: 

(SNQ1) ��̃�9� >̃ 0̃ if �̃�9 ≠ �̃�< for all �̃�9 ∈ 𝑆𝑄𝑉g�̃�h, 

(SNQ2)  ��̃�9! + �̃�9"� ≤̃��̃�9!� + ��̃�9"� for all �̃�9! , �̃�9" ∈ 𝑆𝑄𝑉g�̃�h, 

(SNQ3) ��̃� ⋅ �̃�9!� = |�̃�| ��̃�9!� for every �̃�9! ∈ 𝑆𝑄𝑉g�̃�h and for every soft scalar �̃�, 

(SNQ4) if �̃�9! ≼̃ �̃�9", then ��̃�9!� ≤̃ ��̃�9"� for all �̃�9! , �̃�9" ∈ 𝑆𝑄𝑉g�̃�h, 

(SNQ5) if for any �̃� >̃ 0̃ there exists an element �̃�@ 𝑆𝑄𝑉g�̃�h such that �̃�9! ≼̃ �̃�9" + �̃�@ and 

‖�̃�@‖ ≤̃ �̃� then �̃�9! ≼̃ �̃�9" . 

The soft quasilinear space 𝑆𝑄𝑉g�̃�h with a soft norm ‖. ‖ on �̃� is said to be a soft normed 

quasilinear space and is indicated by g�̃� , ‖. ‖h. 

Example 36. Let 𝑄 be a normed quasilinear space. We define ‖. ‖: 𝑆𝑄𝑉g�̃�h → ℝ:(ℝ) by 

��̃�9� = |𝑒| + ‖𝑞‖(. Then ‖. ‖ satisfied first three norms axioms same as . We only show the other 

axioms. For every �̃�9! , �̃�9" ∈ 𝑆𝑄𝑉g�̃�h and for every soft real scalar �̃�. 

Let �̃�9! ≼̃ �̃�9". We find 𝑞 ≼( 𝑤 and 𝑒+ ≤ 𝑒, by Theorem 33. Since 𝑄 is normed quasilinear 

space, we get ‖𝑞‖( ≤ ‖𝑤‖(. Then ��̃�9!� ≤̃ ��̃�9"�. 
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Let for any �̃� >̃ 0̃ there exists an element �̃�@ 𝑆𝑄𝑉g�̃�h such that �̃�9! ≼̃ �̃�9" + �̃�@ and 

‖�̃�@‖ ≤̃ �̃�. From Theorem 33, we have 𝑞 ≼( 𝑤 + 𝑧 and 𝑒+ ≤ 𝑒, + 𝜖. On the other hand, we get 

|𝜖| + ‖𝑧‖( ≤ 𝜖 since ‖�̃�@‖ ≤̃ �̃�. This gives 𝑞 ≼( 𝑤. Also, 𝑒+ ≤ 𝑒,. Thus, we obtain �̃�9! ≼̃ �̃�9" . 

Definition 37. Let g�̃� , ‖. ‖h be a soft normed quasilinear space. Soft Hausdorff metric or 

soft norm metric on �̃� is defined by equality 

 ℎ(̃(�̃�9! , �̃�9") = inf k�̃� ≥ 0̃ : �̃�9! ≼̃ �̃�9" + 𝑎+
#̃ , �̃�9" ≼̃ �̃�9! + 𝑎,

#̃ , �𝑎-#̃� ≤̃ �̃�o. 

Same as the definition of Hausdorff metric on normed quasilinear space, we obtain 

�̃�9! ≼̃ �̃�9" + f�̃�9! − �̃�9"i and �̃�9" ≼̃ �̃�9! + f�̃�9" − �̃�9!i for every �̃�9! , �̃�9" ∈ 𝑆𝑄𝑉g�̃�h. So, 

 ℎ(̃(�̃�9! , �̃�9") ≤̃ ��̃�9! − �̃�9"�. 

Here, we should note that ℎ(̃(�̃�9! , �̃�9") may not equal to ��̃�9! − �̃�9"� since �̃� is a soft 

quasilinear space. 

Proposition 38. Let g�̃� , ‖. ‖h be a soft normed quasilinear space. The function 

ℎ(̃(�̃�9! , �̃�9") satisfies all of the soft metric axioms for all �̃�9! , �̃�9" ∈ �̃�. 

Proof. We get, ℎ(̃(�̃�9! , �̃�9") ≥̃ 0̃ from definition of soft Hausdorff metric for all �̃�9! , �̃�9" ∈ 

�̃�. If ℎ(̃(�̃�9! , �̃�9") = 0̃, then �̃�9! ≼̃ �̃�9" and �̃�9" ≼̃ �̃�9! since �̃� is soft normed quasilinear space. 

Thus, we get �̃�9! = �̃�9" for all �̃�9! , �̃�9" ∈ �̃�. Conversely, if �̃�9! = �̃�9", then �̃�9! ≼̃ �̃�9" and 

�̃�9" ≼̃ �̃�9!. Hence, we find ℎ(̃(�̃�9! , �̃�9") = 0̃. Clearly, ℎ(̃(�̃�9! , �̃�9") = ℎ(̃(�̃�9" , �̃�9!). From 

(SNQ2) and definition of soft Hausdorff metric, we have ℎ(̃(�̃�9! , �̃�9#) ≤̃ ℎ(̃(�̃�9! , �̃�9") +

ℎ(̃(�̃�9" , �̃�9#). 

On a soft normed quasilinear space the following conditions always true (here, soft 

Hausdorff metric ℎ(̃ induced by soft norm): 

ℎ(̃ f�̃� ⋅ �̃�9! , �̃� ⋅ �̃�9"i = �̃� ⋅ ℎ(̃ f�̃�9! , �̃�9"i, 

	for	all	soft	scalar	 �̃�, 

 ℎ(̃ f�̃�9! + �̃�9" , �̃�9# + �̃�9$i ≤̃ ℎ(̃ f�̃�9! , �̃�9#i + ℎ(̃g�̃�9" , �̃�9$h, 
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 ��̃�9!� = ℎ(̃(�̃�9! , �̃�). 

Definition 39. A sequence of soft elements k�̃�9%
5 o in a soft normed quasilinear space 

g�̃� , ‖. ‖h is said to be converges to a soft element �̃�9&
<  if ℎ(̃(�̃�9%

5 , �̃�9&
< ) → 0̃ as 𝑛 → ∞. 

Definition 40. A sequence of soft elements k�̃�9%
5 o in a soft normed quasilinear space 

g�̃� , ‖. ‖h is said to be a Cauchy sequence if corresponding to every �̃� >̃ 0̃ , ∃𝑚 ∈ ℕ such that 

ℎ(̃(�̃�9'
- , �̃�9(

B ) ≤̃ �̃� for all 𝑖, 𝑗 > 𝑚 i.e. ℎ(̃(�̃�9'
- , �̃�9(

B ) → 0̃ as 𝑖, 𝑗 → ∞. 

Theorem 41. The operation of algebraic sum and the operation of multiplication by soft 

real scalars are continuous according to the soft Hausdorff metric. 

Proof. Let k�̃�9%
5 o → �̃�9&

<  and {�̃�9%
5 | → �̃�9&

< in a soft normed quasilinear space g�̃� , ‖. ‖h as 

𝑛 → ∞. Then there is at least one 𝑛<, 𝑛<! ∈ ℕ such that 

 �̃�9%
5 ≼̃ �̃�9&

< + 𝑎+#̃ , �̃�9&
< ≼̃ �̃�9%

5 + 𝑎,#̃ , �𝑎-#̃� ≤̃
#̃
,
 

and 

 �̃�9%
5 ≼̃ �̃�9&

< + 𝑏+#̃ , �̃�9&
< ≼̃ �̃�9%

5 + 𝑏,#̃ , �𝑏-#̃� ≤̃
#̃
,
	, 

for every 𝑛 ≥ 𝑛< and for every 𝑛 ≥ 𝑛<! , respectively. Since �̃� is soft normed quasilinear space, 

we obtain 

 �̃�9%
5 + �̃�9%

5 ≼̃ �̃�9&
< + �̃�9&

< + 𝑎+#̃ + 𝑏+#̃ , �̃�9&
< + �̃�9&

< ≼̃ �̃�9%
5 + �̃�9%

5 + 𝑎,#̃ + 𝑏,#̃ , 

for every 𝑛 ≥ 𝑛<, 𝑛<! . From (NQ3), we get �𝑎-#̃ + 𝑏-#̃� ≤ �𝑎-#̃� + �𝑏-#̃� ≤̃ �̃�. So, �̃�9%
5 + �̃�9%

5 →

�̃�9&
< + �̃�9&

< . 

Let k�̃�9%
5 o → �̃�9&

<  in a soft normed quasilinear space g�̃� , ‖. ‖h as 𝑛 → ∞ and �̃� is a soft 

scalars. Again, there is at least one 𝑛< ∈ ℕ such that 

 �̃�9%
5 ≼̃ �̃�9&

< + 𝑎+#̃ , �̃�9&
< ≼̃ �̃�9%

5 + 𝑎,#̃ , �𝑎-#̃� ≤̃
#̃
|;̃|

 , 

for every 𝑛 ≥ 𝑛<. Since �̃� is soft normed quasilinear space, we find 

 �̃� ⋅ �̃�9%
5 ≼̃ �̃� ⋅ �̃�9&

< + �̃� ⋅ 𝑎+#̃ , �̃� ⋅ �̃�9&
< ≼̃ �̃�9%

5 ⋅ �̃� + 𝑎,#̃ ⋅ �̃�, 
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for every 𝑛 ≥ 𝑛<. Now, ��̃� ⋅ 𝑎-#̃� = |�̃�|�𝑎-#̃� ≤ �̃�. Thus, we obtain �̃� ⋅ �̃�9%
5 → �̃� ⋅ �̃�9&

< . 

Theorem 42. If k�̃�9%
5 o and {�̃�9%

5 | are Cauchy sequences in a soft normed quasilinear space 

g�̃� , ‖. ‖h then k�̃�9%
5 + �̃�9%

5 o is Cauchy sequence in a soft normed quasilinear space g�̃� , ‖. ‖h. 

Proof. Let k�̃�9%
5 o and {�̃�9%

5 | are Cauchy sequences in a soft normed quasilinear space 

g�̃� , ‖. ‖h. Then for every �̃� >̃ 0̃, ∃𝐾+, 𝐾, ∈ ℕ such that 

 �̃�9%
5 ≼̃ �̃�9)

D + 𝑎+#̃ , �̃�9)
D ≼̃ �̃�9%

5 + 𝑎,#̃ , �𝑎-#̃� ≤̃
#̃
,
 

and 

 �̃�9%
5 ≼̃ �̃�9)

D + 𝑏+#̃ , �̃�9)
D ≼̃ �̃�9%

5 + 𝑏,#̃ , �𝑏-#̃� ≤̃
#̃
,
, 

for all 𝑚, 𝑛 > 𝐾+ and for all 𝑚, 𝑛 > 𝐾,, respectively. Since g�̃� , ‖. ‖h is a soft normed quasilinear 

space, we obtain 

 �̃�9%
5 + �̃�9%

5 ≼̃ �̃�9)
D + �̃�9)

D + 𝑎+#̃ + 𝑏+#̃ , �̃�9)
D +	�̃�9)

D ≼̃ �̃�9%
5 + �̃�9%

5 + 𝑎,#̃ + 𝑏,#̃ . 

Now, �𝑎-#̃ + 𝑏-#̃� ≤̃ �𝑎-#̃� + �𝑏-#̃� ≤̃ �̃�. Otherwise, if we take 𝐾 = max{𝐾+, 𝐾,} then 

 	�̃�9%
5 + �̃�9%

5 ≼̃ �̃�9)
D + �̃�9)

D + 𝑎+#̃ + 𝑏+#̃ , 

 	�̃�9)
D +	�̃�9)

D ≼̃ �̃�9%
5 + �̃�9%

5 + 𝑎,#̃ + 𝑏,#̃ , �𝑎-#̃ + 𝑏-#̃� ≤̃ �̃�, 

for all 𝑚, 𝑛 > 𝐾. Hence, k�̃�9%
5 + �̃�9%

5 o is Cauchy sequence in �̃�. 

Definition 43. Let 𝜆: 𝑆𝑄𝑉g�̃�h → 𝑆𝑄𝑉(�̃�) be a soft mapping. Then 𝜆 is said to be a soft 

quasilinear operator if 

(SQO1) 𝜆g�̃�9 + �̃�9*h ≼̃ 𝜆g�̃�9h + 𝜆(�̃�9*), 

(SQO2) 𝜆g�̃� ⋅ �̃�9h = �̃� ⋅ 𝜆g�̃�9h, 

(SQO3) �̃�9 ≼̃ �̃�9* ⇒ 𝜆g�̃�9h ≼̃ 𝜆(�̃�9*) 

for every �̃�9 , �̃�9* ∈ 𝑆𝑄𝑉g�̃�h and for all soft scalar �̃�. 
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Example 44. Let us consider the absolute soft set generated by 𝛺.(ℝ) and let us show it 

by 𝛺.(ℝ)˜ , i.e., g𝛺.(ℝ)˜ h(𝑒) = 𝛺.(ℝ) for every 𝑒 ∈ 𝐵 ⊆ 𝛺.(ℝ). Then 𝛺.(ℝ)˜  is absolute soft 

quasilinear space. For a �̃� ∈ 𝛺.(ℝ)˜  let us define ��̃��(𝑒) = ��̃�9�E+(ℝ) = sup"∈4̃,|𝑏| for all 𝑒 ∈

𝐵. Then 𝛺.(ℝ)˜  is a soft normed quasilinear space with ��̃��(𝑒) = sup"∈4̃,|𝑏|. For �̃� ∈ 𝛺.(ℝ)˜ , 

let us define 

 𝜆(�̃�)(𝑒) = 2̃ ⋅ �̃�9 . 

Clearly, for every �̃� ∈ 𝛺.(ℝ)˜ , 𝜆(�̃�)(𝑒) ∈ 𝛺.(ℝ)˜  for every 𝑒 ∈ 𝐵. Further, 

 𝜆(�̃� + �̃�)(𝑒 + 𝑒!) = 2̃ ⋅ (�̃� + �̃�)9:9* = 𝜆(�̃�)(𝑒) + 𝜆(�̃�)(𝑒!), 

for every �̃� , �̃� ∈ 𝛺.(ℝ)˜ . 

 𝜆(�̃� ⋅ �̃�)(𝑒) = 2̃ ⋅ �̃� ⋅ �̃�9 = �̃� ⋅ 𝜆(�̃�9), 

for every �̃� , �̃� ∈ 𝛺.(ℝ)˜  and for every soft scalar 𝛼.˜  Let �̃�9 ≼̃ �̃�9* for every �̃� , �̃� ∈

𝛺.(ℝ)˜ . Clearly, 𝜆(�̃�9) ≼̃ 𝜆(�̃�9*). So, we obtain 𝜆 is soft quasilinear operator to 𝛺.(ℝ)˜  from 

𝛺.(ℝ)˜ . 

Definition 45. The soft quasilinear operator 𝜆: 𝑆𝑄𝑉g�̃�h → 𝑆𝑄𝑉(�̃�) is said to be soft 

continuous at �̃�9&
< ∈ 𝑆𝑄𝑉g�̃�h, if for every sequence �̃�9%

5  of soft quasi vectors of 𝑆𝑄𝑉g�̃�h with 

�̃�9%
5 → �̃�9&

<  as 𝑛 → ∞, we get 𝜆 f�̃�9%
5 i → 𝜆 f�̃�9&

< i as 𝑛 → ∞. 

Definition 46. The soft quasilinear operator 𝜆: 𝑆𝑄𝑉g�̃�h → 𝑆𝑄𝑉(�̃�) is said to be soft 

bounded, if there exists a soft real numbers �̃� such that 

 �𝜆g�̃�9h� ≤̃ �̃� ��̃�9�, 

for all �̃�9 ∈ 𝑆𝑄𝑉g�̃�h. 

Theorem 47. Let 𝜆: 𝑆𝑄𝑉g�̃�h → 𝑆𝑄𝑉(�̃�) be a soft quasilinear operator. Then 𝜆 is said to 

be soft bounded if and only if it is soft continuous. 

Proof. Assume that 𝜆: 𝑆𝑄𝑉g�̃�h → 𝑆𝑄𝑉(�̃�) is soft bounded. Let the sequence {�̃�9%
5 | is 

convergent to the {�̃�9&
< |. From Definition 39, we have there is at least one 𝑛< ∈ ℕ such that 

 �̃�9%
5 ≼̃ �̃�9&

< + 𝑎+#̃ , �̃�9&
< ≼̃ �̃�9%

5 + 𝑎,#̃ , �𝑎-#̃� ≤̃
#̃
6̃
	,  
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for every 𝑛 ≥ 𝑛<. Since 𝜆 is soft quasilinear operator, we obtain 

 𝜆 f�̃�9%
5 i ≼̃ 𝜆 f�̃�9&

< i + 𝜆g𝑎+#̃h 

and 

 𝜆 f�̃�9&
< i ≼̃ 𝜆 f�̃�9%

5 i + 𝜆g𝑎,#̃h. 

On the other hand, because of 𝜆 is soft bounded, we write 

 �𝜆g𝑎+#̃h� ≤̃ �̃� �𝑎+#̃� ≤̃ �̃� 	and	�𝜆g𝑎,#̃h� ≤̃ �̃� �𝑎,#̃� ≤̃ �̃�. 

So, above three inequality give us the soft bounded quasilinear operator 𝜆 is continuous. 

The other side of the proof is similar to soft linear counterpart. 

5. Conclusion  

In this work, the notion of soft quasilinear space is defined. After, the concept of soft quasi 

vectors in soft quasilinear spaces is presented as a new structure. Also, some consistent results 

related with this concept are obtained and supported by new examples. Further, the definitions of 

soft normed quasilinear space and soft proper quasilinear space are introduced. Continuity and 

boundedness of soft quasilinear operators have been given and proved some related theorems. 
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