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Abstract: We describe a bordered construction for self-dual codes coming from group rings. We apply the
constructions coming from the cyclic and dihedral groups over several alphabets to obtain extremal
binary self-dual codes of various lengths. In particular we find a new extremal binary self-dual code
of length 78.
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1. Introduction

The standard form of the generator matrix of any binary self-dual code of length 2n is of the form
(I,|]A) where A is an n x n matrix satisfying AAT = —1I,. When searching for self-dual codes, some
special structure is imposed on the matrix A to make the search field more feasible. Taking A to be
a circulant or a block circulant matrix is one of the methods that has been utilized in the literature.
Sometimes, from a special such generator matrix, an extension can be achieved by modifying the matrix
to get a new self-dual code of higher lengths. While these are generally known as extension methods in
the literature, we can also view them as new construction methods for self-dual codes. One such example
of a matrix, that we will extend in our constructions is defined in [13] as
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where y; = 2; + 1 and (I,,|A) is the generator matrix of a self-dual code of length 2n, possibly coming
from a special construction method described above.

In this work, we shall extend the above construction, using matrices A that arise from group rings.
Group rings have been used to construct self-dual codes on many occasions. In [2], certain ideals of
FyS, were used to construct the extended binary Golay code. In [15], an isomorphism from a group ring
to a certain subring of the n x n matrices was described. This was used to construct self-dual codes
in [16, 18, 19]. In [5], it is shown that zero divisors can’t be used to construct the putative [72, 36, 16]
code. In [11], it is shown that unitary units can be used to construct self-dual codes under a certain
construction, and using such units, many new extremal binary self-dual codes were obtained. In the
same work, groups of different orders were used to describe many new construction methods for self-dual
codes.

In our work, we will extend the structure of the matrix given in (1) with the matrices that we
get from group ring elements to find new methods for constructing self-dual codes. We will apply the
constructions coming from groups of order 2p with p an odd number (using the cyclic group Cs, and the
Dihedral group Ds,) over the binary field Fy, Fy and the rings Ry, and F4 + uF4 to obtain many extremal
and best known binary self-dual codes of various lengths: 14, 28, 56, 44, 30, 38, 46, 54, 62, 70 and 78. In
particular, we obtain a new extremal binary self-dual code of length 78. Many of these lengths are not
well-known like the oft-studied lengths of 64, 66 and 68.

The rest of the paper is organized as follows: In section 2, we give some definitionas and notations
that will be used in subsequent sections. In section 3 we give the construction together with a special
case when it produces self-dual codes. In section 4 we give the computational results. We finish the paper
with some concluding remarks and directions for possible future research.

2. Definitions and notations

2.1. Codes

In this paper, all rings are assumed to be commutative, finite, Frobenius rings with a multiplicative
identity.

A code over a finite commutative ring R is said to be any subset C' of R™. When the code is a
submodule of the ambient space then the code is said to be linear. To the ambient space, we attach the
usual inner-product, specifically [v,w] = > v;w;. The orthogonal with respect to this inner-product is
defined as C+ = {w | w € R", [v,w] = 0,Vv € C}. Since the ring is Frobenius we have that for all linear
codes over R, |C||Ct| = |R|™.

If a code satisfies C = C* then the code C is said to be self-dual. If C' C C* then the code is said

to be self-orthogonal. For binary codes, a self-dual code where all weights are congruent to 0 (mod 4) is
said to be Type II and the code is said to be Type I otherwise.

An upper bound on the minimum Hamming distance of a binary self-dual code finalized in [20].

Theorem 2.1. (/20]) Let di(n) and drr(n) be the minimum distance of a Type I and Type II binary code
of length n, respectively. Then

dir(n) < 4|5 ) +4

and

4| 2] 46 ifn=22 (mod 24).

dr(n) < { Al +4 ifn#£22 (mod 24)
24

Self-dual codes meeting these bounds are called extremal. A best known self-dual code of a given
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length is a self-dual code that has the highest possible known minimum distance, for a length for which
the existence of an extremal code is not currently known.

Throughout the paper, we will be constructing extremal or best known binary self-dual codes of
different lengths.

2.2. Group rings and special matrices

We shall use group rings in our construction so we give the standard definition of a group ring. Let
G be a finite group or order n, then the group ring RG consists of Y. | g, i, ag, € R, g; € G.

Addition in the group ring is done by coordinate addition, namely

n

Zagigi + Z/Bgigi = Z(agi + Bgi)gi' (2)
i=1 i=1

i=1

The product of two elements in a group ring is given by

n n

(Z a9i9i> Z ng 9i | = Z Qg; 69_7’ 9i9;- (3)
i=1 j=1 i,

It follows that the coefficient of g; in the product is ) 9ig:=g0 g By, -

We restrict ourselves to finite groups since we are mainly concerned with using these to construct
codes whose lengths will be determined by the order of the group.

The following construction of a matrix was first given for codes over fields by Hurley in [15] and
extended to rings in [5]. Let R be a finite commutative Frobenius ring and let G = {g1,92,...,9,} be a
group of order n. Let v = ag, g1 + g, 92 + - - - + @y, gn € RG. Define the matrix o(v) € M, (R) to be

Qg Yot Yertes o Ygrlgn
U(v) _ aggilm agr;.lgz a!]z?.lgB ’ ag{.lgn . (4)
Qgrtor Yt Ygntes o Ygnlgn
We note that the elements g; L gy Lo, g, b are the elements of the group G in some given order.

Lemma 2.2. Ifv =" a49; is unitary unit of RG and p =Y ag, then p* = 1.

Proof. The map *: RG — RG defined by Z agg | = Z aggf1 is an antiautomorphism of RG of
geG geG
order 2. An element v of V(KG) satisfying vv* = 1 is called unitary. The homomorphism ¢ : RG — R

n n

given by e <Z agig,-> = Z ayg, is called the augmentation mapping of RG. Let v = Y " | g, g;, then
i=1 i=1

v' =" a9t and e(v) = e(v*) = 327 | @, = p. Therefore £(vo*) = e(v)e(v*) = p? = 1. O

2.2.1. o(v) for Dy, and Cy,

In what follows, circ(ay, az, ..., an) denotes the m x m criculant matrix whose first row is given by
(a1,a2,...,Gm).
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p—1 1
Let G=Cop = (x]a? =1). fa =Y Y aiiipa>" € RCyy, then
i=0 j=0
A B
o) = .
o= (5 %)
where A = circ(aq, ..., ap), B = circ(apti, ..., azp) and B’ = circ(agp, apt1, .- -, a2p—1)-
p—1 1
Let G=Dsp = (z,ylaP =y*=1,2¢ =z71). Ifa = ZZaHHm—x’yJ € RDyp, then
i=0 j=0
A B
ola) = BT o)
where A = circ(as,...,a,) and B = circ(api1,- .., az,), and AT represents the transpose of A.

2.3. Rings

We shall use several alphabets in our constructions, including the binary field Fy, the quaternary
field F4 and rings Ry and Fy + ulF,.

2.3.1. The ring family Ry

The ring family Ry were defined in [8] and [9]. We briefly give the descriptions of these rings.
For k > 1, define

Ry, = Foluy,ug, ..., ug]/{uf = 0,uju; = uju;). (5)

For k = 1, we denote the rings by Fo+ulF5, and when k£ = 2, we denote them by Fo+ulFy +vFo+uvFsy,
both of which have been considered in coding theory quite extensively.

The rings can also be defined recursively as:

R, = Rk_l[uk]/@% = 0, UgUj = ujuk> =Ri_1+urRp_1. (6)
For any subset A C {1,2,...,k} we will fix

uy = Hui (7)

i€A

with the convention that ug = 1. Then any element of Ry can be represented as

Z CAUA, CA E]FQ. (8)
AC{1,....k}

It is shown in [8] that the ring Ry is a commutative ring with |Ry| = 2(2°). It is also shown that

Va e Re o — 1 if a is a unit 9)
b 0 otherwise.
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We shall now recall the Gray map from Ry to F%k For R; we have the following map: ¢1(a + bu) =
(b,a + b). Then let ¢ € Ry, ¢ can be written as ¢ = a + bug_1,a,b € Rx_1. Then

Pr(c) = (dr-1(b), pr-1(a +D)). (10)

The map ¢y, is a distance preserving map and the following is shown in [9].

Theorem 2.3. Let C be a self-dual code over Ry, then ¢i(Ry) is a binary self-dual code of length 2kn.

2.3.2. The ring Fy + ulF,

Let Fy = 5 (w) be the quadratic field extension of Fa, where w24+ w+1=0. The ring Fy + uF, is
defined via u? = 0. Note that Fy + uF, can be viewed as an extension of R; = Fs + uFs and so we can
describe any element of Fy + ulF4 in the form wa 4 @b uniquely, where a,b € Fo 4 ulFs.

A linear code C of length n over Fy + uFy is an (F4 + uF4)-submodule of (Fy + uF4)". In [10] and
[6] the following Gray maps were introduced;

Y, : (Fa)" = (Fg)™"
aw + bw — (a,b), a,beFY

Prytur, ¢ (F2 +ulf2)" — F3"
a+bur (bya+b), a,beFy.

Those were generalized to the following maps in [17];

Vrspur, : (Fa + uFy)" = (Fa 4 uFq)™"
aw + bw — (a,b), a,b € (Fy + ulFy)"

OF,+ur, © (Fa+ulfq)" — F3
a+bu— (bya+0d), a,beFy

These maps preserve orthogonality in the corresponding alphabets. The binary images ¢r,+uF, ©
Yp,+ur, (C) and g, o @, +ur, (C) are equivalent. The Lee weight of an element is defined to be the
Hamming weight of its binary image.

Proposition 2.4. (/17]) Let C be a code over Fy + uFy. If C is self-orthogonal, so are ¥g, tur, (C) and
oF,+ur, (C). Cis a Type I (resp. Type II) code over Fy+ulFy if and only if o, +ur, (C) is a Type I (resp.
Type II) Fy-code, if and only if Yw,+ur, (C) is a Type I (resp. Type II) Fy + uFo-code. Furthermore, the
minimum Lee weight of C is the same as the minimum Lee weight of ¥g,+ur, (C) and op,+ur, (C).

Corollary 2.5. Suppose that C is a self-dual code over Fy+ulFy of length n and minimum Lee distance d.
Then @p,+uF, © Ur, +ur, (C) is a binary [4n,2n,d] self-dual code. Moreover, C' and @p,tuF, © Vr,+ur, (C)
have the same weight enumerator. If C is Type I (Type II), then so is QF,+uF, © Vr,+ur, (C).

3. The construction

Let v € RG where R is a finite Frobenius ring of characteristic 2 and G is a finite group of order 2p
and p is odd. Define the following matrix:

(%1 0 Qg -+ Qo |Qg -+ Q3 |0Qq - Qg4 Q4 --- Qg

as +1 as +1

as+1 as+1
M(J): Ckg—f—l Ck3+1

_043+]. Ck3+1
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Let C, be a code that is generated by the matrix M (o) and p = > | ag,. Let A; = (a1,0) € R?,

as+1 as+1
Ay = (g, ...,q0,03,...,a3) € R?”, A3 = (ay,...,a4) € R?” and By = g;ﬂ giﬁ . Then,
M(o) (M (o))" = <A1A1T 4 Ao AT + A;AT A\ BT + Ay + A30(U)T>
BiAT + A7 +o(v)AT BiB{ +1+a(v)o(v)”
where

o MAT + Ay AT + A3 AT = a2 + pad + pa2 + 2pa? = o2 + p(as + az)?,

o /BT + Ay + Azo(v)T =
(042, s, Q2,Q3, ..., a3)+(a47 s 7054)0'(’[}) = (041(042+1)+042+ﬂ0447 i
1)+ as + payg, ..., a1(as + 1) + as + pay) and

e BB + I+ o(w)o) =1+0@)(c(w)! =1+ o(vv*).

(a1(az + 1),...,cq(a2 + 1),01(as + 1),...,01(a3 + 1)) +
Syaq(ag+l)fastpay, ar(as+

Theorem 3.1. Let R be a finite commutative Frobenius ring of characteristic 2, G be a finite group
of order 2p where p is odd and p = 21221 ag,- If af +plas +a3)? =0, aq(ae + 1) + ag + payg = 0,
og(az + 1)+ ag + pag =0 v0* =1 and (o, plaz(ag + 1) + as(ag + 1)), a2 + 1, a3 + 1) has free rank 1
then Cy is a self-dual code of length 4p + 2.

Proof. 1Ifvv* =1, then I+o(vv*) = 0. Additionally, let a? +p(az+a3)? =0, a3 (e +1)+ag+puay =0
and aq(az + 1) + as + pay = 0, Therefore C,, is self-orthogonal. It remains to show that the M (o) has
free rank 2p + 1.

o O Qg -+ Qo|Qg -+ Q3z|oyg - Qg Qg -+ Qg
oag+1 ag+1
: : I, 0,
rank(M (o)) =rank | as+1 as+1 o(v)
043+]. 013+1
: : 0, I,
as+1 ag+1
al 0 a2 e a2 a3 .. ag a4 e a4 a4 PEEEEY a4
0 0[2+1
: : I, 0,
=rank | 0 as+1 o(v)
0 ag+1
: : 0, I,
0 O[3+1
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al ,-Yl a2 DRI a2 a3 .. a3 a4 DR a4 a4 CEEEEY a4
0 0
Do I, 0,
=rank | 0 0 o(v)
0 a3 + 1
: : 0, I,
0 a3+ 1
al fyz a2 DR a2 a3 ... a3 a4 DR a4 a4 DR a4
0 0
Do I, 0,
=rank | 0 0 a(v)
0 0
: 0, I,
0 0
B al ’)/2 a2 CEEEEY a2 a3 .. ag a4 ... a4 a4 .. a4
0 0
: I, 0, I 0
= rank 0 0 o(v) 0o I
0 0 0 o(v)”
: 0, I,
L\ 0 O
a1 72|73 0 3 Y4 Va4 0 Qg Qg v O
0 0
=rank | 0 0 I+ o(v)o(v*) o(v)
0 0
0 0
al ")/2 ")/3 e 73 /'>/4 e ’)/4 a4 e a4 a4 e a4
0 0
; 0, 0p
=rank | 0 0 o(v)
0 0
: 0, 0p
0 0
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where 71 = paz(ae+1), 72 = paz(as+1)+pas(az+1), 73 = as+pay = ag+1 and 4 = az+poy =
a3 + 1. Finally,

ar 2lag+1l - ap+llag+1 - az+1|y - ¥ B
0 0
: 0, 0,
rank(M(o))=1] 0 0 o(v)
0 0
o 0, 0,
0 0

where 75 = oy + 2y = ag+ (1)ay = 0 by Lemma 2.2. Therefore C, is self if (a1, p(ag(ag +1) +asz(az +

1)), a0 + 1,3 + 1) has free rank 1. O
The family of rings Ry, is particularly well suited for this construction.

Corollary 3.2. Let R = Ry and let G be a finite group of order 2p where p is odd. Let v € RG be a

unitary unit. Then if as + ag is any unit then C, is a self-dual code of length 4p + 2.

Proof. We will show that this case satisfies the hypotheses of Theorem 3.1. If v is a unitary unit then
vo* = 1. If ag + a3z is a unit then (ag + a3)? = 1 by (9). Then 1+ p(as + a3)®> = 1+ p(1) = 0 and
vv* = 1. O

4. Computational results

In this section, we apply the constructions discussed in the previous section over particular groups
and rings that have been described before. The sizes of the groups and the alphabets used lead to
particular lengths for self-dual codes. In all the subsequent subsections, we tabulate the extremal binary
self-dual codes or the best-known (if the existence of extremal self-dual codes is not known for that length)
self-dual codes of the certain lengths.

4.1. Constructions from groups of order 6

We first apply construction Dg over the binary field and Fj.

Table 1. Extremal binary self-dual code of length 14 from Ds

(o1,02,03,04) (an,...,a6) [Aut(C)|
(1,0,1,1)  (0,1,1,1,1,1) 27.32.7?

Table 2. Extremal self-dual code of length 28 coming from applying Ds over Fy

(a1, 2, 3, a) (a1,...,a6) |Aut(C)|
(1,w,w+1,1) (0,0,1,1,w,w-+1) 25-3-7
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In [14], the possible weight enumerators for a self-dual Type I [56, 28, 10] code were obtained in two
forms as:
Wse = 1+ (308 +4a)y'® + (4246 — 8a) y'? + (40852 — 28a) y'* + - -
Wse,2 + (308 + 4a) y'0 + (3990 — 8a) y'2 + (42900 — 28a) y'4 + - - -

where « is an integer. Applying the constructions over the ring Fy + ulF4, we will be able to get
binary self-dual codes of length 56. For brevity of notation, we need a brief notation for the elements of
F4 + U]F4.

0 < 0000, 1 « 0001, 2 <+ 0010, 3 <+ 0011, 4 <« 0100, 5 <+ 0101, 6 <> 0110, 7 <> 0111, 8 <« 1000,
9 < 1001, A < 1010, B < 1011, C' + 1100, D < 1101, F < 1110, F < 1111.

We use the ordered basis {uw,w,u,1} to express the elements of Fy + uF4. For instance, 1 + uw
corresponds to 1001, which is represented by the hexadecimal 9.

In the following tables o = m; denotes that the weight enumerator of the code has parameter « = m
in Wy, 1 =1,2.

Table 3. [56,28,10] codes over Fy4 4+ uF4 from D¢ where (a1, sz, as,aq4) = (1,6, F, 1)

(a1,...,a6) |Aut(C)| Type (a1,...,a6) |Aut(C)| Type
(A,A,1,1,4,5) 2.3 a=-32 (A4,4,1,3,C,F) 2>.3 a=-8
(A A,1,B,6,D) 2*.3.7 a=-562 (A,8,3,1,6,7) 2-3 a=—260
(A,8,3,3,E,D) 2-3 a=-20, (881,1,45) 2*.3 a=-8
(8,8,1,3,C,F) 2.3 a=—32

Table 4.  [56,28,10] codes over F4 + uF4 from Dg where |[Aut(C)|=2-3

(a1y...,0u) (a,...,as) Type (a1,...,a6) (Q1,...,04) Type
(1,4,7,1) (0,0,9,9,C,D) a= -8 (L4,7,1) (0,83,1,4,F) a= 24,
(1,4,7,1) (0,0,B,1,C,7) a= 18, (1,4,7,1) (0,0,B,3,4,D) a = —12,
(1,4,7,1)  (2,0,B,3,C,7) a=—20 (L,4,7,1) (2,0,B,B,6,5) a= —142
(14,7,1) (2,A4,1,3.6,D) a= 26 (1,4,7.9) (A83.3C7) a

(1,4,7,9)  (8,2,9,3,E,7) a—=—38 (1,47,9) (82 B,3,4F) a— —302
(1,4,D,1) (0,8,1,1,E,7) a= 32 (1,4,D,1) (A,0,9,9,E,5) a= 32
(1,4,D,1) (A,2,B,B,4,D) a =261 (1,4,D,1) (A, A,3,3,6,7) a—=—14;
(1,4,D,9) (0,0,9,1,4,5) a= 26, (1,4,D,9) (A,0,3,9,4,D) a= —38,
(1,4, F,1) (2,8,9,B,6,F) a=-28 (L,4,F1) (A,81,1,C,F) a=—22,
(1,4, F,9) (0,0,9,3,C,F) a=—161 (1,4,F9) (0,8 1B,E,5) a—=—28
(1,4,F,9) (8,2,3,9,4,D) a=—40; (1,4,F9) (82,3 B,C,7) a= —46,

We can also construct self-dual codes of length 56 from applying the construction Dg over the ring
Fy + ulFy + vFy + uvFy as well. This is a ring of size 16, so in the same way as was done for Fy + ulFy,
we can use hexadecimals to shorten the notations. The correspondence between the binary 4 tuples and
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the hexadecimals is as follows:

0 <+ 0000, 1 < 0001, 2 < 0010, 3 <> 0011, 4 < 0100, 5 <> 0101, 6 <+ 0110, 7 <+ 0111, 8 < 1000,
9 +» 1001, A < 1010, B < 1011, C' <> 1100, D < 1101, F <« 1110, F < 1111.

The ordered basis {uv, v, u, 1} is used to express elements of Fo + uFs + vFy 4+ uvFs For instance, 14+ u+v
is represented as 0111 which corresponds to hexadecimal 7.

Table 5. [56,28,10] codes over Fa 4+ ulFs + vFs + uvFs from Dg where (o, a2, as,aq4) = (1,6, B, 1)

(a1,...,a6) |Aut(C)| Type (a1,...,a6) |Aut(C)| Type

(4,1,9,1,7,B) 2°-3 a=-28 (4,5,D,1,F,3) 2°.3 a=—52
(4,1,9,1,B,7) 2°-3 a=—-42 (4,5,D,9,7,3) 2?3 a=—4
(4,5,D,9,3,7) 2.3 a=-162 (4,7,F,1,3,F) 22-3 a=—28
(4,7,F,9,F,B) 2*.3 «a=—40,

Table 6. [56,28,10] codes over Fa + uFs + vF2 + uwvF2 from Dg where (a1, a2, as,a4) = (1,2,5,1)

(a1,...,a6) |Aut(C)| Type (a1,...,a6) |Aut(C)| Type
(6,1,9,1,B,5) 2.3 a=-14 (6,1,9,1,D,3) 22.3 a=—-26,
(0,1,9,5,3,F) 2*.3 a=-18; (0,1,9,5,7,B) 2*-3 a=-42;
(0,1,9,7,D,3) 2%2.3 a=-30;

Table 7. [56,28,10] codes over Fa 4+ uFs + vFs + uwvF2 from Dg where (a1, a2, oz, 04) = (1,2,7,1)

(a1,...,a6) |Aut(C)| Type (a1,...,a6) |Aut(C)| Type
(C,7,F,9,7,B) 2°-3 a=-38 (C,7,F,9,B,7) 2°-3-13 a = —38

4.2. Constructions from groups of order 10

Table 8. Extremal binary self-dual code of length 22 from Do

(on, a2, a3, 014) (a1, .. .,a10) |[Aut(C)|
(1,0,1,1)  (0,0,0,1,1,0,1,0,1,1) 28.32.5.7-11

In [7], the possible weight enumerators for a self-dual Type I [44,22, 8] code were obtained in two
forms as:

Wiaar = 1+ (44 + 4B8)y® + (976 — 88)y'® + - - - where 10 < 8 < 122 and
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Waao =1+ (44 4+ 48)y® + (1232 — 88)y*0 + - - -

where 10 < 8 < 154.

Table 9. Extremal self-dual code of length 44 over F4, from Dig
(a1, 2, a3, ua) (a,...,as) |Aut(C)] Type
(1l,w,w+1,1) (0,0,0,1,1,1, w,w,w + L,w+ 1) 2.5 Wi (B =14)
(1l,w,w+1,1)  (0,0,0,w,w+ 1,0,w,w+ 1,w,w+ 1) 2-5 Waao (B =4)
(1l,w,w+1,1) (0,0,0,w,w+1,1,1,w,1,w+1) 2-5 Waao (B =4)
(1l,w,w+1,1) (0,0,1,1,1,0, w,w,w + L,w + 1) 255 Wi (8 =34)
(1,w,w+1,1) (0,0,1,1,1,1,1,1,w,w + 1) 2°.5 Wi (B8 =34)
(1l,w,w+1,1) (0,0,1,w,w+1,0,1,1,w+ 1, w) 5 Waao (B =14)
(1l,w,w+1,1) (0,0,1,w,w+1,0,1,w,1,w+1) 5 Waa2 (8=09)
(1l,w,w+1,1) (0,0,1,w,w+ 1,1, w, w,w,w) 2-5 Waao (B=4)
(1l,w,w+1,1) (0,0,w,1,w,0,1,1,w+ 1,w—+1) 22.5 Waao (B=4)
(1,w,w+1,1) (0,0,w, 1w, l,w,w,w,w+ 1) 2-5 Waao (B=4)
(1,w,w+1,1) (0,0,w,1,w+1,1,1,1,1,1) 216.3%.52 Wyuo (B =T4)
(1l,w,w+1,1) (0,0,1,w,w, 1,0, w,w,w + 1,w) 2-5 Waao (B=4)
lw,w+1,1) O,w,w,w+1l,w+1,1,ww+1l,w,w+1) 2-5 Waao (B=4)
(Lw,w+1,1) (1,1, Lw,w+1,1l,ww+1lww+1) 22.5 Wiz (B =14)
Table 10. Extremal self-dual code of length 44 over 2 + uFs from Cig
(a1, 2, g, a) (a1,...,a6) |Aut(C)| Type
(1,u,1,1) (u,u,u,1,1,1,1,0,u + 1,0) 22.5 Waa (8 = 32)
(1,u,1,1)  (uwyu,u, 1, Lu+1,ud1,0,u+1,0)  2%.3%.52.72 Wy, (8 =122)
(1,u,1,1) (u,0,u,1,1,1,1,0,1,0) 2*.5 Waa2 (8 = 10)
(1,u,1,1) (u,0,u,1,1,u+ 1,4 +1,0,1,0) 235 Waa2 (B = 30)
(1,u,1,1)  (0,4,0,1,1,u+ 1, u+1,u,u+1,u) 2.5 Waan (B =12)
(1,u,1,1) (0,0,0,1,1,1,1,u,1,u) 26.32. 52 Waa2 (B = 90)
(1, u,u+1,1) (u,0,u,1,1,1,1,0,1,0) 2t.5 W2 (8 =14)
(1,u,u+1,1) (u,0,u,1,1,u+1,u+1,0,1,0) 25.5 Wiz (8 = 34)
(1,u,u+1,1) (0,0,0,1,1,1,1,u,1,u) 216.32. 52 Waa (B = 74)
(1,0,u+1,1) (u,0,u,1,1,1,1,0,1,0) 2t.5 Waao (B =14)
(1,0,u+1,1) (u,0,u,1,1,u+1,u+1,0,1,0) 2%.5 Waao (B = 34)
(1,0,u+1,1) (0,0,0,1,1,1,1,u, 1,u) 216.3%.52. 72112 Wy (B = 154)
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4.3. Constructions from groups of order 14

Table 11. Extremal binary self-dual code of length 30 from Di4

(a1, a2, g, aa) (a1,...,a14) |Aut(C)]
(1,0,1,1)  (0,0,0,0,0,0,1,0,0,1,0,1,1,1) 2'1-3.7
(1,0,1,1)  (0,0,0,0,0,1,1,0,0,1,0,0,1,1)  28.7
(1,0,1,1)  (0,0,0,1,0,1,1,0,1,1,1,1,1,1) 27-3%.5.7

Table 12. Extremal binary self-dual code of length 30 from Ci4

(o1, a2, a3, a4) (a1,...,a14) |Aut(C)|
(1,0,1,1) (0,0,0,0,0,1,1,0,1,1,0,0,1,0) 2%.7

Table 13. Extremal binary self-dual code of length 60 over F4 from D14

(o1, 02,3, 14) (a1,...,a14) |Aut(C)| Type

(1,w,w+1,1) (0,0,1,w,1,w,1,0,1,w+1,0,w,w+1,w+1) 227 Weo1 (8=0)

4.4. Constructions from groups of order 18

Table 14. Extremal binary self-dual code of length 38 from Dis

(o, a2, a3, 04) (a1,...,a18) |[Aut(C)|
(1,0,1,1) (0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,1) 2.32
(1,0,1,1)  (0,0,0,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1) 2-32- 19

4.5. Constructions from groups of order 22

Table 15. [46,22,8] codes from Do

(a1, a2, as, aq) (a1,...,a22) |Aut(C)|
(1,0,1,1)  (0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,1,1,1) 211
(1,0,1,1)  (0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,1,0,1,0,1,1) 211
(1,0,1,1)  (0,0,0,0,0,1,0,0,1,1,1,0,0,0,1,0,0,1,1,0,1,1) 11
(1,0,1,1)  (0,0,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 2 .3*.52.7%2.112.23?
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Table 16. [46,22,8] codes from Ca2

(a1, a2, as, aq) (a1,...,a22) |Aut(C)]
(1,0,1,1) (0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,1,1,0,0,0,1) 211
(1,0,1,1) (0,0,0,0,0,0,1,0,1,1,1,0,0,1,1,0,1,1,0,1,0,0) 211
(1,0,1,1) (0,0,0,0,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,0) 211
(1,0,1,1) (0,0,0,1,0,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,1) 211
(1,0,1,1)  (0,0,0,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 2'5.3*.5%.72.11%.232

4.6. Constructions from groups of order 26

From [3], it is known that the weight enumerator of a [54, 27, 10] self-dual code can be of the follwing
form:

Wsaq = 1+ (351 — 83)y*? + (5031 + 248)y™% + ...

Wz =1+ (351 — 88)y'" + (5543 + 248)y'* + ..

In the following tables, we consturct inequivalent self-dual codes of parameters [54, 27, 10] from Dag and
Cog.

Table 17. Inequivalent [54,27,10] codes from Dag

(a1, 2, a3, a) (a1,...,a2) |Aut(C)] Type
(1,0,1,1)  (0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0,1) 2-13 Wssy (8 =
(1,0,1,1)  (0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,0,1,1,1) 2-13 Wsa1 (
(1,0,1,1)  (0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0,1,1) 13  Wsa1 (
(1,0,1,1)  (0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,1,1,0,0,1) 2-3-13 Wsa1 (
(1,0,1,1)  (0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,1,1,1,1) 13  Wsa1 (
( ) ( ) (
( ) ( ) (

1,0,1,1 0,0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,1,1,1,1
1,0,1,1 0,0,0,0,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0,1,1,0,1,1,1,1

2.3%.13 Wsa
2.3-13 Wsa,

Table 18. Inequivalent [54,27,10] codes from Cog

(a1, 2, a3, ua) (a1y...,a2) | Aut(C)| Type
(1,0,1,1) (0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,1,0) 2-13 Wsa1 (8=0)
(1,0,1,1) (0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,1,1,1,0) 2-3-13 Ws41 (8=0)
(1,0,1,1) (0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,1,1,1,1,1,1) 2-13 Wsa1 (8=0)
(1,0,1,1) (0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,1,0) 2-13 Wsa1 (8=0)
(1,0,1,1) (0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,0,0,1,0,1,1,1,1,0,1,0) 2-13 Wsa,1 (8=0)
(1,0,1,1) (0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,1,1,1,0,1) 2-13 Wsa1 (8=0)
(1,0,1,1) (0,0,0,0,0,1,0,0,1,1,1,0,1,1,0,1,1,1,0,0,1,0,1,1,0,1) 2-13 Wsa1 (8=0)
(1,0,1,1) (0,0,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,1,0,0,0) 2-13 Wsa,1 (8=0)
(1,0,1,1) (0,0,0,0,0,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,0) 2-13 Wss1 (8=0)
(1,0,1,1) (0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,0) 2-3-13 Ws4,1 (8=0)
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4.7. Constructions from groups of order 30

There are two possibilities for the weight enumerators of extremal singly-even [62, 31, 12],, codes ([3]):

Weo1 = 1+ 2308y'2 + 23767y + -
Weao = 1+ (1860 4 328) y" 4 (28055 — 1608) y'* +--- ,: 0 < B < 93,

only codes with weight enumerator for 5§ =0,2,9,10,15,16 in Wg2 2 known to exist.

Table 19. [62,31,12] codes from D3y where (a1, a2, a3,a4) = (1,0,1,1)

(a1y...,a30) |Aut(C)] Type
(0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,1,1) 2-3-5 Wsga2 (8 =10)
(0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1) 2-3-5 Wsga2 (8 =10)
(0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,1, 1) 22.3.5 We2,2 (8 =0)
(0,0,0,0,0,0,1,0,0,1,0,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,1,1,1) 2-3-5 Wsa2 (8=0)
(0,0,0,0,0,1,0,0,1,0,0,1,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,0,1,1) 2-3-5 Wsga2 (8 =10)
( )
( )
( )
( )

0,0,0,0,0,1,1,0,0,1,0,1,1,1,1,0,0,1,1,0,1,1,1,0,1,1,0,1,1,1) 3-5  Weaz (8 =0)
0,0,0,0,0,1,1,0,1,1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,1
0,0,0,0,0,1,1,1,0,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1
0,0,0,0,1,1,0,0,1,1,1,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,1

We2,2(8 =
Wea,2(8
Wea,2(8

=0)
=0)
=0)

N[N [N
wWlw|w
O[Ot | Ot

4.8. Constructions from groups of order 34

The weight enumerator of a self-dual 70, 35, 12], code is in one of the following forms ([13]):

Wroq = 1428+ (11730 — 28 — 128y) y'* + (150535 — 228 + 8967) y'* + - --
Wroz2 = 1426+ (9682 — 25) y™ + (173063 — 226) y'® + - -

The code with weight enumerator for v = 1,8 = 416 is constructed in [13]. Together with the results
from [4] and [12], the existence of codes with weight enumerators v = 0 in Wy 1 is known for many S
values. In the following tables we tabulate the [70, 35, 12] self-dual codes from D34 and Cs4 together with
their  values and automorphism groups. Note that the automorphism groups all have an element of
order 17 in them. Naturally, these have the same parameters as the ones obtained in [12]. However, here
we have given an alternative construction to those codes.
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Table 20. [70,35,12] codes from D34 where (a1, s, as,as) = (1,0,1,1)

(at,...,asa) |Aut(C)| Wro1 (v =0)
(0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1,0,1,0,1,1) 2-17 B =102
(0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,1) 217 B8 =136
(0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,1,0,1,1,0,1,1) 17 B8 =170
(0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,1,0,0,1,1,1) 17 8 =204
(0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,0,1,1,0,1,1,0,1,0,1, 1) 17 8 =238
(0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,1, 1) 17 B =272
(0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,1,1,1, 1) 17 B = 306
( )
( )
( )
( )
( )
( )

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,1,0,1,0,0,1,1,0,0,1, 1,1 17 B =340
0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,1,1 17 B =374
0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0,0,1,0,1,1,0,1,1,1 17 B =408
0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,0,0,1,0,1,1,1 17 8 =442
0,0,0,0,0,0,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,1) 2-17 B =476
0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,1,1,1,1 17 B =510

Table 21. Extremal [70,35,12] codes from Cs4 where (a1, a2, as,as) = (1,0,1,1)

(a1,...,ass) |Aut(C)| Wroa (v =0)
(0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,1,1,0) 2-17 B8 =102
(0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0,1,1,1,1,1) 2-17 B8 =136
(0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0,1,1,0,0,0, 1, 1) 17 8 = 238
(0,0,0,0,0,0,1,0,0,1,1,1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,1,0,1,1,1)  2-17 B8 =272
( )
( )
( )

0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,0, 1 <17 B = 306
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,1,0,1,1,1,0,1,0,0, 1, 1 <17 B =374
0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,1,1,1 <17 8 =442

N (NN [NN NN

4.9. Constructions from groups of order 38

The possible weight enumerators for self-dual codes of parameters [78,39,14] are given as follows

(I7D):

-1
Wiga = 1+ (3705 + 88)y'* + (62244 + 512a — 248)y'° + ... .0 < a < ﬁﬁ < 28,

Wigo = 14 (3750 + 8a)y™* + (71460 — 240)y'® 4 ..., —486 < o < —135.

For many of these parameters, the existence of a code with that weight enumerator is not known. Together
with the ones that were recently found in [1, 21, 22], the existence of codes which have Wrg 1 with a =0
and 8 =0,-13,-19 — 26, —38, —39, —52, —65, =78, —104, —117 and which have o = —135 in W7z .

In the following table we construct [78, 39, 14] self-dual codes from D3zg. The one with = —57 is a
new code.
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Table 22. Extremal [78,39,14] codes from Dss where (a1, a2, as,a4) = (1,0,1,1) and a1 = a2 = a3 =

a4 = 0
(a5, e ,a34) |Aut(C’)| W7s,1 (a = 0)
(1,1,1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1) 2-19 B=0
(1,1,1,1,0,1,0,1,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,0,1,1,1,1,0,1,1,1,1,1) 19 B=0
(1,1,1,1,0,1,0,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,1, 1) 19 B =-19
(1,1,1,1,0,0,1,0,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0,0, 1, 1) 19 B =—38
(1,1,1,1,0,0,1,1,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,1, 1) 19 B =—57

5. Conclusion

We have integrated a modified bordered construction with the matrices corresponding to a group
ring element in RCy, and RD,, where R is a commutative Frobenius ring of characteristic 2 and as a
result we have been able to obtain many extremal binary self-dual codes. The structure of the groups has
allowed us to look at such lengths as 62, 70, 78, etc. that are different than the oft-studied lengths of 64,
66 and 68. In addition to giving an alternative construction to many extremal or best-known self-dual
codes we were able to obtain a new code of length 78, with o = 0, 8 = —57 in Wyg ;1. The results we
have obtained demonstrate the relevance of our constructions and may lead to more such results when
considered over different rings and groups.

Acknowledgment: The authors would like to thank the anonymous referees for their useful com-
ments that helped improve the paper.
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