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A METRIC FORMULA ON A QUOTIENT SPACE WHICH IS
RELATED TO THE SEQUENCE SPACE Σ2

Mustafa SALTAN and Nisa ASLAN

Department of Mathematics, Eskişehir Technical University, 26470, Eskişehir, TURKEY

Abstract. In this paper, we first define an equivalence relation on the se-
quence space Σ2. Then we equip the quotient set Σ2/∼ with a metric d1. We
also determine an isometry map between the metric spaces (Σ2/∼, d1) and
([0, 1], deucl). Finally, we investigate the symmetry conditions with respect to
some points on the metric space (Σ2/∼, d1) and we compare truncation errors
for the computations which is obtained by the metrics deucl and d1.

1. INTRODUCTION

Let Σn denote the set of all infinite sequences of 0’s, 1’s, . . ., n− 1’s. That is,

Σn = {s1s2s3 . . . |si ∈ {0, 1, . . . , n− 1}}
(see [1,2,8]). This set is called the sequence space on the n symbols 0, 1, . . . , n− 1.
(Σn, d) is the code space on n symbols with the metric

d(s, t) =

∞∑
i=1

|si − ti|
ni

for all s, t ∈ Σn. (1)

A semi-metric on Σn is also defined as follows:

d′(s, t) =
∣∣∣ ∞∑
i=1

si − ti
ni

∣∣∣ for all s, t ∈ Σn. (2)

It is well-known that there is the surjective mapping h between Σ2 and [0, 1]
such that

h : Σ2 → [0, 1], h(s1s2 . . . sn . . .) =
s1

2
+
s2

22
+ . . .+

sn
2n

+ . . . .
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But, the mapping h is not injective. To exemplify, let us consider 01111 . . . and
1000 . . . of Σ2. It is clear that

h(01111 . . .) = h(1000 . . .) =
1

2
.

Generally, any rational number p
2k
∈ [0, 1] (p, k are integers) has exactly two

preimages s′, s′′ under h; they have forms s′ = s1s2 . . . snαβ and s′′ = s1s2 . . . snβα
for some n ∈ N, si, α, β ∈ {0, 1} and a stands for the sequence in Σ2 with all the
items equal to a where a ∈ {0, 1}. To obtain an injective mapping, an equivalence
relation ∼ on Σ2 is defined by

s′ ∼ s′′ ⇔ s′ = s′′ or there are si, α, β ∈ {0, 1} such that
s′ = s1s2 . . . snαβ, s

′′ = s1s2 . . . snβα for an integer n.
(3)

Therefore, the mapping h′ defined as

h′ : Σ2/∼ → [0, 1] (4)

h′(s1s2 . . . sn . . .) =
s1

2
+
s2

22
+ . . .+

sn
2n

+ . . . .

is bijective.
From now on, one can identify each element of Σ2/∼ with an appropriate element

of [0, 1]. That is, Σ2/∼ can be considered as the code set of the points on [0, 1].
Note that, d is not well defined on Σ2/∼. For example, for the elements s = 001,
s′ = 01 and s′′ = 10 (s′ ∼ s′′) of Σ2/∼, we compute d(s, s′) 6= d(s, s′′). Therefore,
d is not a metric on Σ2/∼, but (Σ2/∼, d

′) is a metric space. Obviously, the metric
spaces (Σ2/∼, d

′) and ([0, 1], deucl) are isometric since h′ is an isometry. On the
other hand, different metrics can be defined on the same set X. The interesting
question is whether these metrics are equivalent or not. Because equivalent metrics
on the same set X generate the same topology (see [3]). It is a remarkable problem,
how to define a metric d1, which is formulated in a different way from the metric
d′ given in (2) on Σ2/∼ such that (Σ2/∼, d1) and ([0, 1], deucl) are isometric.
Any set can be expressed as a quotient space which is related to a sequence

space. Using the metrics defined on code sets, many geometric features of the
corresponding space can be proved. Moreover, unusual metric formulas can be
obtained on different quotient spaces. For example, the Sierpinski Gasket which
is one of the fundamental models of fractals can be defined as the quotient space
Σ3/∼′ where

c′ ∼′ c′′ ⇔ c′ = c′′ or there are ci, α, β ∈ {0, 1, 2} such that
c′ = c1c2 . . . cnαβ, c

′′ = c1c2 . . . cnβα for an integer n.
(5)

(see Figure 1).
In [6], the geodesic metric on the code set of the Sierpinski Gasket is defined as

follows:
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Definition 1. Let a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . be two rep-
resentations of the points a and b respectively on the Sierpinski Gasket such that
ai = bi for i = 1, 2, . . . , k − 1 and ak 6= bk. The distance dgeo(a, b) between a and b
is determined with the following formula:

dgeo(a, b) = min

{ ∞∑
i=k+1

αi + βi
2i

,
1

2k
+

∞∑
i=k+1

γi + δi
2i

}
(6)

where

αi =

{
0, ai = bk
1, ai 6= bk

, βi =

{
0, bi = ak
1, bi 6= ak

,

γi =

{
0, ai 6= ak and ai 6= bk
1, otherwise

, δi =

{
0, bi 6= bk and bi 6= ak
1, otherwise

.

Figure 1. The Sierpinski Gasket

This metric formula describes the shortest distance between any two points on
the code sets of the Sierpinski Gasket. Thanks to the metric formula dgeo, many
different and interesting properties of the Sierpinski Gasket can be proved (for
details see [6, 7]).
As seen in (6), this metric is actually expressed on the quotient space Σ3/∼′ . In

a similar way, a metric on the quotient space Σ2/∼ can be defined. Note that, al-
though relations ∼ and ∼′ defined in (3) and (5) are quite similar, the corresponding
spaces are different.
In this paper, to define the metric d1 we take into account the construction of the

intrinsic metric on the Sierpinski Gasket (for details see proof of the Theorem 1 in
the paper [5]). We use the quotient space Σ2/∼ given in (3) instead of the quotient
space Σ3/∼′ given in (5) which is the code set of the Sierpinski Gasket. We also
take the first sum, the same αi and βi given in the metric formula (6). Thus we
obtain the metric space (Σ2/∼, d1) and show that this metric space is isometric to
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the metric space ([0, 1], deucl) in Proposition 1. Since d1 has a different construction
than the metric deucl, we compare some properties of these two metrics. So, we get
some interesting results in Proposition 6 and Proposition 8.

2. A DIFFERENTLY FORMULATED METRIC ON THE QUOTIENT
SET Σ2/∼

We first define a distance on the quotient set Σ2/∼ and then we show that this
distance function is a metric on Σ2/∼.
Suppose that a = a1a2 . . . ak−1akak+1 . . . and b = b1b2 . . . bk−1bkbk+1 . . . are two

elements of Σ2/∼. If ai = bi for all i = 1, 2, 3, . . . , then d1(a, b) = 0. If ai does not
equal to bi for any i = 1, 2, 3, . . . , then there is at least one k such that ak 6= bk. k
is chosen as the smallest index i = 1, 2, . . . such that ai 6= bi. That is, let ai = bi
for i = 1, 2, . . . , k − 1 and ak 6= bk. We define the distance d1(a, b) between a and b
as

d1(a, b) =

∞∑
i=k+1

αi + βi
2i

where

αi =

{
0 if ai = bk
1 if ai 6= bk

, βi =

{
0 if bi = ak
1 if bi 6= ak

. (7)

Since there are many stages to prove that (Σ2/∼, d1) is a metric space, we give
it as a result of the following proposition:

Proposition 2. deucl(h′(a), h′(b)) = d1(a, b) for all a, b ∈ Σ2/∼. Thus, (Σ2/∼, d1)
is a metric space.

Proof. Let us first consider the bijective mapping h′ defined in (4) as follows:

h′ : Σ2/∼ → [0, 1]

h′(s1s2 . . . sn . . .) =
s1

2
+
s2

22
+ . . .+

sn
2n

+ . . . .

We now show that

deucl(h
′(a), h′(b)) = d1(a, b)

for all a, b ∈ Σ2/∼. Suppose that

a = a1 a2 . . . ak−1 ak ak+1 ak+2 . . .
b = b1 b2 . . . bk−1 bk bk+1 bk+2 . . . .

where ai = bi for i = 1, 2, . . . , k − 1 and ak 6= bk. So, we have either ak > bk or
ak < bk. Assume that ak < bk (that is, chosen as ak = 0 and bk = 1). Then,
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|ai+1 − bk| = bk − ai+1 and |bi+1 − ak| = bi+1 − ak for i = k, k + 1, k + 2, . . .. The
other case is done similarly. Observe that

d1(a, b) =

∞∑
i=k+1

αi + βi
2i

=
|ak+1 − bk|+ |bk+1 − ak|

2k+1
+
|ak+2 − bk|+ |bk+2 − ak|

2k+2
+ · · ·

=
(bk − ak+1) + (bk+1 − ak)

2k+1
+

(bk − ak+2) + (bk+2 − ak)

2k+2
+ · · ·

=
(bk − ak) + (bk+1 − ak+1)

2k+1
+

(bk − ak) + (bk+2 − ak+2)

2k+2
+ · · ·

= (bk − ak)
( 1

2k+1
+

1

2k+2
+ · · ·

)
+

(bk+1 − ak+1)

2k+1
+

(bk+2 − ak+2)

2k+2
+ · · ·

=
(bk − ak)

2k
+

(bk+1 − ak+1)

2k+1
+

(bk+2 − ak+2)

2k+2
+ · · ·

=
( bk

2k
+
bk+1

2k+1
+
bk+2

2k+2
+ · · ·

)
−
(ak

2k
+
ak+1

2k+1
+
ak+2

2k+2
+ · · ·

)
= h′(b)− h′(a)

= |h′(a)− h′(b)|

= deucl(h
′(a), h′(b))

So, (Σ2/∼, d1) is a metric space and it is also isometric to the metric space
([0, 1], deucl). This concludes the proof. �

Observe that if we define the mapping h′′ as below, we have the following result:

h′′ : (Σ2/∼, d2)→ ([m,n], deucl)

h′′(s1s2 . . . sn . . .) = m+ (n−m)
(s1

2
+
s2

22
+ . . .+

sn
2n

+ . . . .
)

where

d2(a, b) =

∞∑
i=k+1

α′i + β′i
2i

such that

α′i =

{
0 if ai = bk
n−m if ai 6= bk

, β′i =

{
0 if bi = ak
n−m if bi 6= ak

where i ≥ k + 1.

Corollary 3. The metric space (Σ2/∼, d2) is isometric to the metric space ([m,n], deucl)
for any m,n ∈ R and n > m.
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Remark 4. One can also use the metric d2 defined on Σ2/∼ instead of the metric
deucl defined on [m,n] because of Corollary (3).

Using the metric d1, we can make some calculations easier than using Euclid-
ean metric. To better understand the importance of this metric, we will give the
following example:

Example 5. Consider the points a = 010100 and b = 101011 of Σ2/∼. Let us first
compute d1(a, b) and then let us find the point c of Σ2/∼ such that d1(a, b) = d1(0, c).

d1(a, b) =

∞∑
i=k+1

αi + βi
2i

=
(0 + 0

22
+

1 + 1

23
+

0 + 0

24
+

1 + 1

25
+

1 + 1

26
+

1 + 1

27

)
+(0 + 0

28
+

1 + 1

29
+

0 + 0

210
+

1 + 1

211
+

1 + 1

212
+

1 + 1

213

)
+ · · ·

=
( 1

22
+

1

24
+

1

25
+

1

26

)
+
( 1

28
+

1

210
+

1

211
+

1

212

)
+ · · ·

=
1

22

(
1 +

1

26
+

1

212
+ · · ·

)
+

1

24

(
1 +

1

26
+

1

212
+ · · ·

)
+

1

25

(
1 +

1

26
+

1

212
+ · · ·

)
+

1

26

(
1 +

1

26
+

1

212
+ · · ·

)
=

64

63

( 1

22
+

1

24
+

1

25
+

1

26

)
=

64

63
· 23

64
=

23

63

Note that the calculation above gives us the point c of Σ2/∼ such that d1(a, b) =
d1(0, c). That is, the point c equals to( 0

21
+

1

22
+

0

23
+

1

24
+

1

25
+

1

26

)
+
( 0

27
+

1

28
+

0

29
+

1

210
+

1

211
+

1

212

)
+ · · ·

or equals to 010111 as an element of Σ2/∼. If we try to calculate this distance and
to find the point c with the Euclidean metric, then we will have to deal with a bit
more processing. Because we do not deal with subtraction and absolute value in
calculations made with the metric d1. Moreover, we directly obtain this distance as
a binary number.

In the following proposition, we emphasize a geometrical property of the metric
d1 different form the metric deucl.
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Proposition 6. Let a = a1a2 . . . ak−1akak+1 . . . and b = b1b2 . . . bk−1bkbk+1 . . . be
arbitrary elements of Σ2/∼. If a1 6= b1 and αi = βi for all i = 2, 3, . . ., then these
points are symmetric with respect to the point 01 (or equivalently 10).

Proof. We must show that

d1(a1a2 . . . ak−1akak+1 . . . , 01) = d1(b1b2 . . . bk−1bkbk+1 . . . , 01).

Then

d1(a1a2 . . . ak−1akak+1 . . . , 01) =

∞∑
i=k+1

α′i + β′i
2i

and

d1(b1b2 . . . bk−1bkbk+1 . . . , 01) =

∞∑
i=k+1

α′′i + β′′i
2i

where α′i, α
′′
i , β
′
i and β

′′
i are determined in accordance with (7). Since a1 6= b1, we

have

αi =

{
0 if ai = b1
1 if ai 6= b1

, βi =

{
0 if bi = a1

1 if bi 6= a1

and αi = βi for all i = 2, 3, . . .. In both cases, we get bi 6= ai for all i = 2, 3, . . .
because a1 = 0, b1 = 1 or a1 = 1, b1 = 0. Let us compute and compare the
two distances between a1a2 . . . ak−1akak+1 . . . and 01 and the distance between
b1b2 . . . bk−1bkbk+1 . . . and 01. Without loss of generality, suppose that a1 = 0 and
b1 = 1. For all i = 2, 3, . . . if ai = 1 then bi = 0 and ai = 1 for all i > 1 yields

d1(a1a2 . . . ak−1akak+1 . . . , 01) = d1(b1b2 . . . bk−1bkbk+1 . . . , 01) = 0.

Otherwise, there is at least one s such that as = 0 and ai = 1 for i = 2, 3, . . . , s−1
and then we have bs = 1 and bi = 0 for i = 2, 3, . . . , s − 1. We obtain α′′i = 0 for
all i = 2, 3, . . . , s − 1 and α′′s = 1, and also β′i = 1 for all i = s + 1, s + 2, s + 3, . . .
and β′′i = 0 for all i = 2, 3, 4, . . .. Furthermore, for any t ∈ {s+ 1, s+ 2, s+ 3, . . .},
if at = 1, then we get bt = 0 and thus α′t = 0 and α′′t = 0. Similarly, for any
t ∈ {s + 1, s + 2, s + 3, . . .}, if at = 0, then we obtain bt = 1 and thus α′t = 1 and
α′′t = 1. Therefore

d1(a1a2 . . . ak−1akak+1 . . . , 01) =

∞∑
i=s+1

α′i + β′i
2i

=
xs+1 + 1

2s+1
+
xs+2 + 1

2s+2
+
xs+3 + 1

2s+3
+ · · ·

=
1

2s
+
xs+1

2s+1
+
xs+2

2s+2
+
xs+3

2s+3
+ · · ·
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d1(b1b2 . . . bk−1bkbk+1 · · · , 01) =

∞∑
i=2

α′′i + β′′i
2i

=
0 + 0

22
+

0 + 0

23
+ . . .+

0 + 0

2s−1
+

1 + 0

2s

+
xs+1 + 0

2s+1
+
xs+2 + 0

2s+2
+ · · ·

=
1

2s
+
xs+1

2s+1
+
xs+2

2s+2
+
xs+3

2s+3
+ · · ·

where xi ∈ {0, 1} for i = s+ 1, s+ 2, s+ 3, . . . . This completes the proof. �

In a similar way, we can generalize Proposition 6 as follows:

Corollary 7. Let a = a1a2 . . . ak−1akak+1 . . . and b = b1b2 . . . bk−1bkbk+1 . . . be
arbitrary elements of Σ2/∼. If ai = bi = σi for all i = 1, 2, . . . , k − 1, ak 6= bk and
αi = βi for all i = k + 1, k + 2, . . ., then these points are symmetric with respect
to the point σ1σ2 . . . σk−101 (or equivalently σ1σ2 . . . σk−110) where xi ∈ {0, 1} for
i = 1, 2, . . . , k − 1.

Proof. The proof will be omitted. �

The following proposition gives us the relationship between truncation errors for
the computations which is obtained by the metrics deucl and d1. In Proposition 8,
we choose a and b as

a1a2 . . . ak−1akak+1 . . . anan+1an+1 . . .

and
b1b2 . . . bk−1bkbk+1 . . . bnbn+1bn+1 . . .

respectively where ai = bi for i = 1, 2, . . . k − 1 and ak 6= bk.

Proposition 8. The truncation errors En and E′n+1 are determined such that

d1(a, b) =

n∑
i=k+1

αi + βi
2i

+ En

and

deucl(h
′(a), h′(b)) =

∣∣∣ n∑
i=k

ai − bi
2i

+ E′n+1

∣∣∣.
Then we have

En = 2−n + E′n+1. (8)
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Proof. It must be either bk > ak or ak > bk since ak 6= bk. Without loss of
generality, let us take ak > bk and then we have ak = 1 and bk = 0. With simple
calculations, we obtain

d1(a, b) =

∞∑
i=k+1

αi + βi
2i

=

n∑
i=k+1

αi + βi
2i

+ En

=
|ak+1 − bk|+ |bk+1 − ak|

2k+1
+
|ak+2 − bk|+ |bk+2 − ak|

2k+2

+ · · ·+ |an − bk|+ |bn − ak|
2n

+ En

=
(ak+1 − bk) + (ak − bk+1)

2k+1
+

(ak+2 − bk) + (ak − bk+2)

2k+2

+ · · ·+ (an − bk) + (ak − bn)

2n
+ En

=
(ak − bk) + (ak+1 − bk+1)

2k+1
+

(ak − bk) + (ak+2 − bk+2)

2k+2

+ · · ·+ (ak − bk) + (an − bn)

2n
+ En

=
( 1

2k+1
+

1

2k+2
+ · · ·+ 1

2n

)
+

(ak+1 − bk+1)

2k+1
+

(ak+2 − bk+2)

2k+2

+ · · ·+ (an − bn)

2n
+ En

=
1− 2k−n

2k
+

(ak+1 − bk+1)

2k+1
+

(ak+2 − bk+2)

2k+2
+ · · ·+ (an − bn)

2n
+ En

Moreover, we compute

deucl(h
′(a), h′(b)) =

∣∣∣ n∑
i=k

ai − bi
2i

+ E′n+1

∣∣∣
=

n∑
i=k

ai − bi
2i

+ E′n+1

=
1

2k
+

(ak+1 − bk+1)

2k+1
+

(ak+2 − bk+2)

2k+2
+ · · ·+ (an − bn)

2n

+E′n+1
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We know that d1(a, b) = deucl(h
′(a), h′(b)) because of Proposition 2. Thus,

En = 2−n + E′n+1

is obtained if the required simplifications are made. Observe that, this equation
does not depend on the choice of k and the error En is always positive while the
error E′n+1 can be positive or negative. �

As seen in the formula (8), the metric d1 works better in some computations.
An example which shows that the absolute value of truncation error En is less than
the absolute value of truncation error E′n+1 is given as follows:

Example 9. Consider the points a1a2 . . . ak−10111 . . . and a1a2 . . . ak−11000 . . .. It
is obvious that truncation error En is always zero for every natural number n. But,
truncation error E′n+1 equals to −2−n.

3. CONCLUSION

We give a metric formula on the quotient space Σ2/∼. Using a similar method,
metric formulas on quotient spaces, which are related to the sequence spaces Σn
for every natural n, can be defined (for an example see ( [6]). Moreover, the metric
spaces which are isometric to these quotient spaces equipped with these metrics can
be investigated. In this paper, we show the metric space (Σ2/∼, d1) is isometric to
the ([0, 1], deucl). The metric d1 provides some facilities since there is no absolute
value and subtraction in the metric formula (for details see Example 5, 9 and
Proposition 8). The distance is also obtained as a binary number. As the metric
formula d1 is simple and understandable, it can also be used in the computer science
applications (that is, the metric formula (7) is quite suitable for the basic coding
commands).
The metric formula d1 also has a different interpretation from the Euclidean

metric defined on [0, 1]: The distance between two points in the Euclidean metric
is formulated as the absolute value of the difference of the distances of these two
points to the point 0 while the distance between two points in the metric d1 is
formulated as the sum of the distances of these points to the point 1

2k
where k is

the smallest index such that ai 6= bi for i = 1, 2, 3, . . . (for details see Proposition 6
and Corollary 7).
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