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GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES
FOR PRODUCTS OF CO-ORDINATED CONVEX FUNCTIONS

HÜSEYIN BUDAK AND TUBA TUNÇ

Abstract. In this paper, we think products of two co-ordinated convex func-
tions for the Hermite-Hadamard type inequalities. Using these functions we ob-
tained Hermite-Hadamard type inequalities which are generalizations of some
results given in earlier works.

1. Introduction

The following inequality discovered by C. Hermite and J. Hadamard for convex
functions is well known in the literature as the Hermite—Hadamard inequality (see,
e.g., [13]):

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

where f : I ⊂ R→ R is a convex function on the interval I and a, b ∈ I with a < b.
Hermite—Hadamard inequality provides a lower and an upper estimation for the

integral average of any convex function defined on a compact interval. This inequal-
ity has a notable place in mathematical analysis, optimization and so on. However,
many studies have been established to demonstrate its new proofs, refinements,
extensions and generalizations. A few of these studies are ([4], [9]-[11], [13]-[17],
[24]-[27], [29], [34], [35], [37]) referenced works and also the references included
there.
On the other hand, Hermite-Hadamard inequality is considered for convex func-

tions on the co-ordinates in [12], [18]. If we look at the convexity of the co-ordinates,
there are a lot of definitions of co-ordinated convex function. They may be stated
as follows [12]:
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Definition 1. Let us consider a bidimensional interval ∆ := [a, b] × [c, d] in R2
with a < b and c < d. A function f : ∆ ⊂ R2 → R is said to be convex on ∆ if the
following inequality satisfies

f(tx+ (1− t) z, ty + (1− t) w) ≤ t f(x, y) + (1− t) f(z, w)

for all (x, y), (z, w) ∈ ∆ and t ∈ [0, 1].

A modification of definition of co-ordinated convex function was defined by
Dragomir [12] as follows:

Definition 2. A function f : ∆ → R is said to be convex on the co-ordinates on
∆ if the partial mappings fy : [a, b] → R, fy(x) = f(x, y) and fx : [c, d] → R,
fx(y) = f(x, y) are convex where defined for all x ∈ [a, b] and y ∈ [c, d].

A formal definition for co-ordinated convex function may be stated as follows:

Definition 3. A function f : ∆ → R is called co-ordinated convex on ∆ if the
following inequality satisfies

f(tx+ (1− t) y, su+ (1− s) v) (1)

≤ ts f(x, u) + t(1− s)f(x, v) + s(1− t)f(y, u) + (1− t)(1− s)f(y, v)

for all (x, u), (y, v) ∈ ∆ and t, s ∈ [0, 1].

The following Hermite-Hadamard type inequalities for co-ordinated convex func-
tions were obtained by Dragomir in [12]:

Theorem 4. Suppose that f : ∆ → R is co-ordinated convex, then we have the
following inequalities:

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

 1

b− a

b∫
a

f

(
x,
c+ d

2

)
dx+

1

d− c

d∫
c

f

(
a+ b

2
, y

)
dy


≤ 1

(b− a)(d− c)

b∫
a

d∫
c

f(x, y) dydx (2)

≤ 1

4

 1

b− a

b∫
a

f(x, c)dx+
1

b− a

b∫
a

f(x, d)dx

+
1

d− c

d∫
c

f(a, y)dy +
1

d− c

d∫
c

f(b, y)dy


≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
The above inequalities are sharp.
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The following Hermite-Hadamard type inequalities for products of two co-ordinated
convex functions were given by Latif and Alomari in [18]:

Theorem 5. Let f, g : ∆→ [0,∞) be co-ordinated convex functions on ∆, then we
have the following Hermite-Hadamard type inequalities

1

(b− a) (d− c)

b∫
a

d∫
c

f(x, y)g(x, y)dxdy (3)

≤ 1

9
K(a, b, c, d) +

1

18
[L(a, b, c, d) +M(a, b, c, d)] +

1

36
N(a, b, c, d)

and

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)
(4)

≤ 1

(b− a) (d− c)

b∫
a

d∫
c

f(x, y)g(x, y)dxdy +
5

36
K(a, b, c, d)

+
7

36
[L(a, b, c, d) +M(a, b, c, d)] +

2

9
N(a, b, c, d)

where

K(a, b, c, d) = f(a, c)g(a, c) + f(b, c)g(b, c) + f(a, d)g(a, d) + f(b, d)g(b, d),

L(a, b, c, d) = f(a, c)g(b, c) + f(b, c)g(a, c) + f(a, d)g(b, d) + f(b, d)g(a, d),

M(a, b, c, d) = f(a, c)g(a, d) + f(b, c)g(b, d) + f(a, d)g(a, c) + f(b, d)g(b, c)

and

N(a, b, c, d) = f(a, c)g(b, d) + f(b, c)g(a, d) + f(a, d)g(b, c) + f(b, d)g(a, c).

Now, we give the definitions of Riemann-Liouville fractional integrals for two
variable functions:

Definition 6. [28] Let f ∈ L1([a, b] × [c, d]). The Riemann-Liouville fractional
integrals Jα,βa+,c+, J

α,β
a+,d−, J

α,β
b−,c+ and J

α,β
b−,d− are defined by

Jα,βa+,c+f(x, y) =
1

Γ(α)Γ(β)

x∫
a

y∫
c

(x− t)α−1 (y − s)β−1 f(t, s)dsdt, x > a, y > c,

Jα,βa+,d−f(x, y) =
1

Γ(α)Γ(β)

x∫
a

d∫
y

(x− t)α−1 (s− y)
β−1

f(t, s)dsdt, x > a, y < d,

Jα,βb−,c+f(x, y) =
1

Γ(α)Γ(β)

b∫
x

y∫
c

(t− x)
α−1

(y − s)β−1 f(t, s)dsdt, x < b, y > c
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and

Jα,βb−,d−f(x, y) =
1

Γ(α)Γ(β)

b∫
x

d∫
y

(t− x)
α−1

(s− y)
β−1

f(t, s)dsdt, x < b, y < d.

The following Hermite-Hadamard type inequality utilizing co-ordinated convex
functions was proved by Sarikaya in [28]:

Theorem 7. Let f, g : ∆ := [a, b] × [c, d] → [0,∞) be two co-ordinated convex on
∆ with 0 ≤ a < b and 0 ≤ c < d and f ∈ L(∆). Then for α, β > 0 we have the
following Hermite-Hadamard type inequality

f

(
a+ b

2
,
c+ d

2

)
(5)

≤ Γ (α+ 1) Γ (β + 1)

4(b− a)α (d− c)β

×
[
Jα,βa+,c+f(b, d)g(b, d) + Jα,βa+,d−f(b, c)g(b, c)

+ Jα,βb−,c+f(a, d)g(a, d) + Jα,βb−,d−f(a, c)g(a, c)
]

≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
.

Now, let’s give the notations Ak(x;m,n) and Bk(x;m,n) used throughout the
study:

Ak(x;m,n) =

n∫
m

(n− x)2wk(x)dx, Bk(x;m,n) =

n∫
m

(n− x)(x−m)wk(x)dx

for k = 1, 2.
In [7], Budak gave the following inequalities which are used the main results:

Theorem 8. Suppose that w1 : [a, b]→ R is non-negative, integrable and symmetric
about x = a+b

2 (i.e. w1(x) = w1(a + b − x)). If f, g : I → R are two real-valued,
non-negative and convex functions on I, then for any a, b ∈ I, we have

b∫
a

f(x)g(x)w1(x)dx ≤ M(a, b)

(b− a)
2A1(x; a, b) +

N(a, b)

(b− a)
2B1(x; a, b) (6)

where

M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).
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Theorem 9. Suppose that conditions of Theorem 8 hold, then we have the following
inequality

2f

(
a+ b

2

)
g

(
a+ b

2

) b∫
a

w1(x)dx (7)

≤
b∫
a

f(x)g(x)w1(x)dx+
M(a, b)

(b− a)
2B1(x; a, b) +

N(a, b)

(b− a)
2A1(x; a, b)

where M(a, b) and N(a, b) are defined as in Theorem 8.

Many convexity is defined on co-ordinates and several inequalities are done by
using these definitions. For example, Alomari and Darus proved Hadamard type in-
equalities for the s−convex functions and log−convex functions on the co-ordinates
in a rectangle from the plane R2 in [2] and [3] respectively. In [23] Ozdemir et al.
gave Hadamard type inequalities for h−convex functions on the co-ordinates. For
the others, please refer to ([1]-[3], [5]-[8], [12], [18]-[23],[28],[30]-[33], [36]).
The aim of this paper is to establish Hermite-Hadamard type inequalities for

product of co-ordinated convex functions. The results presented in this paper pro-
vide extensions of those given in [6] and [18]

2. Main Results

Theorem 10. Let f, g : ∆ ⊂ R2 → [0,∞) be co-ordinated convex functions on
∆. Also, w1 : [a, b] → R is non-negative, integrable and symmetric about x = a+b

2
(i.e. w1(x) = w1(a + b − x)) and w2 : [c, d] → R is non-negative, integrable and
symmetric about y = c+d

2 (i.e. w2(y) = w2(c+d−y)). Then, we have the following
Hermite-Hadamard type inequality

1

(b− a)(d− c)

b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

≤ A2(y; c, d)

(b− a)3(d− c)3 [K(a, b, c, d)A1(x; a, b) + L(a, b, c, d)B1(x; a, b)]

+
B2(y; c, d)

(b− a)3(d− c)3 [M(a, b, c, d)A1(x; a, b) +N(a, b, c, d)B1(x; a, b)]

where K(a, b, c, d), L(a, b, c, d), M(a, b, c, d) and N(a, b, c, d) defined by as in Theo-
rem 5.

Proof. Since f and g are co-ordinated convex functions on ∆, the functions fx and
gx are convex on [c, d]. If the inequality (6) is applied for the functions fx and gx,
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then we obtain

1

d− c

d∫
c

fx(y)gx(y)w2(y)dy ≤ A2(y; c, d)

(d− c)3 [fx(c)gx(c) + fx(d)gx(d)] (8)

+
B2(y; c, d)

(d− c)3 [fx(c)gx(d) + fx(d)gx(c)] .

That is,

1

d− c

d∫
c

f(x, y)g(x, y)w2(y)dy ≤ A2(y; c, d)

(d− c)3 [f(x, c)g(x, c) + f(x, d)g(x, d)] (9)

+
B2(y; c, d)

(d− c)3 [f(x, c)g(x, d) + f(x, d)g(x, c)] .

Multiplying the inequality (9) by w1(x)
(b−a) and then integrating respect to x from

a to b, we get

1

(b− a)(d− c)

b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx (10)

≤ A2(y; c, d)

(b− a)(d− c)3

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
B2(y; c, d)

(b− a)(d− c)3

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx.

Applying the inequality (6) to each integrals in (10), we have

b∫
a

f(x, c)g(x, c)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, c)g(a, c) + f(b, c)g(b, c)] (11)

+
B1(x; a, b)

(b− a)
2 [f(a, c)g(b, c) + f(b, c)g(a, c)] ,

b∫
a

f(x, d)g(x, d)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, d)g(a, d) + f(b, d)g(b, d)] (12)
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+
B1(x; a, b)

(b− a)
2 [f(a, d)g(b, d) + f(b, d)g(a, d)] ,

b∫
a

f(x, c)g(x, d)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, c)g(a, d) + f(b, c)g(b, d)] (13)

+
B1(x; a, b)

(b− a)
2 [f(a, c)g(b, d) + f(b, c)g(a, d)]

and
b∫
a

f(x, d)g(x, c)w1(x)dx ≤ A1(x; a, b)

(b− a)
2 [f(a, d)g(a, c) + f(b, d)g(b, c)] (14)

+
B1(x; a, b)

(b− a)
2 [f(a, d)g(b, c) + f(b, d)g(a, c)] .

Substituting the inequalities (11)-(14) in the inequality (10) and then arranging
the result obtained, we get desired result. On the other hand, the same result is
obtained by using the convexity of functions fy and gy. �

Theorem 11. Let f, g : ∆ ⊂ R2 → [0,∞) be co-ordinated convex functions on ∆
with a < b, c < d. Also, w1 : [a, b] → R is non-negative, integrable and symmetric
about x = a+b

2 (i.e. w1(x) = w1(a + b − x)) and w2 : [c, d] → R is non-negative,
integrable and symmetric about y = c+d

2 (i.e. w2(y) = w2(c + d − y)). Then, we
have the following Hermite-Hadamard type inequality

4

b∫
a

d∫
c

f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)
w1(x)w2(y)dydx

≤
b∫
a

d∫
c

f (x, y) g (x, y)w1(x)w2(y)dydx

+
K(a, b, c, d)

(b− a)2(d− c)2 [B1(x; a, b)A2(y; c, d) +B2(y; c, d)A1(x; a, b) +B1(x; a, b)B2(y; c, d)]

+
L(a, b, c, d)

(b− a)2(d− c)2 [B2(y; c, d)B1(x; a, b) +A2(y; c, d)A1(x; a, b) +A1(x; a, b)B2(y; c, d)]

+
M(a, b, c, d)

(b− a)2(d− c)2 [B2(y; c, d)B1(x; a, b) +A2(y; c, d)A1(x; a, b) +B1(x; a, b)A2(y; c, d)]
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+
N(a, b, c, d)

(b− a)2(d− c)2 [A1(x; a, b)B2(y; c, d) +A2(y; c, d)B1(x; a, b) +A2(y; c, d)A1(x; a, b)] .

Proof. Since f and g are co-ordinated convex functions on ∆, the functions fx, gx,
fy and gy are convex. Applying the inequality (7) for the functions f c+d

2
and g c+d

2

with y = c+d
2 and then multiplying both sides of the result obtained by 2

d∫
c

w2(y)dy,

we get

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (15)

≤ 2

b∫
a

d∫
c

f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
w1(x)w2(y)dydx

+

2

d∫
c

[
f
(
a, c+d2

)
g
(
a, c+d2

)
+ f

(
b, c+d2

)
g
(
b, c+d2

)
(b− a)2

]
w2(y)dy

B1(x; a, b)

+

2

d∫
c

[
f
(
a, c+d2

)
g
(
b, c+d2

)
+ f

(
b, c+d2

)
g
(
a, c+d2

)
(b− a)2

]
w2(y)dy

A1(x; a, b).

Similarly, if we apply the inequality (7) for the functions f a+b
2
and g a+b

2
with x = a+b

2

and then multiply both sides of the result obtained by 2
b∫
a

w1(x)dx, we get

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (16)

≤ 2

b∫
a

d∫
c

f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
w1(x)w2(y)dydx

+

2

b∫
a

[
f
(
a+b
2 , c

)
g
(
a+b
2 , c

)
+ f

(
a+b
2 , d

)
g
(
a+b
2 , d

)
(d− c)2

]
w1(x)dx

B2(y; c, d)

+

2

b∫
a

[
f
(
a+b
2 , c

)
g
(
a+b
2 , d

)
+ f

(
a+b
2 , d

)
g
(
a+b
2 , c

)
(d− c)2

]
w1(x)dx

A2(y; c, d).
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Using the inequality (7) for each integrals in inequalities (15) and (16), we have

2f

(
a,
c+ d

2

)
g

(
a,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(a, y)g(a, y)w2(y)dy (17)

+

[
f(a, c)g(a, c) + f(a, d)g(a, d)

(d− c)2

]
B1(y; c, d)

+

[
f(a, c)g(a, d) + f(a, d)g(a, c)

(d− c)2

]
A1(y; c, d),

2f

(
b,
c+ d

2

)
g

(
b,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(b, y)g(b, y)w2(y)dy (18)

+

[
f(b, c)g(b, c) + f(b, d)g(b, d)

(d− c)2

]
B1(y; c, d)

+

[
f(b, c)g(b, d) + f(b, d)g(b, c)

(d− c)2

]
A1(y; c, d),

2f

(
a,
c+ d

2

)
g

(
b,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(a, y)g(b, y)w2(y)dy (19)

+

[
f(a, c)g(b, c) + f(a, d)g(b, d)

(d− c)2

]
B1(y; c, d)

+

[
f(a, c)g(b, d) + f(a, d)g(b, c)

(d− c)2

]
A1(y; c, d),
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2f

(
b,
c+ d

2

)
g

(
a,
c+ d

2

) d∫
c

w2(y)dy ≤
d∫
c

f(b, y)g(a, y)w2(y)dy (20)

+

[
f(b, c)g(a, c) + f(b, d)g(a, d)

(d− c)2

]
B1(y; c, d)

+

[
f(b, c)g(a, d) + f(b, d)g(a, c)

(d− c)2

]
A1(y; c, d),

2f

(
a+ b

2
, c

)
g

(
a+ b

2
, c

) b∫
a

w1(x)dx ≤
b∫
a

f(x, c)g(x, c)w1(x)dx (21)

+

[
f(a, c)g(a, c) + f(b, c)g(b, c)

(b− a)2

]
B1(x; a, b)

+

[
f(a, c)g(b, c) + f(b, c)g(a, c)

(b− a)2

]
A1(x; a, b),

2f

(
a+ b

2
, d

)
g

(
a+ b

2
, d

) b∫
a

w1(x)dx ≤
b∫
a

f(x, d)g(x, d)w1(x)dx (22)

+

[
f(a, d)g(a, d) + f(b, d)g(b, d)

(b− a)2

]
B1(x; a, b)

+

[
f(a, d)g(b, d) + f(b, d)g(a, d)

(b− a)2

]
A1(x; a, b),
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2f

(
a+ b

2
, d

)
g

(
a+ b

2
, d

) b∫
a

w1(x)dx ≤
b∫
a

f(x, d)g(x, d)w1(x)dx (23)

+

[
f(a, d)g(a, d) + f(b, d)g(b, d)

(b− a)2

]
B1(x; a, b)

+

[
f(a, d)g(b, d) + f(b, d)g(a, d)

(b− a)2

]
A1(x; a, b),

2f

(
a+ b

2
, c

)
g

(
a+ b

2
, d

) b∫
a

w1(x)dx ≤
b∫
a

f(x, c)g(x, d)w1(x)dx (24)

+

[
f(a, c)g(a, d) + f(b, c)g(b, d)

(b− a)2

]
B1(x; a, b)

+

[
f(a, c)g(b, d) + f(b, c)g(a, d)

(b− a)2

]
A1(x; a, b)

and

2f

(
a+ b

2
, d

)
g

(
a+ b

2
, c

) b∫
a

w1(x)dx ≤
b∫
a

f(x, d)g(x, c)w1(x)dx (25)

+

[
f(a, d)g(a, c) + f(b, d)g(b, c)

(b− a)2

]
B1(x; a, b)

+

[
f(a, d)g(b, c) + f(b, d)g(a, c)

(b− a)2

]
A1(x; a, b).

When the inequalities (17)-(25) is written in (15) and (16) and then the results
obtained are added side by side and rearranged, we obtain
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8f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (26)

≤ 2

b∫
a

d∫
c

f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
w1(x)w2(y)dydx

+2

b∫
a

d∫
c

f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
w1(x)w2(y)dydx

+
B1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(a, y) + f(b, y)g(b, y)]w2(y)dy

+
A1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(b, y) + f(b, y)g(a, y)]w2(y)dy

+
B2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
A2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx

+
2K(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)B2(y; c, d)

+
2L(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)B2(y; c, d)

+
2M(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)A2(y; c, d)

+
2N(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)A2(y; c, d).

The inequality (7) is applied to f
(
x, c+d2

)
g
(
x, c+d2

)
and then the result is multiplied

by w1(x) and integrated over [a, b],we get

2

b∫
a

d∫
c

f

(
x,
c+ d

2

)
g

(
x,
c+ d

2

)
w1(x)w2(y)dydx (27)
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≤
b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

+
B2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
A2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx.

Similarly, if we apply the inequality (7) to f
(
a+b
2 , y

)
g
(
a+b
2 , y

)
and then the result

is multiplied by w2(y) and integrated over [c, d],we get

2

b∫
a

d∫
c

f

(
a+ b

2
, y

)
g

(
a+ b

2
, y

)
w1(x)w2(y)dydx (28)

≤
b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

+
B1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(a, y) + f(b, y)g(b, y)]w2(y)dy

+
A1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(b, y) + f(b, y)g(a, y)]w2(y)dy.

Substituting the inequalities (27) and (28) in the inequality (26) and reordering the
results obtained, we have

8f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

) b∫
a

d∫
c

w1(x)w2(y)dydx (29)

≤ 2

b∫
a

d∫
c

f(x, y)g(x, y)w1(x)w2(y)dydx

+
2B1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(a, y) + f(b, y)g(b, y)]w2(y)dy
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+
2A1(x; a, b)

(b− a)2

d∫
c

[f(a, y)g(b, y) + f(b, y)g(a, y)]w2(y)dy

+
2B2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, c) + f(x, d)g(x, d)]w1(x)dx

+
2A2(y; c, d)

(d− c)2

b∫
a

[f(x, c)g(x, d) + f(x, d)g(x, c)]w1(x)dx

+
2K(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)B2(y; c, d)

+
2L(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)B2(y; c, d)

+
2M(a, b, c, d)

(b− a)2(d− c)2B1(x; a, b)A2(y; c, d)

+
2N(a, b, c, d)

(b− a)2(d− c)2A1(x; a, b)A2(y; c, d).

By applying the inequality (6) to each integral in (29) and later rearranging the
results obtained, we obtain desired inequality. �

Remark 12. If we choose w1(x) = 1 and w2(y) = 1 in Theorem 10 and Theorem
11, we get (3) and (4) respectively.

Remark 13. If we choose w1(x) = α
(b−a)α−1

[
(b− x)α−1 + (x− a)α−1

]
with α > 0

and w2(y) = β
(d−c)β−1

[
(d− y)β−1 + (y − c)β−1

]
with β > 0 in Theorem 10 and

Theorem 11, we get

Γ (α+ 1) Γ (β + 1)

4(b− a)α (d− c)β

×
[
Jα,βa+,c+f(b, d)g(b, d) + Jα,βa+,d−f(b, c)g(b, c)

+Jα,βb−,c+f(a, d)g(a, d) + Jα,βb−,d−f(a, c)g(a, c)
]

≤
[

1

2
− β

(β + 1) (β + 2)

] [
1

2
− α

(α+ 1) (α+ 2)

]
K(a, b, c, d)
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+

[
1

2
− β

(β + 1) (β + 2)

] [
α

(α+ 1) (α+ 2)

]
L(a, b, c, d)

+

[
β

(β + 1) (β + 2)

] [
1

2
− α

(α+ 1) (α+ 2)

]
M(a, b, c, d)

+

[
β

(β + 1) (β + 2)

] [
α

(α+ 1) (α+ 2)

]
N(a, b, c, d)

and

4f

(
a+ b

2
,
c+ d

2

)
g

(
a+ b

2
,
c+ d

2

)

≤ Γ (α+ 1) Γ (β + 1)

4(b− a)α (d− c)β

×
[
Jα,βa+,c+f(b, d)g(b, d) + Jα,βa+,d−f(b, c)g(b, c)

+ Jα,βb−,c+f(a, d)g(a, d) + Jα,βb−,d−f(a, c)g(a, c)
]

+

{
α

2 (α+ 1) (α+ 2)
+

[
β

(β + 1) (β + 2)

] [
1

2
− α

(α+ 1) (α+ 2)

]}
K(a, b, c, d)

+

{
1

2

[
1

2
− α

(α+ 1) (α+ 2)

]
+

[
α

(α+ 1) (α+ 2)

] [
β

(β + 1) (β + 2)

]}
L(a, b, c, d)

+

{
1

2

[
1

2
− β

(β + 1) (β + 2)

]
+

[
α

(α+ 1) (α+ 2)

] [
β

(β + 1) (β + 2)

]}
M(a, b, c, d)

+

{
1

4
−
[

α

(α+ 1) (α+ 2)

] [
β

(β + 1) (β + 2)

]}
N(a, b, c, d)

which is proved by Budak and Sarikaya [6].
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