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Expression Patterns of Oxidative Stress-Related Genes of Cucurbita pepo and Relation to 

Cellular H2O2 under Short-Term Heavy Metal Stress 

Musa KAR1* 

ABSTRACT: Oxidative stress caused by biotic and abiotic stress factors is the most important cause of 

cellular damage. Due to their sessile structures, plants have evolved regulatory mechanisms to respond 

to various environmental stresses The increased cellular concentration of reactive oxygen species is one 

of the major consequences of oxidative stress. including H2O2 production. Also, H2O2 is produced as a 

by-product of respiratory and photosynthetic metabolisms in plants. H2O2 acts as a multifaceted 

molecule because of its dual role in cells. It has been found to act as a secondary messenger in signal 

transmission networks. In this study, the changes in expression levels of stress-related genes and their 

relationship with H2O2 in pumpkin (Cucurbita pepo) plant exposed to Cd heavy metal at different 

durations and concentrations were investigated. As a result of this study, we concluded that the 

expression of stress-related genes may be related to the oxidative status of the cell and the concentration 

of H2O2 in the signaling mechanism, the expression of stress-related genes may be up-regulated to a 

certain degree of concentration, while a higher concentration of H2O2 may down-regulate the expression 

of the genes. 

Keywords: Stress-related genes, Expression level, Oxidative stress, Cadmium, Reactive Oxigen 

Species, Cucurbita pepo 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Musa KAR (Orcid ID: 0000-0001-7983-4814), Nevşehir Hacı Bektaş Veli Üniversitesi, Fen-Edebiyat Fakültesi, 

Moleküler Biyoloji ve Genetik Bölümü, Nevşehir, Türkiye 

*Sorumlu Yazar/Corresponding Author: Musa KAR, musa.kar@nevsehir.edu.tr 

 Geliş tarihi / Received: 30-04-2020 

 Kabul tarihi / Accepted: 28-08-2020 

 



Musa KAR  10(4): 2952-2961, 2020 

Expression Patterns of Oxidative Stress-Related Genes of Cucurbita pepo and Relation to Cellular H2O2 under Short-Term 

Heavy Metal Stress 

 

2953 

INTRODUCTION  

Reactive oxygen species (ROS) are generated as by-products of different metabolic processes such 

as photosynthesis and respiration. Because all the aerobic species use the oxygen molecule as the 

last electrons receiver during electron transport system, irregularities occur in the exchange of electrons 

in some cases, resulting in the formation of many reactive and therefore toxic intermediates such as 

single oxygen (1O2), radical superoxide (O−2) and hydrogen peroxide (H2O2). varieties can cause serious 

damage to cell membranes and cellular components in their environment. Also, ROS can cause binding 

with high interest and lead to rather destructive results against DNA, carbohydrates, proteins, and lipids 

(Zimmermann et al., 2006). Due to these properties, cellular ROS concentration is tried to be kept in a 

stable balance with enzymatic and non-enzymatic detoxification mechanisms (Ahmad, 2014). The 

deterioration of this balance due to negative environmental factors leads to the phenomenon defined as 

the rapid increase of intracellular ROS levels called "oxidative burst." To reduce the possible effects of 

this stress, removal of ROS in the plant system becomes vital (Azarabadi et al., 2017).  

However, the oxidative balance in question in the plant can be spoiled by many different abiotic 

environmental factors such as temperature, heavy metal ions, cold, salinity, drought, and light (Boyer, 

1982). 

Plants try to balance cellular ROS concentration using both enzymatic such as superoxide dismutase 

(SOD), catalase (CAT), ascorbate peroxidase (APX), and non-enzymatic such as α-tocopherol ascorbate 

and flavonoids pathways.. (Khan et al., 2017).  

Numerous studies have shown that, under different stress conditions, plants respond in a very 

complex manner involving numerous physiological and cellular changes. Plants use several hormone-

driven signaling pathways to tackle environmental stress. Previous research has shown however that 

plants use ROS as signaling molecules to control growth and specific physiological responses. In recent 

years, scientists have concentrated on ROS generation and its incorporation in the control of plant growth 

and stress tolerance with various hormonal signal pathways. (Vanderauwera et al., 2009). 

The precursor studies investigating the relationship between H2O2 and the role of signalization 

reported that it played the role of the signal cascade in events that are essential for plant development 

and growth like the strengthening of the plant cell wall, xylem differentiation and the relaxation of the 

cell wall, where H2O2 is an important part of oxidative metabolism. (Dempsey et al., 1994) 

While the versatile molecule H2O2 serves as a significant signal at normal levels, the increase in its 

concentration in abiotic and biotic stress conditions causes oxidative stress. The fact that it has a small 

molecular structure, can easily be diffused between membranes, has a relatively longer half-life 

compared to other ROS, has unmatched stability, has less reactivity and acts as a central player in signal 

transduction pathways, puts H2O2 one step forward among other ROS molecules (Cuypers et al., 2016). 

In plants, H2O2 works as a key factor in concentrations at the non-toxic level. As a signaling 

molecule, it merges with various pathways and tolerates biotic and abiotic stress (Baxter et al., 2014; 

Kar, 2018). H2O2 transmits the local effect of an abiotic stressor to systemic tissues and acts as a general 

preparation signal (Karpinski et al., 1999). The mechanism of responses activated by signals that are 

triggered by H2O2 as a response to abiotic stress is expressed as systematically acquired adaptation 

(SAA) and this adaptation is realized thanks to the H2O2 molecule (Suzuki et al., 2013). 

In a study conducted in recent years, it was revealed that there was a relationship between the genes 

responsible for stress in chickpea plants exposed to heavy metal stress and H2O2 and that H2O2 increased 

the transcript accumulation of stress response genes up to a certain time and concentration, but caused a 

decrease after a certain concentration (Kar, 2018). Similarly, Tombuloğlu et al. (2012) reported a 
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reduction in gene expression due to prolongation of exposure in tomato plants exposed to boron stress 

(Tombuloglu et al., 2012).  

Understanding the fine and precise mechanisms that plants use to regulate the cellular H2O2 

amount and the related signaling pathways may be the key to improving agriculture in the future. 

Although it potentially damages plant cells, ROS oxidative signalization is considered to be useful 

predictors that provide systemic acquired resistance in cooperation with systemic acquired acclimation 

and hormones. Despite the scientific researches conducted in recent years, the cellular mechanisms of 

ROSs have not been fully elucidated (Hossain et al., 2015). 

The aim of this study is mainly to reveal the effect of the genes of cellular H2O2 responsible for stress 

on the expression levels. In this context, the roots of pumpkin plants were exposed to cadmium (Cd) 

heavy metal, which is very toxic, and which causes irreversible damages in plants in different duration 

and concentrations. MDA accumulation and cellular H2O2 content were calculated. Also, the change in 

expression patterns of stress-related genes was calculated and its relationship with cellular H2O2 was 

tried to be explained.  

MATERIALS AND METHODS 

Plant growth conditions and Cd application 

After surface sterilization, Cucurbita pepo seeds were planted in 40x25x5 cm plastic vials filled 

with sterile agricultural perlite. The seedling was incubated growth chamber (25 0C temperature 70% 

humidity) until it became seedlings for 15 days. The medium was the Hoagland solution. After this; the 

seedlings were exposed to 50, 100, and 200 micromolar CdCl solutions in the beaker for 12, 24, and 48 

hours. All applications were repeated thrice. 

Lipid peroxidation 

Lipid peroxidation in leaf tissues (250 mg) was measured in terms of malondialdehyde (MDA) 

determined by thiobarbituric acid (TBA) reactions as described by Heath and Packer (Heath et al., 1968).  

 H2O2 determination 

After modification, the method used by Junglee et al. was used to evaluate cellular H2O2 (Junglee 

et al., 2014). root sample (100 mg) was grinded in nitrogen and dissolved in 1 ml solution containing, 

0.5 ml KI (1mM), 0.25 ml TCA (0.1% w /v) and 0.25 ml potassium phosphate for 10 minutes at + 4 ° 

C. After that the homogeneous centrifuged at + 4 degrees at 10,000 g for 15 minutes. Around 20-22 0C, 

the supernatant was incubated 20 minutes into the night. The content of H2O2 was measured at 280 nm, 

and the concentration of H2O2 in the cell was determined using the incremental concentration of H2O2. 

(Junglee et al., 2014). The formula obtained from a gradual concertation curve.  

RNA isolation, cDNA synthesis, and quantitative real-time PCR analysis 

RNA isolation from plant samples was carried out according to the Trizol protocol. The amount 

and quality of isolated RNA were determined by spectrophotometric measurements on the donovix 

nanodrop device. cDNA synthesis from RNA samples was performed using the first-strand cDNA 

synthesis kit (RevertAid First Strand cDNA Synthesis Kit).  

Real-time PCR applications were performed by Bioneer Exicycler Tm 96 FaST device using 

SYBR Green I Master dye. Primers used in the study are listed in Table 1. The actin gene was used as 

the control primer- Housekeeping gene-. Following quantitation using SYBR Green I dye, Melting 

Curve Analysis was performed to determine the effectiveness of PCR and to observe the presence of 

any dimer formation.  
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Table 1. List of genes and primer used for PCR amplification and the resulting product sizes 

Gene Primer Pair Sequence (5’ – 3’) PRC 

product 

Size 

Gene Bank 

Accession 

no 

Metallothionein MT F 

MT R 

GAGTGGGAAGGGGTAAGTGC 

ACCAACCCAATACCACACCG 

105 XM_02365

7362.1 

Superoxide 

dismutase Cu-

ZnSOD 

Cu-ZnSOD F 

Cu-ZnSOD 

R 

TCGCCATGCTGGTGTTT 

ATGGAGATAGGTCCAGATAGAGG 

102 MG014229

.1 

Catalase Cat F 

Cat R 

GTCACCCATGAGATCCGCA 

CCAAGAGACCTATCCGCCTG 

161 D55645 

Ascorbate 

peroxidase 

APX F 

APX1 R 

TAGGCTCTTGGAGCCCATCA 

AACCCTTGGTAGCATCAGGC 

179 KF954415.

1 

Actin-11 Actin F 

Actin R 

CCTCTCAATCCCAAAGCTAACAG 

CTGTTGGCTGTTCTGCTATCT 

91 HM594170 

RESULTS AND DISCUSSION 

When the accumulation of MDA was analyzed, statistically the highest MDA accumulation was 

observed to take place in 48 hours 200 µM application. While the lowest MDA accumulation occurred 

in the control group as expected, no statistically significant difference was found between the 50 µm 

application of 12 and 24 hours and the control group (Fig. 1A) (p<0.05) 

When Cd concentrations are considered in terms of cellular H2O2 accumulation, the amount of 

H2O2 produced at different times within the same application concentration is statistically different. 

However, in terms of application times, no significant difference was determined between the 

concentrations. Statistically, the highest H2O2 accumulation was detected in 48 hours 50, 100, and 200 

µm Cd application, and no statistically significant difference was found between these 3 application 

concentrations (Fig 1B)(p<0.05). 

 MT expression, which is an antioxidant system element, was highest in the application of 48 

hours, 50 µM and a tendency to decrease was observed in the expression level in the following 

applications. No statistically significant difference was found between 48 hours of 50 µM and 12 hours 

of 50µM. (Fig. 2A) (p<0.05) 

When the Cu-Zn/SOD expressions were examined, the highest expression level was observed at a 

concentration of 50µM for 12 hours, and even though the expression level was higher than the control 

group in the following application concentrations and periods, nothing statistically significant was found 

within. (Fig 2B) (p<0.05).  

When the changes in APX expressions were examined, the highest expression level was observed 

in the application of 12 hours of 200 µM. There was then a decrease in expression level due to increased 

exposure time. However, the reduction concerned did not take place as evidently as that of MT and 

Cu/Zn SOD expression levels (Fig. 2C) P<0.05).  

The highest expression level in the CAT enzyme was found in the 50µM 12 hours application. 

However, a significantly higher expression level was observed in other application periods and 

concentrations than in the control. CAT expression was maintained at all concentrations (Fig. 2D) 

(p<0.05), although there was a tendency to decrease in the expression level.  
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Figure 1. Cellular MDA (A) and H2O2 (B) concentrations. Different letters indicate differences between Cd 

concentrations and durations p<0.05 (ANOVA) the bars show standard deviations (SD) 

Metallothionines (MTs) are the main transition metal ion binding proteins in cells (Hassinen et al., 

2011). Also, it was suggested that MTs function in both metals chaperoning and ROS scavenger tasks 

(Wang et al., 2010). In the study of Tamas et al., where they investigated the effect of Cd on barley plant 

roots, it was found that as Cd concentration increases in plant roots MT expression level also increased 

(Tamás et al., 2008). Jain et al., in the study they conducted with sugar cane plants exposed to selenium 

(Se), found that the MT gene was expressed at a higher level than all concentrations. However, they 

found that MT expression level increased up to a certain Se concentration and decreased after a certain 

Se concentration (Jain et al., 2015). In the study conducted by Tombuloğlu et al. on the effect of boron 

element on the tomato plant, they found that MT gene expression level increased up to a certain 

concentration in root and shoot parts of the plant and but decreases after a certain 

concentration(Tombuloglu et al., 2012). Souguir et al. studied the mRNA accumulation of some genes 

related to stress as a result of Cd exposure at different duration and concentrations in broad bean (Vicia 

faba) plant. After all, after 12 hours, they found an increase in MT gene expression but a decrease when 

the period was prolonged (Souguir et al., 2013). 

In this study, MT expression was found to be higher in all application periods and concentrations 

compared to the control group. However, MT2 expression level increased up until 50 µM Cd application 

and then showed a tendency to decrease. The results of this study show parallelism with the results of 

the studies conducted with the MT gene. 
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Figure 2. Relative expressions of MT(A), Cu/Zn SOD (A), APX (C), and CAT(D) house-keeping gene actin. Different 

letters indicate differences between Cd concentrations and durations p<0.05 (ANOVA) the bars show standard deviations 

(SD) 
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The enzyme Cu-Zn/SOD is present in the nucleus and cytoplasm of the cell and is involved in the 

first step of defense in protecting the cell from the harmful effects of ROS. SOD expression level 

increases under abiotic stress conditions as stated in previous studies. Increased SOD expression level, 

is considered to be proof that O2
- radical accumulates in the cell and that the H2O2 amount also increases. 

This situation shows that the SOD enzyme removes the excess amount of O2
- radicals and increases the 

resistance of the plant under stress (Liochev et al., 2007). In a study where Dixit et al. applied Cd on 

green pea plant, they found that the SOD expression level in plant leaves increased up to a certain period 

in all Cd applications and decreased after a certain period (Dixit et al., 2001). Dai et al. applied different 

concentrations of salt stress to the canola plant. As a result of the study, they found that the SOD 

expression level increased up to 200 mmol L-1 concentration and that it decreased in 250 and 300 mmol 

L-1 concentrations (Dai et al., 2009). Rossatto et al., who worked with rice plants under salt stress found 

that SOD expression increased compared to control up until 15 days of exposure but decreased after 20 

days of exposure (Rossatto et al., 2017). In this study, which is similar to the studies in the literature, 

SOD expression level increased up to 50 µM Cd application and reached the highest level in 12 hours 

50 µM Cd application, but as the concentration amount increased, SOD expression level decreased in 

all application periods. Although the expression levels detected as a result of prolonged exposure were 

higher than the control levels, there was no statistical difference between the expression levels. This 

shows that there is a gradual increase in expression with the introduction of the defense mechanism in 

the early times when the plant encounters stress and a decrease in expression when the plant is unable 

to tolerate stress.  

Rout and Sahoo applied different levels of Cu stress on Withania somnifera plant. As a result of 

the study, they determined that the CAT expression found in the leaf tissues of the plant increased up 

until the 50 µM Cu application but decreased in 100 and 200 µM Cu applications (Rout et al., 2013). In 

their studies, Cantarello et al. found that CAT expression level increased in 48-hour stress application 

and decreased in 56 and 72-hour periods (Cantarello et al., 2005). Kar applied Cd to chickpea plant at 

varying duration and concentrations. As a result of the study, the researcher found that the CAT gene 

was expressed at a high level after 24 hours of application, and after 48 hours of application, there was 

no significant decrease in expression level compared to the decrease in other antioxidant related gene 

expressions and it continued to be expressed (Kar, 2018). Besides, in the study where Rossatto et al. 

applied salt stress to rice plants, CAT expression was found to be higher at all application periods 

compared to control and it was stated that the expression level increased as the application period was 

prolonged (Rossatto et al., 2017). In the study of Souguir et al., in the rice seedlings to which Cd was 

applied, it was found that CAT expression level increased depending on the increasing concentration 

and the prolonged period (Souguir et al., 2013). Luna et al. concluded that CAT regulation serves to 

limit excessive H2O2 accumulation while allowing essential signaling functions to occur (Luna et al., 

2005). Contrary to these findings, in this study CAT expression did not depend on the elevation of H2O2 

concentration and continued to express in C.pepo roots. 

Luo et al. exposed the perennial ryegrass plant to Cd at different times and concentrations and 

found that APX expression was regulated upwards in the first 24 hours of Cd application; however, they 

reported a decrease in expression levels due to prolonged concentrations (Luo et al., 2011). The induced 

expression of APX by other heavy metals has been reported in other plants. Cuypers et al. observed that 

Cu stress-induced APX2 of Arabidopsis thaliana (Tony et al., 2010). APX gene transcript increased in 

grass pea (Lathyrus sativus L) treated with Pb (Brunet et al., 2009). In this study, in parallel with the 
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literature, APX expression showed a significant decrease in the concentration of the highest H2O2 

accumulation.  

Baxter et al. reported that while early research on ROS metabolism focused on the potential 

toxicity of ROS and the different ROS cleaning mechanisms, more recent studies have been focusing on 

the role ROS plays as signaling molecules. In the studies conducted in recent years, it was emphasized 

that reactive oxygen species are less harmful than expected (Del Río, 2015; Farnese et al., 2016; Gupta 

et al., 2016). Choudhury et al. stated that ROS affects the expression of some genes and that ROS acts 

as a biological signal in the regulation of stresses. They emphasized that O2
• - and H2O2 considered as 

the primary ROS in plants serves as secondary messengers regulating various functions in the growth 

and development of the plant (Choudhury et al., 2017). Apel and Hirt maintained that activate signal 

transmission could affect gene expression in 3 different ways by (1) activating the ROS sensors, (2) 

oxidizing the signal path components directly by ROS and (3) by changing the activity of transcription 

factors of ROS (Apel et al., 2004). In the study they conducted, Gill and Tuteja maintained that since 

H2O2 is long-lived and the permeability between membranes is high, regarding the signals produced 

through ROS, ROS was started to be accepted as a secondary precursor. They also stated that ROS acts 

as a key regulator in a wide range of physiological processes (Gill et al., 2010). Laloi et al. emphasized 

that the increases in H2O2 concentration were usually based on different mechanisms and that H2O2 

served as a signal (Laloi et al., 2004). Kar exposed chickpea plant roots to Cd and stated that antioxidant 

gene expressions are associated with H2O2. He emphasized that at a certain level H2O2 amount provided 

the expression of genes at a high level while depending upon the increasing H2O2 concentration, there 

was a significant decrease in gene expression levels (Kar, 2018).  

CONCLUSION 

In this study, we concluded that there is a close relationship between elevating cellular H2O2 

concentrations and MT, Cu/Zn-SOD, and APX expressions. CAT was not affected by the elevated 

concentration. 

In recent years, scientists have shown that H2O2 is the key molecule in many vital functions in 

plants. They emphasized that it is necessary for biotic and abiotic stress adaptation, signal transduction 

network in plants, and control of developmental processes. In this study, we tried to contribute to the 

literature about the signaling effect of H2O2. The findings of this study will shed light on the subsequent 

oxidative signaling and studies.  
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