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A NOTE ON HYPERBOLIC (p, q)-FIBONACCI QUATERNIONS

TÜLAY YAǦMUR

Abstract. In this paper, we introduce a new quaternion sequence called hy-
perbolic (p, q)-Fibonacci quaternions. This new quaternion sequence includes
hyperbolic Fibonacci, hyperbolic k-Fibonacci, hyperbolic Pell, hyperbolic k-
Pell, hyperbolic Jacobsthal, hyperbolic k-Jacobsthal quaternions. We give
generating function and Binet’s formula for these quaternions. We also obtain
some identities such as d’Ocagne’s, Catalan’s and Cassini’s identities involving
hyperbolic (p, q)-Fibonacci quaternions.

1. Introduction

Fibonacci numbers have been applied in different scientific areas such as en-
gineering, and architecture. Recently, Fibonacci numbers have been studied and
generalized by many authors in many ways. For example, one of the generalization
of Fibonacci numbers is (p, q)-Fibonacci numbers [15,17].
For positive real numbers p and q, the sequence of (p, q)-Fibonacci numbers,

denoted by {Fn}n≥0, is defined by the recurrence relation

Fn = pFn−1 + qFn−2, n ≥ 2

with initial conditions F0 = 0 and F1 = 1 [17].
The nth term of the sequence {Fn}n≥0 is given by

Fn =
αn − βn

α− β , (1)

where α =
p+

√
p2 + 4q

2
, β =

p−
√
p2 + 4q

2
are the roots of the characteristic

equation t2 − pt− q = 0 [17].
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It must be note that α+ β = p, α− β =
√
p2 + 4q and αβ = −q. Moreover, the

generating function for the sequence {Fn}n≥0 [29] is given by

fp,q(t) =
t

1− pt− qt2 .

The (p, q)-Fibonacci sequence is the generalization of the familiar second-order
recurrent sequences, that is, for special values of p and q, are defined as follows:

• If p = q = 1, then {Fn}n≥0 is the (classical) Fibonacci sequence {Fn}n≥0
[24].

• If p = k, q = 1, then {Fn}n≥0 is the k-Fibonacci sequence {Fk,n}n≥0 [9].
• If p = 2, q = 1 , then {Fn}n≥0 is the Pell sequence {Pn}n≥0 [18].
• If p = 2, q = k then {Fn}n≥0 is the k-Pell sequence {Pk,n}n≥0 [7].
• If p = 1, q = 2 , then {Fn}n≥0 is the Jacobsthal sequence {Jn}n≥0 [19].
• If p = k, q = 2, then {Fn}n≥0 is the k-Jacobsthal sequence {Jk,n}n≥0 [22].

Quaternions (real quaternions), introduced by Sir William Rowan Hamilton in
the mid nineteenth century, are four-dimensional hypercomplex numbers. Quater-
nions are widely used in high-tech areas such as computer graphics, signal process-
ing, and robotics, see for example [1,8,10,11], among others.
Quaternions form a four-dimensional non-commutative associative algebra over

the real numbers, are defined as follows:

H = {q = q0 + q1i+ q2j+ q3k | q0, q1, q2, q3 ∈ R},
where {1, i, j,k} is a basis of H, and the imaginary units i, j and k satisfy the
following equalities

i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.
For more details on quaternions, one can see, for example [14,32].
Horadam [16] defined the Fibonacci quaternions as

QFn = Fn + Fn+1i+ Fn+2j+ Fn+3k,

where Fn is the nth Fibonacci number.
Fibonacci quaternions have been studied and generalized by many authors, some

of which can be found in [2-6,12,13,20,21,26-28,30,31], among others. One of the
generalization for Fibonacci quaternions is done by Ipek. In [20], Ipek introduced
the (p, q)-Fibonacci quaternions as

QFn = Fn + Fn+1i+ Fn+2j+ Fn+3k,
where Fn is the nth (p, q)-Fibonacci number.
The author also defined the (p, q)-Fibonacci quaternions recursively by the rela-

tion
QFn = pQFn−1 + qQFn−2, n ≥ 2.
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Moreover, Patel and Ray [26] investigated some properties of (p, q)-Fibonacci and
(p, q)-Lucas quaternions.
Alexander Mac-Farlane first described hyperbolic quaternions in 1891, and these

numbers are not associative. Kurt Godel used the name of these quaternions in
1949, but the author actually implied split quaternions in his definition. Hyperbolic
quaternions [25], just like real quaternions, are a generalization of complex numbers
by four real numbers. Moreover, just like real quaternions, hyperbolic quaternions
are not commutative. But hyperbolic quaternions have zero divisors.
In [23], Kosal studied on hyperbolic quaternions and their algebraic properties.

In [5], Aydin defined the hyperbolic k-Fibonacci quaternions. The author also
investigated some algebraic properties of the hyperbolic k-Fibonacci quaternions.
Hyperbolic quaternions are defined as

K = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R},

where

i2 = j2 = k2 = ijk = 1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

Let p = p0 + ip1 + jp2 + kp3 and q = q0 + iq1 + jq2 + kq3 be two hyperbolic
quaternions. Then the addition and subtraction of two hyperbolic quaternions are
defined as

p± q = (p0 ± q0) + i(p1 ± q1) + j(p2 ± q2) + k(p3 ± q3).

The multiplication of a hyperbolic quaternion by a real scalar λ is defined as

λp = λp0 + iλp1 + jλp2 + kλp3.

The multiplication of two hyperbolic quaternions is defined as

pq = (p0q0 + p1q1 + p2q2 + p3q3) + i(p0q1 + p1q0 + p2q3 − p3q2)
+ j(p0q2 − p1q3 + p2q0 + p3q1) + k(p0q3 + p1q2 − p2q1 + p3q0).

The conjugate of a hyperbolic quaternion q is denoted by q and defined by

q = q0 − iq1 − jq2 − kq3.

Moreover, the norm of the hyperbolic quaternion q is

N(q) = qq = q0
2 − q12 − q22 − q32.

The main objective of this paper is to introduce hyperbolic (p, q)-Fibonacci
quaternions. We then give the generating function and Binet’s formula for the
hyperbolic (p, q)-Fibonacci quaternions. In addition, we obtain some well-known
identities involving these quaternions.
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2. The Hyperbolic (p, q)-Fibonacci Quaternions

In this section, we first give the definition of the hyperbolic (p, q)-Fibonacci
quaternions. We then investigate some properties of these quaternions.

Definition 1. For positive real numbers p and q, hyperbolic (p, q)-Fibonacci quater-
nions are defined by the relation

HQFn = Fn + iFn+1 + jFn+2 + kFn+3, (2)

where Fn is the nth (p, q)-Fibonacci number, and i, j, k satisfy the equalities

i2 = j2 = k2 = ijk = 1, ij = k = −ji, jk = i = −kj, ki = j = −ik. (3)

Let HQFn be the nth (p, q)-Fibonacci number. Then, after some necessary
calculations, one can obtain the following recurrence relation:

HQFn = pHQFn−1 + qHQFn−2, n ≥ 2, (4)

with initial conditions

HQF0 = i+ jp+ k(p2 + q), (5)

HQF1 = 1 + ip+ j(p2 + q) + k(p3 + 2pq). (6)

Particular cases of Definition 1 are

• Hyperbolic Fibonacci quaternions are

HQFn = Fn + iFn+1 + jFn+2 + kFn+3,

where Fn is the nth Fibonacci number, with initial conditions

HQF0 = i+ j+ k2,

HQF1 = 1 + i+ j2 + k3.

• Hyperbolic k-Fibonacci quaternions [5] are

HQFk,n = Fk,n + iFk,n+1 + jFk,n+2 + kFk,n+3,

where Fk,n is the nth k-Fibonacci number, with initial conditions

HQFk,0 = i+ jk + k(k
2 + 1),

HQFk,1 = 1 + ik + j(k
2 + 1) + k(k3 + 2k).

• Hyperbolic Pell quaternions are

HQPn = Pn + iPn+1 + jPn+2 + kPn+3,

where Pn is the nth Pell number, with initial conditions

HQP0 = i+ 2j+ k5,

HQP1 = 1 + i2 + j5 + k12.
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• Hyperbolic k-Pell quaternions are

HQPk,n = Pk,n + iPk,n+1 + jPk,n+2 + kPk,n+3,

where Pk,n is the nth k-Pell number, with initial conditions

HQPk,0 = i+ j2 + k(4 + k),

HQPk,1 = 1 + i2 + j(4 + k) + k(8 + 4k).

• Hyperbolic Jacobsthal quaternions are

HQJn = Jn + iJn+1 + jJn+2 + kJn+3,

where Jn is the nth Jacobsthal number, with initial conditions

HQJ0 = i+ j+ k3,

HQJ1 = 1 + i+ j3 + k5.

• Hyperbolic k-Jacobsthal quaternions are

HQJk,n = Jk,n + iJk,n+1 + jJk,n+2 + kJk,n+3,

where Jk,n is the nth k-Jacobsthal number, with initial conditions

HQJk,0 = i+ jk + k(k
2 + 2),

HQJk,1 = 1 + ik + j(k
2 + 2) + k(k3 + 4k).

Let HQFn = Fn + iFn+1 + jFn+2 + kFn+3 and HQFm = Fm + iFm+1 +
jFm+2+kFm+3 be two hyperbolic (p, q)-Fibonacci quaternions. Then the addition
and subtraction of two hyperbolic (p, q)-Fibonacci quaternions are defined by

HQFn ±HQFm = (Fn ±Fm) + i(Fn+1 ±Fm+1) + j(Fn+2 ±Fm+2)
+ k(Fn+3 ±Fm+3). (7)

The multiplication of a hyperbolic (p, q)-Fibonacci quaternion by a real scalar λ is
defined by

λHQFn = λFn + iλFn+1 + jλFn+2 + kλFn+3. (8)

The multiplication of two hyperbolic (p, q)-Fibonacci quaternions is defined by

HQFn ×HQFm
= (FnFm + Fn+1Fm+1 + Fn+2Fm+2 + Fn+3Fm+3)
+ i(FnFm+1 + Fn+1Fm + Fn+2Fm+3 −Fn+3Fm+2)
+ j(FnFm+2 −Fn+1Fm+3 + Fn+2Fm + Fn+3Fm+1)
+ k(FnFm+3 + Fn+1Fm+2 −Fn+2Fm+1 + Fn+3Fm). (9)

The generating function for the hyperbolic (p, q)-Fibonacci quaternions is given
in the following theorem.
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Theorem 2. The generating function for the hyperbolic (p, q)-Fibonacci quater-
nions is given by

Gp,q(t) =
t+ i(1 + t− pt) + j(1 + 2t− pt) + k(2 + 3t− 2pt)

1− pt− qt2 .

Proof. Let Gp,q(t) be the generating function for the hyperbolic (p, q)-Fibonacci
quaternions. Then we write

Gp,q(t) =

∞∑
n=0

HQFntn = HQF0 +HQF1t+ ...+HQFntn + ... . (10)

Multiplying the Eq. (10) with pt and qt2 respectively, we get

ptGp,q(t) = pHQF0t+ pHQF1t2 + ...+ pHQFn−1tn + ...
and

qt2Gp,q(t) = qHQF0t2 + qHQF1t3 + ...+ qHQFn−2tn + ... .

Then we have

(1− pt− qt2)Gp,q(t) = HQF0 + (HQF1 − pHQF0)t

+

∞∑
n=2

(HQFn − pHQFn−1 − qHQFn−2)tn

= HQF0 + (HQF1 − pHQF0)t.
By the Eqs. (5) and (6), we get

(1− pt− qt2)Gp,q(t) = t+ i(1 + t− pt) + j(1 + 2t− pt) + k(2 + 3t− 2pt)
which is the desired result. �

Particular cases of Theorem 2 are

• The generating function of the hyperbolic (classical) Fibonacci quaternions
is

f(t) =
t+ i+ j(1 + t) + k(2 + t)

1− t− t2 .

• The generating function of the hyperbolic k-Fibonacci quaternions is

fk(t) =
t+ i(1 + t(1− k)) + j(1 + t(2− k)) + k(2 + t(3− 2k))

1− kt− t2 .

• The generating function of the hyperbolic Pell quaternions is

g(t) =
t+ i(1− t) + j+ k(2− t)

1− 2t− t2 .

• The generating function of the hyperbolic k-Pell quaternions is

gk(t) =
t+ i(1− t) + j+ k(2− t)

1− 2t− kt2 .
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• The generating function of the hyperbolic Jacobsthal quaternions is

h(t) =
t+ i+ j(1 + t) + k(2 + t)

1− t− 2t2 .

• The generating function of the hyperbolic k-Jacobsthal quaternions is

hk(t) =
t+ i(1 + t(1− k)) + j(1 + t(2− k)) + k(2 + t(3− 2k))

1− kt− 2t2 .

The following theorem gives the Binet’s formula for the hyperbolic (p, q)-Fibonacci
quaternions.

Theorem 3. The nth term of the hyperbolic (p, q)-Fibonacci quaternion is given
by

HQFn =
α∗αn − β∗βn

α− β ,

where α∗ = 1 + iα + jα2 + kα3, α =
p+
√
p2+4q

2 and β∗ = 1 + iβ + jβ2 + kβ3,

β =
p−
√
p2+4q

2 .

Proof. Using the definition of the hyperbolic (p, q)-Fibonacci quaternions and the
Binet’s formula of the (p, q)-Fibonacci numbers, we have

HQFn = Fn + iFn+1 + jFn+2 + kFn+3

=
αn − βn

α− β + i
αn+1 − βn+1

α− β + j
αn+2 − βn+2

α− β + k
αn+3 − βn+3

α− β

=
αn(1 + iα+ jα2 + kα3)− βn(1 + iβ + jβ2 + kβ3)

α− β .

If we take α∗ = 1 + iα + jα2 + kα3 and β∗ = 1 + iβ + jβ2 + kβ3, we obtain the
desired result. �

Particular cases of Therorem 3 are

• The Binet’s formula of the nth hyperbolic (classical) Fibonacci quaternion
is

HQFn =
1√
5
(α∗αn − β∗βn),

where α∗ = 1 + iα + jα2 + kα3, α = 1+
√
5

2 and β∗ = 1 + iβ + jβ2 + kβ3,

β = 1−
√
5

2 .
• The Binet’s formula of the nth hyperbolic k-Fibonacci quaternion [5] is

HQFk,n =
1√

k2 + 4
(r1
∗r1

n − r2∗r2n),
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where r1∗ = 1+ir1+jr12+kr13, r1 = k+
√
k2+4
2 and r2∗ = 1+ir2+jr22+kr23,

r2 =
k−
√
k2+4
2 .

• The Binet’s formula of the nth hyperbolic Pell quaternion is

HQPn =
1

2
√
2
(x∗1x1

n − x2∗xn2 ),

where x1∗ = 1+ ix1+ jx12+kx13, x1 = 1 +
√
2 and x2∗ = 1+ ix2+ jx22+

kx2
3, x2 = 1−

√
2.

• The Binet’s formula of the nth hyperbolic k-Pell quaternion is

HQPk,n =
1

2
√
1 + k

(y∗1y1
n − y2∗yn2 ),

where y1∗ = 1 + iy1 + jy1
2 + ky1

3, y1 = 1 +
√
1 + k and y2∗ = 1 + iy2 +

jy2
2 + ky2

3, y2 = 1−
√
1 + k.

• The Binet’s formula of the nth hyperbolic Jacobsthal quaternion is

HQJn =
2∗2n − (−1)∗(−1)n

3
,

where 2∗ = 1 + i2 + j4 + k8 and (−1)∗ = 1− i+ j− k.
• The Binet’s formula of the nth hyperbolic k-Jacobsthal quaternion is

HQJk,n =
1√

k2 + 8
(w∗1w1

n − w2∗wn2 ),

where w1∗ = 1 + iw1 + jw12 + kw13, w1 = k+
√
k2+8
2 and w2∗ = 1 + iw2 +

jw2
2 + kw2

3, w2 = k−
√
k2+8
2 .

The d’Ocagne’s identity involving the hyperbolic (p, q)-Fibonacci quaternions is
given in the following theorem.

Theorem 4. Let m and n be two positive integers, such that n ≤ m. Then we
have

HQFm ×HQFn+1 −HQFm+1 ×HQFn =
(−q)n√
p2 + 4q

(α∗β∗αm−n − β∗α∗βm−n).

Proof. Using the Binet’s formula of the hyperbolic (p, q)-Fibonacci quaternions, we
have

HQFm ×HQFn+1 −HQFm+1 ×HQFn

=
α∗αm − β∗βm

α− β × α∗αn+1 − β∗βn+1

α− β − α∗αm+1 − β∗βm+1

α− β × α∗αn − β∗βn

α− β

=
1

(α− β)2 (α
∗β∗(αm+1βn − αmβn+1) + β∗α∗(αnβm+1 − αn+1βm))
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=
1

(α− β) (α
∗β∗αmβn − β∗α∗αnβm)

=
1

(α− β) (αβ)
n(α∗β∗αm−n − β∗α∗βm−n).

Since α− β =
√
p2 + 4q and αβ = −q , we obtain the desired result. �

Note that, if we take p = k, q = 1 as a special case in Theorem 4, we obtain
the equivalent result for d’Ocagne’s identity involving the hyperbolic k-Fibonacci
quaternions given in [5].
The following theorem gives the Catalan’s identity for the hyperbolic (p, q)-

Fibonacci quaternions.

Theorem 5. Let n and r be two positive integers. Then we have

HQFn−r ×HQFn+r −HQF2n =
(−q)n−r
p2 + 4q

(α∗β∗βr − β∗α∗αr)(αr − βr).

Proof. Using the Binet’s formula of the hyperbolic (p, q)-Fibonacci quaternions, we
have

HQFn−r ×HQFn+r −HQFn ×HQFn

=
α∗αn−r − β∗βn−r

α− β × α∗αn+r − β∗βn+r

α− β − α∗αn − β∗βn

α− β × α∗αn − β∗βn

α− β

=
1

(α− β)2 (α
∗β∗(αβ)n−r(αrβr − β2r) + β∗α∗(αβ)n−r(αrβr − α2r))

=
1

(α− β)2 (αβ)
n−r(α∗β∗βr − β∗α∗αr)(αr − βr).

Since α− β =
√
p2 + 4q and αβ = −q , we obtain the desired result. �

Note that, if we take p = k, q = 1 as a special case in Theorem 5, we obtain
the equivalent result for Catalan’s identity involving the hyperbolic k-Fibonacci
quaternions given in [5].
If we take r = 1 in Theorem 5, we obtain the Cassini’s identity involving the

hyperbolic (p, q)-Fibonacci quaternions as

HQFn−1 ×HQFn+1 −HQF2n =
(−q)n−1√
p2 + 4q

(α∗β∗β − β∗α∗α).
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