TRACE REGULARIZATION PROBLEM FOR HIGHER ORDER DIFFERENTIAL OPERATOR

ÖZLEM BAKŞI*, YONCA SEZER** AND SERPIL KARAYEL***
*YILDIZ TECHNICAL UNIVERSITY,DEPARTMENT OF MATHEMATICS, (+90212)3634324,
**YILDIZ TECHNICAL UNIVERSITY,DEPARTMENT OF MATHEMATICS, (+90212)3834330,
***YILDIZ TECHNICAL UNIVERSITY,DEPARTMENT OF MATHEMATICS, $(+90212) 3834362$

Abstract

We establish a regularized trace formula for higher order selfadjoint differential operator with unbounded operator coefficient.

1. Introduction and History

The first study on the regularized trace of scalar differential operators was performed by Gelfand and Levitan [10. They studied the boundary value problem

$$
y^{\prime \prime}+q(x) y=\lambda y, \quad y^{\prime}(0)=y^{\prime}(\pi)=0 \quad \text { with } q(x) \in C^{1}[0, \pi]
$$

and they found the formula

$$
\sum_{n=0}^{\infty}\left(\lambda_{n}-\mu_{n}\right)=\frac{1}{4}(q(0)+q(\pi)),
$$

under the assumption $\int_{0}^{\pi} q(x) d x=0$. Where the μ_{n} are the eigenvalues of this problem. $\lambda_{n}=n^{2}$ are the eigenvalues of the same problem with $q(x)=0$.
After that original work by Gelfand-Levitan, there was a huge interest and many scientists used the same method to obtain the regularized traces of ordinary differential operators. Later, Dikii [5] gave another proof of Gelfand-Levitan's formula from a different point of view. Afterward, Dikii [6] and Gelfand [9] made significant progress in literature by computing regularized sums of powers of eigenvalues. Later on, Levitan [17] calculated the regularized traces of Sturm Liouville Problem with a new method. This research led to Faddeev [7, who connected the trace theory with singular differential operators. Gasimov [8 made the first study combining singular operators with discrete spectrum.

[^0]Thereafter, many scientists such as Halberg and Kramer [13], Jafaev [15], Makin [19], Yang [23] investigated the regularized traces of various scalar differential operators. The list of these works is given in Levitan and Sargsyan 18 and Sadovnichii and Podolskii [21].
Among the studies, only a few of them are focused on the regularized trace of operator-differential equation with operator coefficient. Halilova [14 obtained the regularized trace of the Sturm-Liouville equation with bounded operator coefficient. Adıgüzelov [1] found a formulation of the subtracting eigenvalues of two self-adjoint operators in $[0, \infty)$ with bounded operator coefficient. Bayramoğlu and Adıgüzelov [4] examined the regularized trace of singular second order differential operator with bounded operator coefficient. Adıgüzelov and Baksi [2], Sen, Bayramov and Oruçoğlu [22] and Adıgüzelov, Avcı and Gül [12] obtained the equalities for the regularized traces of differential operators with bounded operator coefficient. Aslanova [3] calculated the trace formula of Bessel equation with spectral parameter-dependent boundary condition.
Maksudov, Bayramoğlu and Adıgüzelov [20] investigated the regularized trace formulation of the Sturm Liouville equation with unbounded operator coefficient.
In the present paper, we compute the regularized trace formula for higher order Sturm-Liouville problem

$$
\lim _{p \rightarrow \infty} \sum_{q=1}^{n_{p}}\left(\alpha_{q}-\beta_{q}-\frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x\right)=\frac{1}{4}(\operatorname{tr} Q(0)-\operatorname{tr} Q(\pi)) .
$$

2. Notation and Preliminaries

Let H be an infinite dimensional separable Hilbert space with inner product (.,.) and corresponding norm $\|$.$\| . Let H_{1}=L_{2}(0, \pi ; H)$ be the set of all strongly measurable functions f defined on $[0, \pi]$ and taking the values in the space H. The following conditions hold for every $f \in H_{1}$:

1. The scalar function $(f(x), g)$ is Lebesgue measurable on $[0, \pi]$, for every $g \in H$,
2. $\int_{0}^{\pi}\|f(x)\|^{2} d x<\infty$.
H_{1} is a normed linear space. We will denote the inner product and norm by $(., .)_{H_{1}}$ and $\|.\|_{H_{1}}$ in H_{1}. If the inner product is defined as $\left(f_{1}, f_{2}\right)_{H_{1}}=$ $\int_{0}^{\pi}\left(f_{1}(x), f_{2}(x)\right) d x$, for any arbitrary elements $f_{1}, \quad f_{2}$ of H_{1}, then H_{1} becomes a separable Hilbert space, [16. Let $\left\{\Phi_{q}(x)\right\}_{1}^{\infty}$ be an orthonormal basis of H_{1}.
Consider the following differential expressions

$$
\begin{align*}
\ell_{0}(v) & =(-1)^{m} v^{(2 m)}(x)+A v(x), \quad\left(m \in \mathbb{Z}^{+}\right) \\
\ell(v) & =(-1)^{m} v^{(2 m)}(x)+A v(x)+Q(x) v(x) \tag{2.1}
\end{align*}
$$

with boundary conditions

$$
v^{(2 i+1)}(0)=v^{(2 i)}(\pi)=0, \quad(i=0,1, \ldots, m-1)
$$

in H_{1}. Here, A is a densely defined operator in H. This operator takes its values in H and satisfies the conditions $A=A^{*} \geq I, A^{-1} \in \sigma_{\infty}(H)$, where I is the identity operator of $\mathrm{H} . \sigma_{\infty}(H)$ denotes the set of all completely continuous operators from H to H.

Let $\left\{\gamma_{i}\right\}_{i=1}^{\infty}$ be the increasing sequence of eigenvalues of the operator A counted with respect to their multiplicities and a corresponding orthonormal sequence $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ of eigenvectors.
Denote by $D\left(L_{0}{ }^{\prime}\right)$ the set of the functions $v(x)$ in the space H_{1}, and the following conditions are satisfied:
$(\boldsymbol{v} \mathbf{1}) \quad v(x)$ has continuous $2 m^{\text {th }}$ order derivative on $[0, \pi]$ with respect to the norm in the space H,
(v2) $v(x) \in D(A)$ for every $x \in[0, \pi]$, and $A v(x)$ is continuous on $[0, \pi]$ with respect to the norm in H,
(v3) $\quad v^{(2 i+1)}(0)=v^{(2 i)}(\pi)=0, \quad(i=0,1,2, \cdots, m-1)$.
Here, $D\left(L_{0}{ }^{\prime}\right)$ is dense in H_{1}. Define a linear operator $L_{0}{ }^{\prime}: D\left(L_{0}{ }^{\prime}\right) \rightarrow H_{1}$ as $L_{0}{ }^{\prime} v=\ell_{0}(v)$.
The construction above shows that $L_{0}{ }^{\prime}$ is symmetric. Considering the linearity of $L_{0}{ }^{\prime}$, its eigenvalues can be calculated by mathematical induction. Therefore, the eigenvalues of $L_{0}{ }^{\prime}$ are the form $\left(k+\frac{1}{2}\right)^{2 m}+\gamma_{j}, \quad(k=0,1,2, \cdots ; \quad j=1,2, \cdots)$ and the orthonormal eigenvectors corresponding to these eigenvalues are the form $\sqrt{\frac{2}{\pi}} \varphi_{j} \cos \left(k+\frac{1}{2}\right) x$. We can see that the orthonormal eigenvector sequence of the symmetric operator $L_{0}{ }^{\prime}$ is a complete orthonormal system in H_{1}. Since $L_{0}{ }^{\prime}$ is symmetric, then it is closable. Thus, we can define L_{0} as $L_{0}=\overline{L_{0}{ }^{\prime}}$
Assume that the operator function $Q(x)$ in 2.1 verifies the conditions:
$(\boldsymbol{Q 1}) ~ Q(x): H \rightarrow H$ is a self-adjoint operator for every $x \in[0, \pi]$,
$(Q 2) \quad Q(x)$ is weak measurable on $[0, \pi]$, that is the scalar function $(Q(x) f, g)$ is measurable on $[0, \pi]$ for every $f, g \in H$,
(Q3) The function $\|Q(x)\|$ is bounded on $[0, \pi]$.
In the present paper, we establish a regularized trace formula for the operator $L=$ $L_{0}+Q$.
Now, we search some inequalities for the eigenvalues and resolvent operators of L_{0} and L.
Consider the closed symmetric operator $L_{0}: D\left(L_{0}\right) \rightarrow H_{1}$.
Since the eigenvector system $\left\{\varphi_{j} \cos \left(k+\frac{1}{2}\right) x\right\}_{k=0, j=1}^{\infty}$ of L_{0} is complete, L_{0} is self-adjoint, [2]. Moreover, since the bounded operator $Q: H_{1} \rightarrow H_{1}$ is selfadjoint, the operator, $L=L_{0}+Q$ is also self-adjoint. Therefore, L_{0} and L have purely-discrete spectrum, [2]. Let $\left\{\beta_{i}\right\}_{i=1}^{\infty}$ and $\left\{\alpha_{i}\right\}_{i=1}^{\infty}$ be increasing sequences of eigenvalues of L_{0} and L. Denote by $\rho\left(L_{0}\right)$ and $\rho(L)$ the resolvent sets of L_{0} and L.
We can prove the Theorem 2.1, by using [2].
Theorem 2.1. Let the operator function $Q(x)$ satisfy the conditions $(Q 1)$ to ($Q 3$). If $\gamma_{j} \sim a j^{\ell} \quad(0<a, \ell<\infty)$ as $j \rightarrow \infty$, then $\alpha_{n}, \beta_{n} \sim d n^{\frac{2 m \ell}{2 m+\ell}}$ as $n \rightarrow \infty$,
where $d=\left(\frac{\ell a^{\frac{1}{\ell}}}{2 b}\right)^{\frac{2 m \ell}{2 m+\ell}}$ and $b=\int_{0}^{\frac{\pi}{2}}(\sin t)^{\frac{2}{\ell}-1}(\cos t)^{1+\frac{1}{m}} d t$.
From Theorem 2.1, one can see that the sequence $\left\{\beta_{n}\right\}$ has a subsequence $\beta_{n_{1}}<\beta_{n_{2}}<\ldots<\beta_{n_{p}}<\ldots$ such that

$$
\begin{equation*}
\beta_{q}-\beta_{n_{p}}>d_{0}\left(q^{\frac{2 m \ell}{2 m+\ell}}-n_{p}^{\frac{2 m \ell}{2 m+\ell}}\right),\left(q=n_{p}+1, n_{p}+2, \cdots\right) \tag{2.2}
\end{equation*}
$$

Here, d_{0} is a positive constant.
Let $R_{\alpha}^{0}=\left(L_{0}-\alpha I\right)^{-1}, R_{\alpha}=(L-\alpha I)^{-1}$ be the resolvent operators of L_{0} and L.
If $\ell>\frac{2 m}{2 m-1}$, then by Theorem 2.1, R_{α}^{0} and R_{α} are nuclear operators for $\alpha \neq \alpha_{q}, \beta_{q} \quad(q=1,2, \ldots)$. In this case, we have the formula

$$
\begin{equation*}
\operatorname{tr}\left(R_{\alpha}-R_{\alpha}^{0}\right)=\operatorname{tr} R_{\alpha}-\operatorname{tr} R_{\alpha}^{0}=\sum_{q=1}^{\infty}\left(\frac{1}{\alpha_{q}-\alpha}-\frac{1}{\beta_{q}-\alpha}\right) \tag{2.3}
\end{equation*}
$$

[11. Let $|\alpha|=b_{p}=2^{-1}\left(\beta_{n_{p}+1}+\beta_{n_{p}}\right)$. This says that for the large value of p, the inequalities
$\beta_{n_{p}}<b_{p}<\beta_{n_{p}+1}$ and $\alpha_{n_{p}}<b_{p}<\alpha_{n_{p}+1}$ are satisfied. By using the last inequalities, one can prove that the series $\sum_{q=1}^{\infty} \frac{\alpha}{\alpha_{q}-\alpha}$ and $\sum_{q=1}^{\infty} \frac{\alpha}{\beta_{q}-\alpha}$ are uniform convergent on the circle $|\alpha|=b_{p}$. Hence by 2.3

$$
\begin{equation*}
\sum_{q=1}^{n_{p}}\left(\alpha_{q}-\beta_{q}\right)=-\frac{1}{2 \pi i} \int_{|\alpha|=b_{p}} \alpha \operatorname{tr}\left(R_{\alpha}-R_{\alpha}^{0}\right) d \alpha \tag{2.4}
\end{equation*}
$$

We have two lemmas by using [2]:
Lemma 2.2. If $\gamma_{j} \sim a j^{\ell}$ as $j \rightarrow \infty$ for $a>0, \quad \ell>\frac{2 m}{2 m-1}$, then

$$
\left\|R_{\alpha}^{0}\right\|_{\sigma_{1}\left(H_{1}\right)}<\text { const. } n_{p}^{1-\delta}, \quad\left(\delta=\frac{2 m \ell}{2 m+\ell}-1\right)
$$

on the circle $|\alpha|=b_{p}$.
Lemma 2.3. If the operator function $Q(x)$ satisfies conditions (Q1) to (Q3), and
$\gamma_{j} \sim a j^{\ell}$ as $j \rightarrow \infty$, then for the large values of p

$$
\left\|R_{\alpha}\right\|_{H_{1}}<\text { const } . n_{p}^{-\delta}
$$

on the circle $|\alpha|=b_{p}$, where $a>0, \quad \ell>\frac{2 m}{2 m-1}$.

3. Main Results

In this section, we will compute regularized trace formula for the operator L.
With the well-known formula $R_{\alpha}=R_{\alpha}^{0}-R_{\alpha} Q R_{\alpha}^{0} \quad\left(\alpha \in \rho\left(L_{0}\right) \cap \rho(L)\right)$ and by 2.4 , we obtain:

$$
\begin{equation*}
\sum_{q=1}^{n_{p}}\left(\alpha_{q}-\beta_{q}\right)=\sum_{j=1}^{s} E_{p j}+E_{p}^{(s)} \tag{3.1}
\end{equation*}
$$

Here,

$$
\begin{gather*}
E_{p j}=\frac{(-1)^{j}}{2 \pi i j} \int_{|\alpha|=b_{p}} \operatorname{tr}\left[\left(Q R_{\alpha}^{0}\right)^{j}\right] d \alpha, \quad(j=1,2, . .), \tag{3.2}\\
E_{p}^{(s)}=\frac{(-1)^{s}}{2 \pi i} \int_{|\alpha|=b_{p}} \alpha \operatorname{tr}\left[R_{\alpha}\left(Q R_{\alpha}^{0}\right)^{s+1}\right] d \alpha . \tag{3.3}
\end{gather*}
$$

Theorem 3.1. If the operator function $Q(x)$ satisfies conditions (Q1) to (Q3) and $\quad \gamma_{j} \sim a j^{\ell}$ as $j \rightarrow \infty$ then

$$
\lim _{p \rightarrow \infty} E_{p j}=0, \quad(j=2,3,4, \ldots)
$$

where $a>0$ and $\ell>\frac{2 m+2 \sqrt{2} m}{2 \sqrt{2} m-\sqrt{2}-1}$.
Proof: Substituting $p=2$ into 3.2 , we obtain the equality

$$
\begin{equation*}
E_{p 2}=\frac{1}{2 \pi i} \sum_{j=1}^{n_{p}} \sum_{k=n_{p}+1}^{\infty}\left(\int_{\alpha=b_{p}} \frac{d \alpha}{\left(\alpha-\beta_{j}\right)\left(\alpha-\beta_{k}\right)}\right)\left(Q \Phi_{j}, \Phi_{k}\right)_{H_{1}}\left(Q \Phi_{k}, \Phi_{j}\right)_{H_{1}} \tag{3.4}
\end{equation*}
$$

It readily follows that

$$
\begin{equation*}
\left|E_{p 2}\right| \leq\|Q\|_{H_{1}}^{2} \Lambda_{p} \tag{3.5}
\end{equation*}
$$

Here, $\quad \Lambda_{p}=\sum_{k=n_{p}+1}^{\infty}\left(\beta_{k}-\beta_{n_{p}}\right)^{-1}, \quad(p=1,2, \cdots)$.
Using 3.5, we obtain

$$
\begin{equation*}
\lim _{p \rightarrow \infty} E_{p 2}=0, \quad\left(\ell>\frac{2 m}{2 m-1}\right) \tag{3.6}
\end{equation*}
$$

Now, we wish to see that

$$
\begin{equation*}
\lim _{p \rightarrow \infty} E_{p 3}=0 \tag{3.7}
\end{equation*}
$$

By 3.2, we get:

$$
\begin{align*}
E_{p 3} & =\sum_{j=1}^{n_{p}} \sum_{k=1}^{n_{p}} \sum_{s=n_{p}+1}^{\infty}[F(j, k, s)+F(s, k, j)+F(j, s, k)] \\
& +\sum_{j=1}^{n_{p}} \sum_{k=n_{p}+1}^{\infty} \sum_{s=n_{p}+1}^{\infty}[F(j, k, s)+F(s, k, j)+F(k, j, s)] \tag{3.8}
\end{align*}
$$

where,

$$
\begin{gathered}
F(j, k, s)=g(j, k, s)\left(Q \Phi_{j}, \Phi_{k}\right)_{H_{1}}\left(Q \Phi_{k}, \Phi_{s}\right)_{H_{1}}\left(Q \Phi_{s}, \Phi_{j}\right)_{H_{1}} \\
g(j, k, s)=\frac{1}{6 \pi i} \int_{|\alpha|=b_{p}} \frac{1}{\left(\alpha-\beta_{j}\right)\left(\alpha-\beta_{k}\right)\left(\alpha-\beta_{s}\right)} d \alpha
\end{gathered}
$$

If we consider $g(j, k, s)=\overline{g(j, k, s)}$ and $Q=Q^{*}$, then

$$
\begin{equation*}
F(s, k, j)=\overline{F(j, k, s)}, \quad F(k, j, s)=\overline{F(j, k, s)}, \quad F(j, s, k)=\overline{F(j, k, s)} . \tag{3.9}
\end{equation*}
$$

Using 3.8 and 3.9 , we obtain

$$
\begin{gather*}
E_{p 3}=I_{1}+I_{2} \tag{3.10}\\
I_{1}=\sum_{j=1}^{n_{p}} \sum_{k=1}^{n_{p}} \sum_{s=n_{p}+1}^{\infty}[F(j, k, s)+2 \overline{F(j, k, s)}]
\end{gather*}
$$

$$
\begin{gather*}
I_{2}=\sum_{j=1}^{n_{p}} \sum_{k=n_{p}+1}^{\infty} \sum_{s=n_{p}+1}^{\infty}[F(j, k, s)+2 \overline{F(j, k, s)}] \\
I_{1}=I_{11}+2 \overline{I_{11}}, \quad I_{2}=I_{21}+2 \overline{I_{21}} \tag{3.11}\\
I_{11}=\sum_{j=1}^{n_{p}} \sum_{k=1}^{n_{p}} \sum_{s=n_{p}+1}^{\infty} F(j, k, s) \\
I_{21}=\sum_{j=1}^{n_{p}} \sum_{k=n_{p}+1}^{\infty} \sum_{s=n_{p}+1}^{\infty} F(j, k, s) .
\end{gather*}
$$

Hence we get:

$$
\begin{gather*}
\left|I_{11}\right| \leq \frac{1+\delta}{d_{0}^{2} \delta}\|Q\|_{H_{1}}^{3} n_{p}^{\frac{1-2 \delta^{2}}{1+\delta}} \tag{3.12}\\
\left|I_{21}\right| \leq\left(\frac{1+\delta}{d_{0} \delta}\right)^{2}\|Q\|_{H_{1}}^{3} n_{p}^{-\frac{2 \delta^{2}}{1+\delta}} \quad,\left(\ell>\frac{2 m}{2 m-1}\right) \tag{3.13}
\end{gather*}
$$

By 3.10, 3.11, 3.12 and 3.13, we find

$$
\begin{equation*}
\lim _{p \rightarrow \infty} E_{p 3}=0 \quad\left(\ell>\frac{2 m+2 \sqrt{2} m}{2 \sqrt{2} m-\sqrt{2}-1}\right) \tag{3.14}
\end{equation*}
$$

Evaluate the limit $\lim _{p \rightarrow \infty} E_{p j} \quad(j=4,5, \ldots)$ to complete the proof: According to 3.2

$$
\begin{align*}
\left|E_{p j}\right| & \leq \frac{1}{2 \pi j} \int_{|\alpha|=b_{p}}\left|\operatorname{tr}\left(Q R_{\alpha}^{0}\right)^{j}\right| d \alpha \\
& \leq \int_{|\alpha|=b_{p}}\left\|\left(Q R_{\alpha}^{0}\right)^{j}\right\|_{\sigma_{1}\left(H_{1}\right)} d \alpha \\
& \leq \int_{|\alpha|=b_{p}}\left\|Q R_{\alpha}^{0}\right\|_{\sigma_{1}\left(H_{1}\right)}\left\|\left(Q R_{\alpha}^{0}\right)^{j-1}\right\|_{H_{1}} d \alpha \\
& \leq\|Q\|_{H_{1}} \int_{|\alpha|=b_{p}}\left\|R_{\alpha}^{0}\right\|_{\sigma_{1}\left(H_{1}\right)}\left\|Q R_{\alpha}^{0}\right\|_{H_{1}}^{j-1} d \alpha \\
& \leq \text { const. } \int_{|\alpha|=b_{p}}\left\|R_{\alpha}^{0}\right\|_{\sigma_{1}\left(H_{1}\right)}\left\|R_{\alpha}^{0}\right\|_{H_{1}}^{j-1} d \alpha . \tag{3.15}
\end{align*}
$$

Since $R_{\alpha}=R_{\alpha}^{0}$ for $Q(x) \equiv 0$, then according to Lemma 2.3

$$
\begin{equation*}
\left\|R_{\alpha}^{0}\right\|_{\left(H_{1}\right)}<\frac{4}{d_{0}} n_{p}^{-\delta}, \quad\left(|\alpha|=b_{p} ; \quad \delta=\frac{2 m \ell}{2 m+\ell}-1\right) \tag{3.16}
\end{equation*}
$$

By 3.15 3.16, and Lemma 2.2, we obtain:

$$
\left|E_{p j}\right|<\text { const. } \int_{|\alpha|=b_{p}} n_{p}^{1-\delta} n_{p}^{-\delta(j-1)} d \alpha<\text { const. }_{p} n_{p}^{1-\delta j}
$$

For the large values of p, since $b_{p}=\frac{1}{2}\left(\beta_{n_{p}+1}+\beta_{n_{p}}\right) \leq$ const. $n_{p}^{1+\delta}$, we arrive at the inequality $\left|E_{p j}\right|<$ const. $n_{p}^{2-\delta(j-1)}$. If $\delta>\frac{2}{3}$ or $\ell>\frac{10 m}{6 m-5}$, then we have:

$$
\begin{equation*}
\lim _{p \rightarrow \infty} E_{p j}=0 \quad(j=4,5, \ldots) . \tag{3.17}
\end{equation*}
$$

On the other hand, if $\frac{2 m+2 \sqrt{2} m}{2 \sqrt{2} m-\sqrt{2}-1}>\frac{10 m}{6 m-5}, \quad$ then by 3.6 and 3.14 with $\ell>$ $\frac{2 m+2 \sqrt{2} m}{2 \sqrt{2} m-\sqrt{2}-1}$ give:

$$
\begin{equation*}
\lim _{p \rightarrow \infty} E_{p j}=0 \quad(j=2,3, \ldots) . \tag{3.18}
\end{equation*}
$$

Since the eigenvalues of L_{0} are the form $\left(k+\frac{1}{2}\right)^{2 m}+\gamma_{j}, \quad(k=0,1,2, \ldots ; j=1,2, \ldots)$, we have

$$
\begin{equation*}
\beta_{q}=\left(k_{q}+\frac{1}{2}\right)^{2 m}+\gamma_{j_{q}}, \quad(q=1,2, \ldots) . \tag{3.19}
\end{equation*}
$$

Assume that the operator function $Q(x)$ holds the additional conditions:
(Q4) $Q(x)$ has weak H derivatives of the second order on $[0, \pi]$ and the function $\left(Q(x)^{\prime \prime} f, g\right)$ is continuous for every $f, g \in H$,
(Q5) $Q^{(i)}(x): H \rightarrow H \quad(i=0,1,2)$ are self-adjoint nuclear operators and the functions $\left\|Q^{(i)}(x)\right\|_{\sigma_{1}(H)} \quad(i=0,1,2)$ are bounded and measurable on $[0, \pi]$.
Our main result is the following:
Theorem 3.2. If the operator function $Q(x)$ satisfies the conditions (Q4) to (Q5) and $\gamma_{j} \sim a j^{\ell}$ as $j \rightarrow \infty$, then we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \sum_{q=1}^{n_{p}}\left(\alpha_{q}-\beta_{q}-\frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x\right)=\frac{1}{4}(\operatorname{tr} Q(0)-\operatorname{tr} Q(\pi)) \tag{3.20}
\end{equation*}
$$

where $a>0, \quad \ell>\frac{2 m+2 \sqrt{2} m}{2 \sqrt{2} m-\sqrt{2}-1} \quad j_{1}, j_{2}, \ldots \quad$ are natural numbers satisfying the equality 3.19 .
The limit on the left side is called regularized trace of L
Proof: According to the formula given by 3.2

$$
\begin{equation*}
E_{p 1}=-\frac{1}{2 \pi i} \int_{|\alpha|=b_{p}} \operatorname{tr}\left(Q R_{\alpha}^{0}\right) d \alpha \tag{3.21}
\end{equation*}
$$

Since $Q R_{\alpha}^{0}$ is a nuclear operator for every $\alpha \in \rho\left(L_{0}\right)$ and $\left\{\Phi_{q}(x)\right\}_{1}^{\infty}$ is an orthonormal basis of H_{1}, we have:

$$
\operatorname{tr}\left(Q R_{\alpha}^{0}\right)=\sum_{q=1}^{\infty}\left(Q R_{\alpha}^{0} \Phi_{q}, \Phi_{q}\right)_{H_{1}}
$$

[11]. Replacing $\operatorname{tr}\left(Q R_{\alpha}^{0}\right)$ into the equality 3.21 and considering

$$
R_{\alpha}^{0} \Phi_{q}=\left(L_{0}-\alpha I\right)^{-1} \Phi_{q}=\left(\beta_{q}-\alpha\right)^{-1} \Phi_{q}
$$

then we obtain

$$
\begin{align*}
E_{p 1} & =-\frac{1}{2 \pi i} \int_{|\alpha|=b_{p}}\left(\sum_{q=1}^{\infty}\left(Q R_{\alpha}^{0} \Phi_{q}, \Phi_{q}\right)_{H_{1}}\right) d \alpha \\
& =-\frac{1}{2 \pi i} \int_{|\alpha|=b_{p}}\left[\sum_{q=1}^{\infty} \frac{1}{\beta_{q}-\alpha}\left(Q \Phi_{q}, \Phi_{q}\right)_{H_{1}}\right] d \alpha \\
& =\sum_{q=1}^{\infty}\left(Q \Phi_{q}, \Phi_{q}\right)_{H_{1}} \frac{1}{2 \pi i} \int_{|\alpha|=b_{p}} \frac{d \alpha}{\alpha-\beta_{q}} \tag{3.22}
\end{align*}
$$

Since the orthonormal eigenvectors corresponding to the eigenvalues $\left(k+\frac{1}{2}\right)^{2 m}+\gamma_{j}$ of L_{0} are $\sqrt{\frac{2}{\pi}} \varphi_{j} \cos \left(k+\frac{1}{2}\right) x \quad(j=1,2, \ldots)$, we have:

$$
\begin{equation*}
\Phi_{q}(x)=\sqrt{\frac{2}{\pi}} \varphi_{j_{q}} \cos \left(k_{q}+\frac{1}{2}\right) x \quad(q=1,2, \ldots) \tag{3.23}
\end{equation*}
$$

According to the Cauchy's integral formula:

$$
\frac{1}{2 \pi i} \int_{|\alpha|=b_{p}} \frac{d \alpha}{\alpha-\beta_{q}}= \begin{cases}1 & , q \leq n_{p} \tag{3.24}\\ 0 & , q>n_{p}\end{cases}
$$

Substituting 3.23 and 3.24 in 3.22 , we obtain

$$
\begin{aligned}
E_{p 1} & =\sum_{q=1}^{n_{p}}\left(Q \Phi_{q}, \Phi_{q}\right)_{H_{1}} \\
& =\sum_{q=1}^{n_{p}} \int_{0}^{\pi}\left(Q(x) \Phi_{q}(x), \Phi_{q}(x)\right) d x \\
& =\sum_{q=1}^{n_{p}} \int_{0}^{\pi}\left(Q(x) \sqrt{\frac{2}{\pi}} \varphi_{j_{q}} \cos \left(k_{q}+\frac{1}{2}\right) x, \sqrt{\frac{2}{\pi}} \varphi_{j_{q}} \cos \left(k_{q}+\frac{1}{2}\right) x\right) d x \\
& =\frac{2}{\pi} \sum_{q=1}^{n_{p}} \int_{0}^{\pi} \cos ^{2}\left(k_{q}+\frac{1}{2}\right) x\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x \\
& =\frac{1}{\pi} \sum_{q=1}^{n_{p}} \int_{0}^{\pi}\left(1+\cos 2\left(k_{q}+\frac{1}{2}\right) x\right)\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x \\
& =\frac{1}{\pi} \sum_{q=1}^{n_{p}} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x+\frac{1}{\pi} \sum_{q=1}^{n_{p}} \int_{0}^{\pi} \cos \left(2 k_{q}+1\right) x\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x
\end{aligned}
$$

and substituting the last equality in 3.1 , we have

$$
\begin{align*}
& \sum_{q=1}^{n_{p}}\left(\alpha_{q}-\beta_{q}-\frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x\right) \\
= & \frac{1}{\pi} \sum_{q=1}^{n_{p}} \int_{0}^{\pi} \cos \left(2 k_{q}+1\right) x\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x+\sum_{j=2}^{s} E_{p j}+E_{p}^{(s)} \tag{3.25}
\end{align*}
$$

If the operator function $Q(x)$ holds the conditions (Q4) and (Q5), the double series

$$
\sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \int_{0}^{\pi}\left(Q(x) \varphi_{j}, \varphi_{j}\right) \cos 2 k x d x
$$

is absolutely convergent. Therefore

$$
\begin{align*}
& \lim _{p \rightarrow \infty} \sum_{q=1}^{n_{p}} \frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) \cos \left(2 k_{q}+1\right) x d x \\
= & \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j}, \varphi_{j}\right) \cos (2 k+1) x d x . \tag{3.26}
\end{align*}
$$

Now, let us arrange the expression on the right side of 3.26 as follows:

$$
\begin{align*}
& \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j}, \varphi_{j}\right) \cos (2 k+1) x d x \\
= & \frac{1}{2 \pi} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty}\left(\int_{0}^{\pi}\left(Q(x) \varphi_{j}, \varphi_{j}\right) \cos k x d x-(-1)^{k} \int_{0}^{\pi}\left(Q(x) \varphi_{j}, \varphi_{j}\right) \cos k x d x\right) \\
= & \frac{1}{4} \sum_{j=1}^{\infty}\left\{\sum_{k=0}^{\infty}\left(\frac{2}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j}, \varphi_{j}\right) \cos k x d x\right) \cos (k 0)\right. \\
- & \left.\sum_{k=0}^{\infty}\left(\frac{2}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j}, \varphi_{j}\right) \cos k x d x\right) \cos (k \pi)\right\} \tag{3.27}
\end{align*}
$$

The difference of sums according to k on the right side of 3.27 is the difference of the values at 0 and at π of the Fourier series of the function $\left(Q(x) \varphi_{j}, \varphi_{j}\right)$ having second order derivative according to the functions $\{\operatorname{cosk} x\}_{k=0}^{\infty}$ on $[0, \pi]$. Hence by 3.26 and 3.27 we find:

$$
\lim _{p \rightarrow \infty} \sum_{q=1}^{n_{p}} \frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) \cos 2 k_{q} x d x=\frac{1}{2} \sum_{j=1}^{\infty}\left(\left(Q(0) \varphi_{j}, \varphi_{j}\right)+\left(Q(\pi) \varphi_{j}, \varphi_{j}\right)\right)
$$

or

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \sum_{q=1}^{n_{p}} \frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) \cos 2 k_{q} x d x=\frac{1}{2}(\operatorname{tr} Q(0)+\operatorname{tr} Q(\pi)) \tag{3.28}
\end{equation*}
$$

By using Lemma 2.2 and Lemma 2.3, we get:

$$
\begin{equation*}
\lim _{p \rightarrow \infty} E_{p}^{(s)}=0 \quad\left(s>3 \delta^{-1}\right) \tag{3.29}
\end{equation*}
$$

By 3.25, 3.28, 3.29 and Theorem 3.1, we have the main result for regularized trace as

$$
\lim _{p \rightarrow \infty} \sum_{q=1}^{n_{p}}\left(\alpha_{q}-\beta_{q}-\frac{1}{\pi} \int_{0}^{\pi}\left(Q(x) \varphi_{j_{q}}, \varphi_{j_{q}}\right) d x\right)=\frac{1}{4}(\operatorname{tr} Q(0)-\operatorname{tr} Q(\pi))
$$

The proof is completed.

References

[1] E.E. Adıgüzelov, About the trace of the difference of two Sturm-Liouville operators with operator coefficient, iz.An Az SSR, seriya fiz-tekn. i mat.nauk, No:5, 20-24, (1976).
[2] E.E. Adıgüzelov and O. Baksi, On The Regularized Trace of The Differential Operator Equation Given in a Finite Interval, Journal of Engineering and Natural Sciences Sigma, 47-55, 2004/1.
[3] N.M. Aslanova, About the spectrum and the trace formula for the operator Bessel equation, Siberian Mathematical Journal, Vol.51, No.4, 569-583, (2010).
[4] M. Bayramoglu and E.E. Adıgüzelov, On a regularized trace formula for the Sturm-Lioville operator with a bounded operator coefficient and with a singularity, Differential Equations, Vol.32, No.12, 1581-1585, (1996).
[5] L.A. Dikiy, About a formula of Gelfand-Levitan, Usp.Mat.Nauk, 82, 119-123, (1953).
[6] L.A. Dikiy, The Zeta Function of an ordinary Differential Equation on a finite Interval, IZV. Akad. Nauk.SSSR, Vol.19,4, 187-200, (1955).
[7] L.D. Faddeev, On the expression for the trace of the difference of two singular differential operators of the Sturm Liouville Type, Doklady Akademii Nauk SSSR, Vol115, no.5, 878-881, 1957.
[8] M.G. Gasymov, On the Sum of Differences of Eigenvalues of Two Self Adjoint Operators, Dokl. Akad. Nauk. SSSR, Vol.150, 6, 1202-1205, (1963).
[9] I.M. Gelfand, On The Identities for Eigenvalues of Differential Operator of Second Order, Uspekhi Mat. Nauk (N.S.), 11:1, 191-198, (1956).
[10] I.M. Gelfand and B.M. Levitan, On a Formula for Eigenvalues of a Differential Operator of Second Order, Dokl.Akad.Nauk SSSR, T.88, No:4, 593-596, (1953)
[11] I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Non-self Adjoint Operators, Translation of Mathematical Monographs, Vol.18, AMS, Providence, R.I., (1969).
[12] E.E. Adıgüzelov, H. Avci, E. Gül, The Trace Formula for Sturm-Liouville Operator with Operator Coefficient, J. Math. Phys. 426, 1611-1624, (2001).
[13] C.J. Halberg and V.A. Kramer, A generalization of the trace concept, Duke Math.J., 274, 607-618, (1960).
[14] R.Z. Halilova, On arranging Sturm-Liouville Operator Equation's Trace, Funks. Analiz, Teoriya Funksi i ik pril.-Mahachkala, Vol.1, No:3, (1976).
[15] D.R. Jafaev, A Trace Formula for the Dirac Operator, Bull, London Math., Soc.37, 908-918, (2005).
[16] A.A. Kirillov, Elements of the Theory of Representations, Springer of Verlag, New York, (1976).
[17] B.M. Levitan, Calculation of the Regularized Trace for the Sturm Liouville Operator, Uspekhi Mat. Nauk, Vol19,1,161-165, (1964).
[18] B.M. Levitan and I.S. Sargsyan, Sturm-Liouville and Dirac Op., Kluwer, Dordrecht, (1991).
[19] A.S. Makin, Trace Formulas for the Sturm- Liouville Operator with regular boundary conditions, Dokl. Math., 76, 702-707, (2007).
[20] F.G. Maksudov, M. Bayramoglu and E.E. Adıgüzelov, On a Regularized Traces of the Sturm-Liouville Operator on a Finite Interval with the Unbounded Operator Coefficient, Dokl.Akad, Nauk SSSR, English translation, Soviet Math, Dokl, 30, No1, 169-173, (1984).
[21] V.A. Sadovnichii and V.E. Podolskii, Trace of Differential Operators, Differential Equations, Vol.45, No.4, 477-493, (2009).
[22] E. Sen, A. Bayramov and K. Orucoglu, Regularized Trace Formula For Higher Order Differential Operators With Unbounded Coefficients, Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 31, pp. 1-12.
[23] C.F. Yang, New Trace Formulae for a Quadratic Pencil of the Schrödinger Operator, J. Math. Phys., 51, 033506, (2010).

Özlem Bakşı,
YILDIZ TECHNICAL UNIVERSITY, FACULTY of ARTS and SCIENCE,, DEPARTMENT OF MATHEMATICS,34210, DAVUTPASA, ISTANBUL-TURKEY, Phone: $(+90212) 3834330$

Email address: baksi@yildiz.edu.tr

Yonca Sezer,

YILDIZ TECHNICAL UNIVERSITY, FACULTY of ARTS and SCIENCE, , DEPARTMENT OF MATHEMATICS, 34210, DAVUTPASA, ISTANBUL-TURKEY, Phone: $(+90212) 3834330$

Email address: ysezer@yildiz.edu.tr
Serpil Karayel,
YILDIZ TECHNICAL UNIVERSITY, FACULTY of ARTS and SCIENCE,, DEPARTMENT OF MATHEMATICS, 34210, DAVUTPASA, ISTANBUL-TURKEY, Phone: $(+90212) 3834362$

Email address: serpil@yildiz.edu.tr

[^0]: 2010 Mathematics Subject Classification. Primary:47A10; Secondaries:34L20, 34L05 .
 Key words and phrases. Boundary Value Problem; Asymptotic Formulas for Eigenvalues; Trace Formula; Resolvent Operator; Self-Adjoint Operator; Nuclear Operator.
 (C)2019 Maltepe Journal of Mathematics.

 Submitted:March 27th, 2019. Published: April 2020.

