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Abstract— Modeling of unmanned aerial vehicle (UAV) with 

system identification is very important in terms of its model-based 

effective control. The modeling of UAV is required for aircraft 

crashes, analyzing autonomous aircrafts, preventing external 

disturbances, pre-flight analysis. However, since UAV has 

nonlinear inherent dynamics including inherent chaoticity and 

fractality, it becomes difficult to obtain a mathematical model 

under external disturbance. In this study, some of the inherent 

nonlinear dynamics of UAV are linearized and the model of UAV 

is obtained by system identification approaches under external 

disturbance. The linearized lateral dynamics of a fixed wing UAV 

is used in this study. Further, the flight motion equations applied 

to fixed wing UAV have been utilized for obtaining the coefficients 

of lateral model for straight and level flight. The roll angles are 

calculated using transfer functions for aileron, rudder and 

deflections inputs. The autoregressive exogenous (ARX), 

autoregressive moving average with exogenous (ARMAX) and 

output error (OE) parametric system identification approaches 

are performed to estimate UAV lateral dynamic system response 

as using empirical input-output data sets. The accuracy of 

parametric model estimation and model degrees are compared for 

different external disturbance effects. 
 

Index Terms— System identification, UAV, lateral dynamic 

model, parameter estimation, external disturbance. 
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I. INTRODUCTION 

NMANNED AERIAL VEHICLE (UAV) modeling has 

become an important research subject in recent years. 

Modeling enables analysis of UAV's flight system under 

different conditions and determination of system reliability. 

System identification techniques are frequently used in 

modeling of dynamic systems such as UAV [1]. In this study, 

the model parameters of UAV is obtained with system 

identification approaches including Autoregressive Exogenous 

(ARX), Autoregressive Moving Average with Exogenous 

Variable (ARMAX) and Output Error (OE) under different 

external disturbances. 

 

In the literature, there are studies conducted with various 

system identification methods in the modeling of UAV. In [2], 

an adaptive system identification technique has been used in 

real-time dynamic modeling of UAV. For a small UAV, an 

appropriate approach is proposed, which deals with the online 

prediction in the frequency domain. In [3], transfer function 

model with pitch and roll response of UAV are investigated 

using system identification techniques. The practical system 

identification procedure of the fixed-wing UAV is specified in 

[4]. It is emphasized that the system identification procedure 

used minimize the complexity of UAV movements. In [5], both 

online and offline models of nonlinear and complex UAV have 

been obtained using system identification procedure based on 

Artificial Neural Network (ANN). In [6], the flight control 

optimization has been handled together with the model of UAV. 

It is mentioned that hardware installation, flight test, flight data 

collection and processing, system identification, model 

verification, controller optimization and verification process 

steps have been performed. In [7], Hammerstein model is 

obtained for route tracking under zero averaged white Gaussian 

noise external disturbing effect based on experimentally 

obtained input and output data of three-axis camera system on 

the autonomously acting six-rotor UAV. In [8], the 

performance of the obtained model has been compared with 

Nonlinear Autoregressive and Moving Average (NARMA) 

model performance. The transfer function of the three-axis 

gimbal system has been obtained by linearly structured OE 

model using experimentally obtained data under different 

external disturbance effect. Model degree has been determined 

and data set based verification has been applied. Also, the 

performance has been compared by examining the effect of 
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external disturbance in the transfer function obtained. In [9], the 

model of Load Transporting System (LTS) originally designed 

on UAV has been obtained by linear ARX model structure and 

the Model Predictive Controller has been performed. In [10], 

the Multi Input Multi Output (MIMO) model of helicopter is 

obtained using ARX system identification model. The flight 

dynamics of the helicopter have been analyzed with various 

transfer functions. The system identification of a quadrotor-

based aerial manipulator is presented in [11]. ARX and 

ARMAX models have been obtained from linear accelerations 

and yaw angular accelerations. The different control-oriented 

models of a quadrotor UAV have been obtained by applying 

different identification methods in [12]. Parametric techniques, 

neural networks, neuro-fuzzy inference systems and 

hybridization of some of them have been applied. The system 

identification techniques are utilized in the literature for UAV 

dynamics. The difference of this study from studies in literature 

is that the parametric system identification techniques are used 

for modelling roll angle with aileron and rudder input in fixed 

wing UAV under external disturbances. The proposed system 

identification model is more robust to external disturbance 

variances different from literature studies. 

 

In this study, system identification method is used to define the 

roll angle for aileron and rudder inputs. The modelling of roll 

angle is substantial property to define lateral dynamics of small 

fixed-wing UAV.  The OE model proposed to allow the UAV 

to track the specified route with minimum error is compared 

with other system identification approaches. This paper is 

organized as follows: small fixed-wing UAV is modelled, and 

ARX, ARMAX, OE system identification procedure is 

explained in Section II. The estimation results of UAV's lateral 

dynamic model are presented in Section III. Conclusions are 

finally given in Section IV. 

II. MATERIALS AND METHOD 

A. Fixed-Wing UAV Modelling  

The lateral dynamic model of fixed wing UAV in Fig. 1 is 

discussed as in [2] where five states 𝑥 = (𝑣, 𝑝, 𝑟, 𝜑, 𝑐), two 

inputs 𝑢 = (𝛿𝑎, 𝛿𝑟), and five outputs (𝛽, 𝑝, 𝑟, 𝜑, 𝑐) are given.  

 

Fig.1. Control surface of fixed wing UAV. 

The velocity, roll angular rate, yaw angular rate, roll, yaw, 

sideslip angle, aileron deflection, rudder deflection parameters 

are represented by 𝑣, 𝑝, 𝑟, 𝜑, 𝑐, 𝛽, 𝛿𝑎  , and 𝛿𝑟 , respectively. The 

linearized lateral state space equations can be written as in [13] 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 (1) 

𝑦 = 𝐶𝑥 (2) 

where state matrices 
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Transfer function for linearized roll (ϕ) output due to aileron 

(𝛿𝑎) is given as  

Ø(𝑠)

δa(s)
=

−155.8𝑠3 − 525.8𝑠 − 4283

𝑠4 + 19.74𝑠3 + 90.49𝑠2 + 502.2𝑠 + 6.89
 (3) 

Also the transfer function for  linearized roll (ϕ) output due to 

rudder (𝛿𝑟) is given as 

 
Ø(𝑠)

δr(s)
=

−9.443𝑠3 − 384.4𝑠 − 4370

𝑠4 + 19.74𝑠3 + 90.49𝑠2 + 502.2𝑠 + 6.89
 (4) 

 
 

The roll output data of dynamic lateral system are obtained 

with normal distribution aileron and rudder inputs. The 

obtained data is used in parametric estimation process. Both 

transfer function can be easily discretised by using appropriate 

sampling time.    

B. System Identification Approaches 

The system identification is a phenomenon to construct the 

mathematical modelling of dynamic systems using measured 

input output data [14]. There are different type of linear model 

parametric system identification techniques such as ARX, 

ARMAX and OE. In this study, the roll output, aileron and 

rudder input data used the model identification procedure and 

least-squares based method used to estimate the parameters. 

The block diagram of parameter estimation process of used 

system in this study is shown in Fig. 2. 

 

General model structure of discrete-time input-output linear 

dynamic system with disturbance can be represented as 

 

𝐴(𝑞)𝑦(𝑛) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑛) + 𝐶(𝑞)𝑒(𝑛) (5) 

 

where 𝑢(𝑛), 𝑦(𝑛) and 𝑒(𝑛) are the input, output and 

disturbance respectively, Also 𝐴(𝑞), 𝐵(𝑞), 𝐶(𝑞) and 𝐹(𝑞) are 

polynomial with the delay operator 𝑞−1. 
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Fig.2. System identification block diagram. 

 

 The structure of ARX, ARMAX and OE models are 

presented in Figs. 3, 4 and 5, respectively.   

 

 

Fig.3. ARX model. 

 

 

Fig.4. ARMAX model. 

 

 

Fig.5. OE model. 

ARX model parameters ak , bk are given as  

𝐴(𝑞) = 1 + 𝑎1𝑞
−1 + 𝑎2+. . . . +𝑎𝑛𝑎𝑞−𝑛𝑎 (6) 

𝐵(𝑞) = 𝑏1𝑞−1+. . . . +𝑏𝑛𝑏𝑞−𝑛𝑏 (7) 

 

where model degree is na, 𝑞−1 is time delay operator.   

ARMAX model parameters ak, bk, ck are presented as in Eqs. 

(6) and (7).   

 

𝐶(𝑞) = 1 + 𝑐1𝑞
−1+. . . . +𝑐𝑛𝑐𝑞

−𝑛𝑐 
 

(8) 

ARMAX model includes 𝐶(𝑞) parameter unlike ARX model. 

Model degree nf OE model parameters are indicated in Eqs. (7) 

and (9). 

𝐹(𝑞) = 1 + 𝑓1𝑞−1+. . . . +𝑓𝑛𝑓𝑞−𝑛𝑓 (9) 

III. RESULTS AND DISCUSSION 

The input-output data of fixed wing UAV with 0.2 

disturbance variance is shown in Fig. 6 for 100 sec normally 

distribution aileron input where the sampling time 0.1 sec.  

Model order has been changed four to six to get the 

performance of linear ARX, ARMAX and OE identification 

approaches. The input output data is divided into test data with 

the first 700 samples of 1000 samples and validation data with 

the last 300 samples. 

 

Fig.6. The input-output of fixed-wing UAV with disturbance for aileron input. 

 The estimated model outputs and squared errors for six 

model degrees and aileron input are shown in Fig. 7. These 

graphs express that the OE model accuracy is higher than the 

other models. The OE and ARMAX model are closer to the 

system output.  
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Fig.7. Model outputs and squared errors for aileron input. 

The degree of models and estimation ratio system output-

aileron input with/without (w/wo) disturbance variance are 

presented in Table 1. 

 
TABLE 1 

DEGREE OF MODELS AND ESTIMATION RATIO w/wo 
DISTURBANCE FOR AILERON INPUT 

 

 

Model Type 

Model Degree 

ARX (na, nb) 

ARMAX (na, nb, nc) 

OE (nb, nf) 

 

Estimation Ratio 

w/wo Disturbance 

(%) 

ARX (4, 4) 84.78 91.33 

ARMAX (4, 4, 4) 86.06 97.10 

OE (4, 4) 86.22 97.15 

ARX (5, 5) 85.23 94.11 

ARMAX (5, 5, 5) 86.52 99.12 

OE (5, 5) 86.57 99.47 

ARX (6, 6) 86.34 96.33 

ARMAX (6, 6, 6) 86.65 99.58 

OE (6, 6) 87.81 99.66 

 

The maximum parameter estimation accuracy of system 

without disturbance for aileron input obtained for (nf=6, nb=6) 

OE model. The accuracy value of OE model is 99.66%. Further, 

the maximum accuracy for system with disturbance is obtained 

for (na=6, nb=6, nc=6) ARMAX and (nf=6, nb=6) OE model. 

The accuracy values of ARMAX and OE model are 86.65% and 

87.81%, respectively.  

 

The rudder input, system output and disturbance graphs are 

shown in Fig. 8. The disturbance variance is defined as 0.2.   

The estimated model outputs and squared errors for 6 model 

degrees and rudder input are shown in Fig. 9. These model error 

and model output graphs state that the OE and ARMAX model 

accuracy is higher than ARX model.  

 

 

Fig.8. The input-output of fixed-wing UAV with disturbance for rudder input. 

 

Fig.9. Model outputs and squared errors for rudder input. 

The degree of models and estimation ratio system output-

rudder input with/without disturbance are presented in Table 2. 

The maximum parameter estimation accuracy of system 

without disturbance for rudder input obtained for (na=6, nb=6 

and nc=6) ARMAX and (nf=6 and nb=6) OE model. The 

accuracy of ARMAX and OE model is 99.97%. Also, the 

maximum accuracy with disturbance system obtained for (nf=6 

and nb=6) OE model. The accuracy of OE model is 88.36%.  

The lateral dynamics of fixed-wing UAV estimated through 

ARX, ARMAX and OE system identification models. 

According to results, lateral dynamics of a fixed wing UAV will 
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be modelled using parametric system identification approaches. 

The obtained results also will be basic for the other dynamics 

of fixed-wing UAVs. 

 
TABLE 2 

DEGREE OF MODELS AND ESTIMATION RATIO w/wo 
DISTURBANCE FOR RUDDER INPUT 

 

 

Model Type 

Model Degree 

ARX (na, nb) 

ARMAX (na, nb, nc) 

OE (nb, nf) 

 

Estimation Ratio 

w/wo Disturbance 

(%) 

ARX (4, 4) 80.63 98.60 

ARMAX (4, 4, 4) 86.96 99.90 

OE (4, 4) 87.23 99.93 

ARX (5, 5) 81.59 99.62 

ARMAX (5, 5, 5) 87.12 99.94 

OE (5, 5) 87.57 99.95 

ARX (6, 6) 81.62 99.65 

ARMAX (6, 6, 6) 88.24 99.97 

OE (6, 6) 88.36 99.97 

  

IV. CONCLUSION 

The linearized lateral transfer functions of small fixed-wing 

UAV are used to form input (aileron and rudder) output (roll 

angle). The dynamic system model is formed as using ARX, 

ARMAX and OE system identification models and obtained 

data. The performance of dynamic systems is handled for 

different noise variances. The results of study show that 

estimated dynamic models are robust to noise and has minimum 

model complexity. The maximum estimation accuracy for 

different noise variances is obtained for OE model. With the 

help of the model obtained in this study, pre-flight analysis of 

fixed wing UAV can be performed. Thus, the risks of accidents 

of fixed wing UAV can be reduced. Thanks to the roll angle 

obtained with the OE model, the fixed wing UAV will be able 

to track the specified route with the minimum error. The 

proposed model will ensure that the payload is carried with high 

performance to the specified coordinates by tracking a certain 

route, even under external disturbance, and facilitates safe 

flight. 
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