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Abstract: Through this paper, we shall study of kernels of a set with the help of ideals and boundaries of 

these kernels. We also study the convergence of the associated filter in terms of a point which comes from 

the kernels. We shall also study the homeomorphic images of these kernels. 
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1. Introduction 

The study of Kuratowski [1] and Vaidyanathaswamy's [2] local function on the topological 

space with ideal is the study of generalization the limit point of a set in the topological space. It 

was defined as: for a topological space ( , )X   with unideal I ,

*( , ) { | for everyxA x X U A    I I ( )}xU x , where ( )x  is the collection of all 

open sets containing x  and A X . 
*( , )A I  is simply denoted as 

*( )A I  or 
*A . Dual 

function of the local function 
*()  is denoted as   and defined by 

*( ) \ ( \ )A X X A   [3]. 

These two set functions have been studied by a good number of mathematicians (see [4-13]). 

Two simplest ideals on a topological space ( , )X   are{ } and ( )X (the power set of X ) and 

we observe that 
*({ }) ( )A Cl A   ( ( )Cl A  denotes the closure of A ) and 

*( ( ))A X    for 

every A X . Thus the study of the local function will be interesting when the ideal I  is a 

proper ideal(an ideal I  not containing X ) on the topological space. Otherwise, when an ideal 

contains the whole set X , then it contains all subsets of X  and the value of local function on 

any set is always empty. 
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In the field of ideal, the study of associated filter is a new part and it was introduced by Modak 

et al. [13]. For recognizing the associated filter, we recall the concept of the filter. 

 Let X  be a nonempty set and ( )XF . Then F  is called a filter [14, 15] on X  if it 

satisfies the following: 

1. F , 

2. BF  and B A  implies AF , 

3. ,A BF  implies A B F . 

As for example, if we suppose I  is a proper ideal on a topological space ( , )X  ,then {A F

| \ }X X A I  forms a filter on X . This filter is called the associated filter on X  and 

denoted as .IF  

Definition 1.1. [13] An ideal uI  on a set X  is called a universal ideal if for any A X , 

either uA I  or \ uX AI . 

A filter F  on a set X  is called an ultrafilter [14, 15] if it is a maximal element in the collection 

of all filters on X , partially ordered by inclusion, that is, F  is an ultrafilter if it is not properly 

contained in any filter on X . 

Proposition 1.2. [14,15] For a filter F  on a set X , the following statements are equivalent: 

 1. F  is an ultrafilter; 

 2. For any A X , either AF  or \X AF ; 

 3. For any , ,A B X A B  F  if and only if either AF  or BF . 

It is obvious that if uI  is a universal ideal on the set X , then its associated filter is a ultrafilter 

on .X  

Throughout this paper we denote T  and S  as topological spaces ( , )X   and ( , )Y   

respectively. 
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2. Kernels via ideal 

Definition 2.1. Let I  be an ideal on a topological space T  and ( )A X . Define 

( )Ker A  { ( ) ( ) and ( ) }B B X B A  ∣ . 

The concept Kernel of a set in a topological space is not a new idea in the literature. For a subset 

A  of a topological space T , ( )A Ker A  [16] (resp. A
[16], ( )spoKer A , ( )bker A  [17]))

{ | }U A U    (resp. { | \ and }F X X F F A    ,

{ ( ) | }U SPO A U T , { ( ) }U BO A U T ∣ ), where ( )SPO T  and ( )BO T  denote 

the collection of semi-preopen sets [18] and the collection of b -open sets [19] respectively. 

Followings are the properties of the operator Ker . 

Theorem 2.2. Let I  be an ideal on a topological space T  and , ( )A B X  (the power set 

of X ). Then 

1. ( ) ( ) ( )spoA Ker A bKer A A Ker A

    . 

2. ( )Ker X X  . 

3. For A B , ( ) ( )Ker A Ker B  . 

4. For { } ( )iA i X ∣ , ( ( )) ( )i i

i i

Ker A Ker A 

 

 . 

5. For 
*U   (the  -topology [8]), ( ) ( )U Ker U U  . 

6. For U  , ( ) ( )U Ker U U  . 

7. For regular open [20] set U ,  ( ) ( )Ker U U U   . 

Proof. 1. Proof is obvious from the fact that ( )A    for ( )A X and

( ) ( )BO SPO  T T . 

4. Obvious. 

5. ( ) { ( ) ( ), ( )}Ker U B U B B X    ∣ . Since for 
*U  , ( )U U  , so 

( ) ( )Ker U U  . 
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6. Obvious from the relation *  . 

7. Obvious from the fact that ( )U U  [5, 9, 11] is true for each regular open set U . 

Example 2.3. Let uI  be a universal ideal on a topological space T  and ( )A X  with 

( )Ker A X   . Then ( )p Ker A  if and only if p  is not a limit point of the associated 

filter U . 

Proof. Suppose ( )p Ker A . Then for all ( ) B X   satisfying ( )A B  , ( )p B . 

This implies 
*( \ )p X B . Then there exists ( )pU p  such that ( \ )p uU X B  I . This 

implies ( \ )pX U B U . Since U  is an ultrafilter, so either \ pX U U  or BU . Claim: 

BU . If BU , then \ uX BI  and hence 
*( \ )X B  . So for all ( ) B X   satisfying 

( )A B  , 
*( ) \ ( \ )B X X B X    and consequently ( )Ker A X  , a contradiction. 

Thus BU  and hence \ pX U U . Therefore pp U U  proving that p  is not a limit point 

of U . 

Conversely, suppose that p  is not a limit point of U . Then there exists ( )pU p  such that 

pU U . This implies \ pX U U  as U  is an ultrafilter. So p uU  I . Now 

( \ )p pU X B U   implies ( \ )p uU X B  I  for all ( ) B X  . Consequently 

*( \ )p X B  and thus ( )p B  for all ( ) B X   satisfying ( )A B  . Therefore 

( )p Ker A . 

Corollary 2.4. Let uI  be a universal ideal on a topological space T  and A X  with 

( )Ker A X   . Then ( )p Ker A  if and only if p  is not a cluster point of the associated 

filter U . 

Definition 2.5. Let I  be an ideal on a topological space T  and ( )A X . Define 

* * *( ) { ( )and }Ker A F F X F A  ∣ . 

Theorem 2.6. Let I  be an ideal on a topological space I  and , ( )A B X . Then 

1.
*( )Ker   . 
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2.
*( )Ker A A . 

3. for A B , 
* *( ) ( )Ker A Ker B . 

4.
* * *( ) ( ) ( )Ker A Ker B Ker A B   . 

5. 
*( \ ) \ ( )Ker X A X Ker A  . 

6. 
* * *( ) ( ) ( )Ker A B Ker A Ker B   . 

7.
*( )Ker A A . 

8.  for I  I , 
*( )Ker I  . 

9. 
*( )Ker X X  if and only if the space satisfies the condition   I . 

10. 
* *( ) ( \ )Ker A Ker X A   . 

Proof.  5. follows from the facts: 

(i).
* * * *\ { ( ), } { \ }X F F X F A X F F A    ∣ ∣

*{ ( \ ) \ \ }X F X F X A ∣  

{ ( \ ) ( \ ) ( \ )} ( \ )X F X A X F Ker X A   ∣ . 

(ii). \ { ( ) ( ), ( )} { \ ( ) ( )}X B A X A B X A A B      ∣ ∣  

* * *{( \ ) ( \ ) ( \ )} ( \ )X B X B X A Ker X A ∣ . 

8. Follows from the following facts: 

For I  I  and *F I , 
* { }F  . 

9. Suppose 
*( )Ker X X . If { }  I , let U  be anon-empty subset of X  such that 

.U  I  Then  for each x U , 
*x U , a contradiction towards the fact x X . Hence 

{ }  I . 

Converse is trivial. 
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Theorem 2.7. Let I  be an ideal on a topological space T . Then ( )Ker     if and only if 

the space satisfies the condition { }  I . 

Theorem 2.8. Let I  be an ideal on a topological space T  and ( )A X . Then 
*( )Ker A  

is closed in X . 

Proof. We prove the result by showing that 
*\ ( )X Ker A  is open. 

 Let 
*\ ( )x X Ker A . Then 

*( )x Ker A . This implies for all *F A , 
*x F . So there 

exists an open set ( )xU x  such that xU F  I , for all 
* (1)F A . Claim: 

*\ ( )xU X Ker A . For each xy U , 
*y F , for all *F A , by (1). This implies 

*( )y Ker A  showing that 
*\ ( )y X Ker A . Therefore 

*\ ( )xU X Ker A . This shows that 

x  is an interior point of 
*\ ( )X Ker A . Since 

*\ ( )x X Ker A  is arbitrary, so 
*\ ( )X Ker A  

is open. 

Theorem 2.9. Let I  be an ideal on a topological space T  and ( )A X . Then ( )Ker A  

is open in X . 

Theorem 2.10. Let uI  be a universal ideal on a topological space T  and ( )A X  with 

*( )Ker A X   . Then for 
*( )p Ker A  if and only if p  is a limit point of the associated 

filter U . 

Proof. Suppose 
*( )p Ker A . Then 

*p F  for some ( ) F X   satisfying *F A . This 

implies for all ( )pU p , p uU F  I . Since uI  is a universal ideal, so \ ( )p uX U F  I  

and hence pU F U . Now p pU F U   implies pU U  for all ( )pU p . Therefore 

p  is a limit point of U . 

Conversely, let p  is a limit point of U . If 
*( )p Ker A , then ( \ )p Ker X A . Since 

*( )Ker A X   , so ( \ )Ker X A X   . Then by Theorem 2.3., p  is a limit point of U

, a contradiction. Therefore 
*( )p Ker A . 
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Corollary 2.11. Let uI  be a universal ideal on a topological space T  and A X  with 

*( )Ker A X   . Then ( )p Ker A  if and only if p  is a cluster point of the associated filter 

U . 

Now, we discuss homoeomorphic images of the above two kernels. To do this, we recall two 

lemmas from [13]. 

Lemma 2.12. Let :f X Y  be a bijective function. If I  is a proper ideal on X , then 

( ) { ( ) | }f f I I I I  is a proper ideal on Y . 

Lemma 2.13. Let :f X Y  be a surjective function.If J  is a proper ideal on Y , then 

1 1( ) { ( ) | }f f J J  J J  is a proper ideal on X . 

For following theorem, we denote 
I

Ker  as the kernel evaluated under the ideal I . 

Theorem 2.14. Let T  and S  be two topological spaces and I  be a proper ideal on T . If 

:f T S  is a homeomorphism, then for ( )A X , 
( )

( ( )) ( ( ))
I f I

f Ker A Ker f A  . 

Theorem 2.15. Let T  and S  be two topological spaces and I  be a proper ideal on T . If 

:f T S  is a homeomorphism, then for ( )A X , 
* * ( )( ( )) ( ( ))I f If Ker A Ker f A  

(here 
* ( )IKer A  means that the kernel of A  with respect to the ideal I ). 

Hence we conclude that Ker  and 
*Ker  of a set A  remain invariant under homeomorphism. 

3. Frontier points via kernels 

The idea ‘frontier points’ of a set in a topological space has been introduced by Bourbaki [14]. 

In this section we shall consider some new types of frontier points with the help of the kernels 

of this paper. 

At first, we shall show that ( ) ( \ )Ker A Ker X A     is not always true. 

Example 3.1.   Let 1 2 3{ , , }X o o o , 1 2{ ,{ , }, }o o X   and 1{ ,{ }}oI . Then for  , 

*( ) \ \X X X X     ; for 1{ }o , 
*

1 2 3({ }) \{ , } \o X o o X X     ; for 2{ }o , 

*

2 1 3 3 1 2({ }) \{ , } \{ } { , }o X o o X o o o    ; for 3{ }o , 
*

3 1 2({ }) \{ , } \o X o o X X    

; for 1 2{ , }o o , 
*

1 2 3 3 1 2({ , }) \{ } \{ } { , }o o X o X o o o    ; for 1 3{ , }o o ,
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*

1 3 2({ , }) \{ }o o X o  \X X   ; for 2 3{ , }o o , 
*

2 3 1({ , }) \{ } \o o X o X X    .  

Let 1 2{ , }A o o . Then 3\ { }X A o . Now 1 2( ) { , }Ker A o o   and ( \ )Ker X A X  . 

Therefore ( ) ( \ )Ker A Ker X A  1 2{ , }o o   . 

We define the frontier operator Fr  on a topological space T  with an ideal I  in the following 

way: for ( )A X , ( ) ( ) ( \ )Fr A Ker A Ker X A    . 

Theorem 3.2. Let I  be an ideal on a topological space T  and , ( )A B X . Then 

1. ( ) ( \ )Fr A Fr X A  . 

2. ( ) ( ) ( )Fr X Fr Ker      . In fact, ( ) ( )Fr X Fr      if and only if the space 

satisfies the condition { }  I . 

3. 
*( ) ( ) \ ( )Fr A Ker A Ker A  . 

4. For I  I , ( ) ( )Fr I Ker I  . 

5. ( )Fr A  is open. 

6. For 
*U  , 

*( ) ( ) \ ( )Fr U U Ker U  . 

7. For U  , 
*( ) ( ) \ ( )Fr U U Ker U  . 

8. For regular open set U , 
*( ) \ ( )Fr U U Ker U  . 

Proof. 3. 
*( ) ( ) ( \ ) ( ) ( \ ( \ ))Fr A Ker A Ker X A Ker A X Ker X A       , by Theorem 

2.6.(5). Thus
*( ) ( ) \ ( )Fr A Ker A Ker A  . 

4. Obvious from (3) and the fact I  I  implies 
*( )Ker I  . 

6. Obvious from the fact ( ) ( )Ker U U   for 
*U  . 

7. Obvious from the fact *  . 

8. Obvious from the fact ( ) ( )Ker U U U   . 
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We have seen that 
* *( ) ( \ )Ker A Ker X A   . However, following example shows that 

* * *( ) ( \ )Ker A Ker X A X   is not true always. 

Example 3.3. Let 1 2 1 2{ , }, { ,{ },{ },X}X o o o o   and 1{ ,{ }}oI . Then
*  , 

*

1{ }o  ,  
*

2 2{ } { }o o  and 
*

2{ }X o . Therefore
* *

2 1 2({ }) ({ }) { }Ker o Ker o o X   . 

We define the frontier operator *Fr  on a topological space T  with ideal I  in the following 

way: for ( )A X , 
* *

*( ) ( ) ( \ )Fr A Ker A Ker X A  . 

Theorem 3.4. Let I  be an ideal on a topological space T  and , ( )A B X . Then 

1.
*

*( ) ( )Fr Ker X  . 

2. *( )Fr X  , if and only if the space satisfies the condition { }  I . 

3. * *( ) ( )Fr X Fr  . 

4. *( )Fr X X , if and only if the space satisfies the condition { }  I . 

5. for I  I , 
*

*( ) ( \ ) \ ( )Fr I Ker X I X Ker I  . 

6. *\ ( ) ( )X Fr A Fr A . 

7. * *( ) ( \ )Fr A Fr X A . 

8. *( )Fr A  is closed. 

Proof. 1. Obvious from the fact
* *( ) ( )Ker Ker X  . 

2. Obvious from the fact that 
*( )Ker X X if and only if the space satisfies { }  I . 

3. Obvious from (1). 

4. Obvious from (2) and (3). 

5. 
* *

*( ) ( ) ( \ ) ( \ ( ) \ ( )Fr I Ker I Ker X I X Ker I X Ker I       . 

6. 
* * * *

*\ ( ) \ ( ( ) ( \ )) ( \ ( )) ( \ ( \ ))X Fr A X Ker A Ker X A X Ker A X Ker X A      
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*( \ *( )) ( \ ( )) ( ) \ ( ) ( )X Ker A X Ker A Ker A Ker A Fr A     . 

Now, we discuss about the homeomorphic images of the above two frontier operators. 

Theorem 3.5. Let T  and S  be two topological spaces and I  be an ideal on T . If 

:f T S  is a homeomorphism, then for ( )A X , 
( )

( ( )) ( ( )
I f I

f Fr A Fr f A   (here 

( ))
I

Fr A  means the set of frontier points A  with respect to the ideal I ). 

Theorem 3.6. Let T  and S  be two topological spaces and I  be an ideal on T . If 

:f T S  is a homeomorphism, then for ( )A X , * * ( )( ( )) ( ( ))I f If Fr A Fr f A (here 

* ( ))IFr A  means the set of frontier points A with respect to the ideal I ). 

4. Conclusions  

1. The value of the Kernel of a set A  in a topological space depends upon the collection. If the 

collection A  is larger (with respect to set inclusion) than   of a topological space ( , )X  , 

then the value of the Kernel of A  (when the Kernel is defined in terms of the collection A ) is 

smaller than the original value of the Kernel of A . Furthermore, if the collection B  is smaller 

than  , then the value of the Kernel of A  (when the kernel is defined in terms of B ) is bigger 

(with respect to the set inclusion) than the original value of the Kernel of A . 

2. The local function 
*()  and the set operator   are not distributive over arbitrary union or 

intersection but the Kernels related to 
*()  and   operators, and the frontier points via 

*()  and 

  operators remain invariant under homeomorphism. 
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