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Abstract: In this paper, we presented an efficient numerical method of solving Volterra integro-differential 

equations by applying Legendre as basis function for the solution of initial value problem of Integro-differential  

equations. We assumed appropriate solutions in terms of Legendre polynomial as basis function which was 

substituted into the class of integro-differential equations considered. This transformed the integro-differential 

equations and the given initial conditions into matrix equations. By collocating at point kxx = corresponding to 

N- systems of equations, the results obtained for some numerical examples justified the efficiency and reliability 

of the proposed method. 
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1. Introduction 

Volterra integro differential equations have been the focus of many studies due to their frequent 

appearance in various applications, such as in fluid mechanics and viscoelasticity. Volterra integral 

equations in the order hand, arise in engineering, physics, chemistry and biological problems such 

as parabolic boundary value problems, population dynamics and semi-conductor device. Many 

initial and boundary value problems associated with the ordinary and partial differential equations 

can be model into the Volterra integral equation types.  
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This equation was first used by [1], who presented the theory of functional of integral and integro- 

differential equations. The Volterra integral equation of second kind is of the form: 
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where k(x, t) is the kernel of the integral equation and   is a parameter. 

A variety of analytic and numerical methods have been used to solve Volterra integral equations. 

For Example, the Taylor series expansion method is used for the second kind Volterra integral 

equation as presented in [2]. In [3-4], application of collocation method on Volterra integral 

equations were investigated. Chebyshev polynomials was used to find numerical solutions of 

nonlinear Volterra integral equations of the second kind in [5]. Numerical solution of the second 

kind Volterra integral equation using an expansion method is found in [6]. A new approach to solve 

Volterra integral equation by using Bernstein's approximation is employed in [7]. The application 

of Adomian decomposition method to solve integral equations was also presented in [8-9]. 

The Lagrange interpolation method is applied to solve the integro differential equation in [10]. In 

[11], the application of Adomian's decomposition method on the Integro-differential equation is 

investigated. In  [12], Taylor polynomials was used to solve high-order Volterra integro-differential 

equation. In [13], the rationalized Haar functions method was applied  to the system of linear 

integro-differential equations. In [14], the authors  investigated the integro-differential equation by 

using the differential transform method. The solution of the fourth-order integro-differential 

equation using the variational iteration method can be found in [15].  

In [16], numerical solutions of a class of integro-differential equations ware presented. Variation 

Iteration method was used to solve Emden-Fowler type equation in [17]. Also, [18] presented the 

numerical treatment of differential equations using collocation methods for ordinary differential 

equations  and illustrated its application with some numerical examples. This particular method has 

brought into literature terminologies like; Spilt-range collocation methods, exponentially fitted 

collocation methods Segmented Domain collocation method [19]. Integral collocation method was 

presented in [20]. 

Legendre polynomial is an important orthogonal polynomial with interval of orthogonality between 

−1 and 1, and also is considered as the eigen-functions of singular sturm-Liouville. Mathematically, 

Legendre polynomials are solutions to Legendre’s differential equation: 
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Where the eigenvalue )1( += nn .The recurrence relation of Legendre polynomial is 

 );(1)()12()(1)1( xnPnxxPnxxPnn −+=++  1n                                                                  (3) 

Collocation is a method for evaluating a given differential equation after assuming an approximate 

solution which is then substituted back into the given problem and collocated at some equally 

spaced interior points in order to nullify the unknown constants in the assumed solution. 

2. Review of Legendre and shifted Legendre polynomials 

The legendre polynomials Lm(x); m=0,1,2,…, are eigen functions of the singular sturm-Liouville 

problem 

,0)()1())()1(( 2 =+− tLmmmtmLx  1,1−x                                                 (4) 

The Legendre polynomials satisfy the recursion relation: 
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where L 0 (t)=1 and L 1 (t)= x  which are thus generated by the Legendre relation 
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In order to use these polynomials on the interval  1,0 ,  we define the so called shifted Legendre 

polynomials by introducing the change of variable 12 −= xt . Let the shifted Legendre 

polynomials )12( −xLm  be denoted by )(xL m
 . Then )(xL m

 can be obtained as follows 
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where 

1)(0 = xL       
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The analytical form of the legandre polynomial )(xL m


of degree m is given by:  
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Note that m
mL )1()0(* −= and m

mL )1()0(* −= . The orthogonality condition is
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To consider the differential equation of thn order, integration collocation method using truncated 

Legendre series of degree k to represent the thn  derivative of the unknown functions )(xu in the 

following manner.  
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where )()()12( * xIxLxL n
mmm ==− is the shifted Legendre polynomial using the integration, we can 

obtain the lower order derivatives and the function itself as follows: 
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From equations (8) and (10) we have: 


=

+

−

+−
=

m

i

i
im

n

m x
iik

im
xI

0
2

)(

)!()!(

)!()1(
)(

             (15)
 


=

+
+

−

+−

+−
==

m

i

i
im

n

m

n

m x
iiim

im
dxxIxI

0

1

2

)()1(

)1()!()!(

)!()1(
)()(

           (16) 

 


=

+
+

−−

++−

+−
==

m

i

i
im

n

m

n

m x
iiiim

im
dxxIxI

0

2

2

)1()2(

)2)(1()!()!(

)!()1(
)()(

     

      (17) 

                  .

 

      . 

      . 


=

+
+

+−++−

+−
==

m

i

ni
im

mm x
niniiiim

im
dxxIxI

0
2

)1()0(

))(1)...(1()!()!(

)!()1(
)()(

         (18)

 

Hence, we collocate equations (10) and (14) at (k+1) points 
px , m=0,1,…,m  as 
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Where 
T

nm cccaaaS ],...,,,,...,[ 210=
and 

01 ,...,,  −nn

 are integrated matrices. 

3. Construction of the Method 

This section, we discussed the Numerical application of Legendre polynomial basis function on the 

solution of Volterra Integro-Differential  equations using Collocation Method. 

Consider the general Volterra Integro-differential equation of the form:    
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With the initial condition: 

kky =)0(                 (22) 

We assumed an approximate solution of the form: 
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Where Niai )1(0, = are unknown constants to be determined and )(xLi  is the Shifted Legendre 

Polynomial Basis function. Differentiating equation (17) n-times to obtain: 
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Substitute the assumed approximate solution equation (24) into equation (21) to obtain: 
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Equation (24) is further simplified to give rise to N − n linear algebraic systems of equations in N 

− n + 1 unknown constants. An extra equations are obtained from the initial conditions. Altogether 

we have N + 1 system of equations in N + 1 unknowns.  
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The values of the unknown constants are now substituted into the assumed approximate solution 

given in equation (22) to give rise to the required approximate solution. 

4. Numerical Applications 

Example 1:  Consider the third order Volterra Integro-differential equation. 
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With the initial condition, 

1)0(,0)0(,1)0( === uuu               (27) 

and the exact solution given by xexu x −=)(  

TABLE 1. Table presenting the exact and approximate solutions of the given Example 1 

X Exact Approx. 

N=2 

Error 

N=2 

Approx. 

N=3 

Error 

N=3 

Approx. 

N=4 

Error 

N=4 

Approx. 

N=5 

Error 

N=5 

0.0 1.00000 1.00000 0 0.99999 5.0000e-10 0.99999 2.0000e-10 0.99999 1.0000e-10 

0.1 1.00517 1.00500 1.7092e-04 1.00553 3.5938e-04 1.00506 1.0532e-04 1.00520 3.2687e-05 

0.2 1.02140 1.02000 1.4028e-03 1.02424 2.8397e-03 1.02061 7.8887e-04 1.02163 2.3002e-04 

0.3 1.04985 1.04500 4.8588e-03 1.05930 9.4594e-03 1.04737 2.4862e-03 1.05054 6.8239e-04 

0.4 1.09182 1.08000 1.1825e-02 1.11393 2.2115e-02 1.08633 5.4881e-03 1.09324 1.4235e-03 

0.5 1.14872 1.12500 2.3721e-02 1.19128 4.2567e-02 1.13877 9.9530e-03 1.15117 2.4559e-03 

0.6 1.22211 1.18000 4.2119e-02 1.29454 7.2427e-02 1.20619 1.5922e-02 1.22589 3.7752e-03 

0.7 1.31375 1.24500 6.8753e-02 1.42689 1.1314e-01 1.29041 2.3333e-02 1.31914 5.3929e-03 

0.8 1.42554 1.32000 1.0554e-01 1.59151 1.6597e-01 1.39350 3.2040e-02 1.43289 7.3753e-03 

0.9 1.55960 1.40500 1.5460e-01 1.79159 2.3199e-01 1.51777 4.1832e-02 1.56937 9.7731e-03 

1.0 1.71828 1.50000 2.1828e-01 2.03030 3.1202e-01 1.66582 5.2452e-02 1.73109 1.2818e-02 

 

Example 2: Consider the fourth order Volterra Integro-differential difference equation of the 

form: 
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With the initial condition, 

.1)0(,1)0(,2)0(,2)0( ==== uuuu             (29) 

And the exact solution given by 1)( ++= xexu x
 

TABLE 2. Table presents the exact and the approximate solutions of the given Example 2.  

X Exact Approx. 

N=3 

Error 

N=3 

Approx. 

N=4 

Error 

N=4 

Approx. 

N=5 

Error 

N=5 

0.0 2.0000000 2.0000000 0 2.0000000 0 1.9999999 1.0000e-09 

0.1 2.2051709 2.2051666 4.2513e-06 2.2051822 1.1352e-05 2.2051660 4.6971e-06 

0.2 2.4214027 2.4213333 6.9425e-05 2.4215829 1.8022e-04 2.4213310 7.1392e-05 

0.3 2.6498580 2.6495000 3.5881e-04 2.6507638 9.0502e-04 2.6495161 3.4269e-04 

0.4 2.8918246 2.8906666 1.1580e-03 2.8946609 2.8363e-03 2.8908000 1.0247e-03 

0.5 3.1487212 3.1458333 2.8879e-03 3.1555851 6.8638e-03 3.1463601 2.3611e-03 

0.6 3.4221188 3.4160000 6.1188e-03 3.4362212 1.4102e-02 3.4175095 4.6092e-03 

0.7 3.7137527 3.7021660 1.1586e-02 3.7396290 2.5876e-02 3.7057362 8.0165e-03 

0.8 4.0255400 4.0053333 2.0208e-02 4.0692425 4.3702e-02 4.0127413 1.2800e-02 

0.9 4.3596031 4.3265000 3.3103e-02 4.4288702 6.9267e-02 4.3404780 1.9125e-02 

1.0 4.7182818 4.6666666 5.1615e-02 4.8226950 1.0441e-01 4.6911908 2.7091e-02 

 

Example 3: Consider the second order Volterra Integro-differential difference equation [9]. 

,)()(
6

)(
0

3

dttutx
x

xxu

x

 −+−−=              (30) 

With the initial condition, 

2)0(,0)0( == uu                (31) 

And the exact solution given by )sin()( xxxu +=  
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TABLE 3. Table presents the exact and the approximate solutions of the given Example 3. 

x Exact Approx 

N=4 

Error 

N=4 

Approx 

N=5 

Error 

N=5 

Approx 

N=7 

Error 

N=7 

Approx 

N=10 

Error 

N=10 

0.0 0.00000 0.00000 4.2000e-11 0 0 0 0 0 0 

0.1 0.199833 0.18852 1.1305e-02 0.194060 5.7641e-03 0.19980 1.5841e-07 0.19983 3.3315e-07 

0.2 0.39866 0.35400 4.4645e-02 0.376239 2.2430e-02 0.39867 1.0211e-05 0.39867 1.0644e-05 

0.3 0.59500 0.49600 9.9220e-02 0.546300 4.9149e-02 0.59560 7.9922e-05 0.59560 8.0615e-05 

0.4 0.78940 0.61510 1.7431e-01 0.704200 8.5189e-02 0.78970 3.3753e-04 0.78970 3.3848e-04 

0.5 0.97940 0.71010 2.6931e-01 0.849000 1.2993e-01 0.98040 1.0270e-03 0.98040 1.0283e-03 

0.6 1.16460 0.78090 3.8369e-01 0.981700 1.8286e-01 1.16718 2.5434e-03 1.16710 2.5449e-03 

0.7 1.34420 0.82710 5.1708e-01 1.100600 2.4356e-01 1.34960 5.4654e-03 1.34960 5.4667e-03 

0.8 1.51735 0.84810 6.6918e-01 1.205600 3.1171e-01 1.52790 1.0586e-02 1.52790 1.0586e-02 

0.9 1.68330 0.84340 8.3987e-01 1.296200 3.8708e-01 1.70227 1.8943e-02 1.70226 1.8937e-02 

1.0 1.84147 0.81230 1.0291e+00 1.371900 4.6949e-01 1.87330 3.1841e-02 1.87320 3.1826e-02 

 

 

5.  Conclusion 
 
The Legendre Polynomial have been employed successfully in solving Volterra integro-differential 

equations. The solution obtained by the means of the basis function used yielded the desired 

accuracy when compared with the exact solution. The simplicity is an added advantage to the 

method and hence it is reliable and powerful numerical tools for the class of the problem considered. 
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