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ALTERNATIVE PARTNER CURVES IN THE EUCLIDEAN
3−SPACE

BEYHAN YILMAZ AND AYKUT HAS

Abstract. In the present paper, a new type of special curve couple which are
called WC∗−partner curves are introduced according to alternative moving
frame {N,C,W}. The distance function between the corresponding points of
reference curve and its partner curve is obtained. Besides, the angle function
between the vector fields of alternative frame of the curves is expressed by
means of alternative curvatures f and g. In addition to these, various charac-
terizations are obtained related to these curves.

1. Introduction

The curves are the fundamental structure of differential geometry. Numerous
studies of curves are carried out in 3−dimensional Euclidean space. Two curves
which have some special properties at their corresponding points are called curve
pairs. Hence, curve pairs are attracted the attention of many researchers [1, 2, 3, 13].
The most famous types of curve pairs are Bertrand partner curves. The Bertrand
curves were firstly described by Bertrand Russell in 1850. These curves have the
common principal normal vector. The classic characterization for Bertrand curves
is that a regular curve α in E3 is the Bertrand curve if and only if aκ(s)+ bτ(s) = 1
holds [7]. The other famous curve pair are the Mannheim partner curves. These
curves are defined by Mannheim with the equality κ2+τ2 = w2 =constant. Another
characterization can be made as two curves α and β in E3 which are called Manneim
partner curves if the principal normal vector fields of α coincide with the binormal
vector fields of β at the corresponding points of curves [5, 6, 12, 14].
This paper is expected to define a new kind of curve pairs which are called

WC∗−partner curves and give various characterization of these curves. For this
purpose, an alternative frame on original curve is used and another curve is defined
using this frame. First of all, a brief summary of curve theory and alternative frame
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are presented. Afterwards, the definition and main characterizations corporated to
distance function and angle function of WC∗−partner curves are introduced.

2. Preliminaries

Let α = α(s) be a regular unit speed curve in the Euclidean 3−space where s

measures its arc length. Also, let T = α
′
be its unit tangent vector, N =

T
′

‖T ′‖
be its principal normal vector and B = T × N be its binormal vector. The triple
{T,N,B} be the Frenet frame of the curve α. Then the Frenet formula of the curve
is given by  T ′(s)

N ′ (s)
B′(s)

 =

 0 κ (s) 0
−κ (s) 0 τ (s)

0 −τ (s) 0

 T (s)
N (s)
B (s)

 (2.1)

where κ (s) and τ (s) are curvature and torsion of α, respectively [10]. Also, the
geodesic curvature of spherical image of principal normal indicatrix of a space curve
α is given

σ =
κ2

(κ2 + τ2)3/2
(
τ

κ
)
′
.

If we reconstruct the above equation via the harmonic curvature function H which
is introduced by Özdamar in [8], we can easily see that

σ =
H ′

κ(1 +H2)3/2
, H =

τ

κ
.

From the equation (2.1), the unit Darboux vector W of α is as follows

W =
1√

κ2 + τ2
(τT + κB). (2.2)

It is obvious that the Darboux vector is vertical to the principal normal vector field
N from equation (2.2). With the help of the vector fields W and N , along α(s),
C = W × N unit vector field is defined. These three orthogonal vectors creates
a new frame defined by Uzunoğlu et al. in [11]. This frame is designation by
{N,C,W} and alternative frame to curve rather than the Frenet frame {T,N,B}.
The alternative frame and derivative formula of the alternative frame are given by N

C
W

 =


0 1 0
−κ√
κ2 + τ2

0
τ√

κ2 + τ2
τ√

κ2 + τ2
0

κ√
κ2 + τ2


 T

N
B

 , (2.3)

and  N ′

C ′

W ′

 =

 0 f 0
−f 0 g
0 −g 0

 N
C
W

 , (2.4)
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where

f = κ
√

1 +H2, g =
H
′

1 +H2
.

Since the principal normal vector N is common in both frames, following equations
are available from the equations (2.1), (2.2) and (2.4) ,

C = −
_
κT +

_
τB (2.5)

W =
_
τT +

_
κB

and

T = −
_
κC +

_
τW (2.6)

B =
_
τC +

_
κW

where
_
κ =

κ

f
and

_
τ =

τ

f
.

A regular curve α is called a helix if the tangent lines of the curve makes a
constant angle with a fixed direction. This curve is characterized by the property
that

τ

κ
is constant [4]. If the principal normal lines of the curve makes a constant

angle with a fixed direction, then the curve is called a slant helix and characterized
by the equally

g

f
=

H
′

κ(1 +H2)3/2
= σ

is constant [11]. Then the characterization of a slant helix according to alternative
frame is given as follows.

Remark 1. A regular curve α(s) according to alternative frame {N,C,W} with

alternative curvatures f and g is a slant helix if and only if
g(s)

f(s)
= constant [11].

3. ALTERNATIVE PARTNER CURVES IN THE EUCLIDEAN
3−SPACE

This section aims to define a new type of partner curves by considering alterna-
tive frame and find some characterizations for these curves corporated to distance
function between the corresponding points of the curves, curvatures of the curves
and angle function.

Definition 1. Let α = α(s) and α∗ = α∗(s∗) be two regular space curves parameter-
ized by its arc length s and s∗ with Frenet frames {T,N,B}, {T ∗, N∗, B∗} , curva-
tures κ, κ∗ and torsions τ , τ∗ respectively in the Euclidean 3−space. Also, let the al-
ternative moving frames and alternative curvatures of curves be {N,C,W} , f, g and
{N∗, C∗,W ∗} , f∗, g∗, respectively. The curves α and α∗ are called WC∗−partner
curves if the vector fields W and C

∗
coincide i.e., W = C∗ holds at the correspond-

ing points of the curves.
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From Definition 1, we can easily write the parametric representation of α∗(s∗)
as follows

α∗(s∗) = α(s) + λ(s)W (s) (3.1)

where λ = λ(s) is the distance function between corresponding points of the curves
α and α∗. Because the vector fields W and C∗ are the equal, we can represent the
relationship between the alternative frames of α and α∗. If θ = θ(s) is the angle
function between vector fields N and W ∗, the following equations are obtained
thanks to axis rotation equations. N∗

C∗

W ∗

 =

 cos(90− θ) sin(90− θ) 0
0 0 1

− sin(90− θ) cos(90− θ) 0

 N
C
W


N∗ = sin θN + cos θC (3.2)

W ∗ = − cos θN + sin θC

and

N = sin θN∗ − cos θW ∗ (3.3)

C = cos θN∗ + sin θW ∗.

Theorem 1. Let {α, α∗} be WC∗−partner curves according to alternative frame
in Euclidean 3−space. The distance function λ = λ(s) between the corresponding
points of the α and α∗ is as follows,

λ(s) = − κ

fg
.

Proof. If we take derivative of the equation (3.1) according to s, we get

T ∗
ds∗

ds
= T + λ

′
W + λW ′.

Using the equations (2.6) and (3.3) , we obtain that

(−
_
κ
∗
C∗ +

_
τ
∗
W ∗)

ds∗

ds
= −(

_
κ + λg) cos θN∗ + (

_
τ + λ

′
)C∗ − (

_
κ + λg) sin θW ∗.

If we consider the above equalities, we can easily see that

λ(s) = − κ

fg
.

�

Theorem 2. Let {α, α∗} beWC∗−partner curves in Euclidean 3−space. {N,C,W, f, g}
and {N∗, C∗,W ∗, f∗, g∗} are the alternative frame elements of the curves α and α∗,
respectively. Then the following relation exists among curvatures.

g∗

f∗
= − tan θ = constant and (f∗)2 + (g∗)2 = g2



ALTERNATIVE PARTNER CURVES IN THE EUCLIDEAN 3−SPACE 5

Proof. Since {α, α∗} is the WC∗−partner curves, W = C∗ and their derivatives
are equal.

(C∗)′ = −f∗N∗ + g∗W ∗,

W ′ = −gC.

From the last equation and equation (3.3) , we have

−f∗N∗ + g∗W ∗ = −g(cos θN∗ + sin θW ∗)

f∗ = g cos θ,

g∗ = −g sin θ.

So, we obtain that

g∗

f∗
= − tan θ

and
(f∗)2 + (g∗)2 = g2.

�

Theorem 3. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. θ = θ(s)
be the angle function between vector fields N and W ∗. Then the following relation
exists.

θ =

s∫
0

fds, s =

s∗∫
0

f∗

g cos θ
ds∗

Proof. From the equation (3.2) , we have

N∗ = sin θN + cos θC

If we take the derivative of each side of the above equation according to s, we obtain

dN∗

ds∗
ds∗

ds
= cos θ

dθ

ds
N + sin θN ′ − sin θ

dθ

ds
C + cos θC ′

f∗C∗
ds∗

ds
= cos θ

dθ

ds
N + sin θ(fC)− sin θ

dθ

ds
C + cos θ(−fN + gW )

Because {α, α∗} is the WC∗−partner curves, we have

f∗W
ds∗

ds
= (cos θ

dθ

ds
− f cos θ)N + (f sin θ − sin θ

dθ

ds
)C + g cos θW

f∗
ds∗

ds
= g cos θ and s =

s∗∫
0

f∗

g cos θ
ds∗.
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Also, from f sin θ − sin θ
dθ

ds
= 0 and cos θ

dθ

ds
− f cos θ = 0, we get f =

dθ

ds
and

θ =

s∫
0

fds.

�

Theorem 4. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. α∗ is a
helix if and only if

(
_
κ + λg) sin θ

(
_
τ + λ′)

is constant.

Proof. If we take the derivative of the equation (3.1) according to parameter s, we
have

T ∗
ds∗

ds
= T + λ

′
W + λW ′

and if we use the equation (2.6) and the alternative frame formulas, we get

(−κ̄∗C∗ + τ̄∗W ∗)
ds∗

ds
= −κ̄C + τ̄W + λ

′
W − λ(gC).

From equation (3.2) and W = C∗,

(−κ̄∗W+ τ̄∗W ∗)
ds∗

ds
= −κ̄(cos θN∗+sin θW ∗)+ τ̄W+λ

′
W−λg(cos θN∗+sin θW ∗)

κ̄∗
ds∗

ds
= −(

_
τ + λ′)

τ̄∗
ds∗

ds
= −(

_
κ + λg) sin θ

and _
τ
∗

_
κ
∗ =

(
_
κ + λg) sin θ

(
_
τ + λ′)

. (3.4)

Because of
_
τ
∗

=
τ∗

f∗
and

_
κ
∗

=
κ∗

f∗
, we know that

_
τ
∗

_
κ
∗ =

τ∗

κ∗
. So, from equation

(3.4) , α∗ is a helix if and only if

(
_
κ + λg) sin θ

(
_
τ + λ′)

is constant. �

Theorem 5. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. α∗ is a
slant helix if and only if

g∗

f∗
= constant
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Proof. If we use the derivative of the alternative frame, we have

dN∗

ds∗
= f∗C∗

and
dW ∗

ds∗
= −g∗C∗.

Using the above two equations, we obtain that

g∗

f∗
= −

dW ∗

ds∗

dN∗

ds∗

.

Also if we take the derivative of the first equality of equation (3.2) according to s,
we get

dN∗

ds∗
ds∗

ds
= cos θ

dθ

ds
N + sin θN ′ − sin θ

dθ

ds
C + cos θC ′,

= cos θ
dθ

ds
N + sin θ(fC)− sin θ

dθ

ds
C + cos θ(−fN + gW ),

=

(
cos θ

dθ

ds
− f cos θ

)
N +

(
f sin θ − sin θ

dθ

ds

)
C + g cos θW(3.5)

From the proof of the Theorem 3, we know that

f =
dθ

ds
. (3.6)

If we use the above equation in (3.5) , we obtain that

dN∗

ds∗
ds∗

ds
= g cos θW. (3.7)

Similarly if we take the derivative of the second equality of equation (3.2) according
to parameter s, we can easily see that

dW ∗

ds∗
ds∗

ds
= sin θ

dθ

ds
N − cos θN ′ + cos θ

dθ

ds
C + sin θC ′,

= sin θ
dθ

ds
N − cos θ(fC) + cos θ

dθ

ds
C + sin θ(−fN + gW ),

=

(
sin θ

dθ

ds
− f sin θ

)
N +

(
−f cos θ + cos θ

dθ

ds

)
C + g sin θW(3.8)

If we use the equation (3.6) in (3.8) , we have

dW ∗

ds∗
ds∗

ds
= g sin θW. (3.9)

By proportioning the equations (3.7) and (3.9) , we get

g∗

f∗
= − tan θ = constant
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�

Theorem 6. Let {α, α∗} be WC∗−partner curves in Euclidean 3−space. Then the
following relation exists

g

f
=

f∗

f cos θ

ds∗

ds

Proof. Using alternative frame {N,C,W}, we have
N ′ = fC and W ′ = −gC.

If we calculate the ratio of these two equations, we obtain

g

f
= −W

′

N ′
. (3.10)

From the following equations

dC∗

ds∗
= −f∗N∗ + g∗W ∗ and W = C∗,

we can see that
dW

ds∗
ds∗

ds
= (−f∗N∗ + g∗W ∗)

ds∗

ds
.

Also, from equation (3.2) ,

dW

ds∗
ds∗

ds
= [−f∗(sin θN + cos θC) + g∗(− cos θN + sin θC)]

ds∗

ds

= [(−f∗ sin θ − g∗ cos θ)N + (−f∗ cos θ + g∗ sin θ)C]
ds∗

ds
(3.11)

If we use the equations f∗ = g cos θ and g∗ = −g sin θ in Theorem 2, we obtain

g∗ = −f
∗ sin θ

cos θ

and if we write this equation in (3.11) , we get

dW

ds∗
ds∗

ds
=

[(
−f∗ sin θ +

f∗ sin θ

cos θ
cos θ

)
N +

(
−f∗ cos θ − f∗ sin θ

cos θ
sin θ

)
C

]
ds∗

ds
.

W ′ = − f∗

cos θ

ds∗

ds
C.

Also from the equation (3.10), we have

g

f
= −W

′

N ′
= −
− f∗

cos θ

ds∗

ds
C

fC

g

f
=

f∗

f cos θ

ds∗

ds
.

So this completes the proof. �
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Figure 1. The curve α

Example 1. Let α be spatial curve given by the parametrization ([9])

α(s) = (
9

208
sin 16s− 1

117
sin 36s,

−9

208
cos 16s+

1

117
cos 36s,

6

65
sin 10s).

If the necessary arrangements are made, we obtain the curvatures of α as follows

κ(s) = −24 sin 10s, τ(s) = 24 cos 10s, f(s) = 24, g(s) = 10.

From the Theorem 1, the distance function is obtained as λ(s) =
sin 10s

10
. Then

the WC∗−partner curve α∗ of α is obtained as
α∗(s∗) = α(s) + λ(s)W (s)

α∗(s) = (
9

208
sin 16s− 1

117
sin 36s+

9

130
cos 6s sin 10s− 4

130
cos 46s sin 10s,

−9

208
cos 16s+

1

117
cos 36s+

9

130
sin 6s sin 10s− 4

130
sin 46s sin 10s,

6

65
sin 10s+

12

130
cos 20s sin 10s).

Figure 1 shows the graph of the curve α and Figure 2 shows the WC∗−partner
curve α∗.
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Figure 2. WC∗−partner curve of α

[5] Liu, H. and Wang, F., Mannheim partner curves in 3−space, J. Geom. 88 (2008) 120—126.
[6] Lone, M.S., Es, H., Karacan, M.K. and Bükcü, B., Mannheim curves with modified orthogonal

frame in Euclidean 3-space, Turkish Journal of Mathematics, 43 (2019) 648-663.
[7] Matsuda, H. and Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50

(2003) 41-58.
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