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The effects of annealing temperature on optical properties of 2, 6-bis (3- (carbazol-9-yl) phenyl)
pyridine films’

Asim MANTARCIY

ABSTRACT: Inthis research, 2, 6-bis (3- (carbazol-9-yl) phenyl) pyridine films were synthesized using
spin coating to study changes in its optical properties for different annealing temperatures. The films
were annealed at 30, 50, 70, 90, 110, 120, 140 and 160 °C degrees in the presence of nitrogen. The
material studied is one of the basic materials of the organic light emitting diode and forms the light
emitting layer. In the results obtained from the films, for UV ultraviolet region, the highest absorption
was obtained at 50 °C annealing, while the lowest absorption was 160 °C. Optical band gap energies of
films range from 3.35 to 3.43 eV. Refractive index distributions depending on the annealing temperature
of the films were studied in detail. The refractive indices of the films at 440 nm wavelength varied
between 2.71 and 3.39 according to different annealing temperatures. It is observed that it varied between
3.06 eV and 3.19 eV. It was observed that in the visible region of the spectrum, refractive index of the
films increased in a sharp linear behavior at a wavelength of 350 nm. Annealing took place in two
regimes that increase and decrease the effect of the optical band gap energy of the film. It can be seen
that the percentage of reflection of all films at the wavelengths after 500 nm was almost constant. It has
been evaluated that the films had 70 % transmittance at 70 °C (up to 160 °C) and after this point, their
transmission (%) was above 70 % and films can be used in the permeability devices of this feature. As
a result, the optical properties of films (bandgap energy, absorption band edge energy, refractive index,
refractive (%), and transmission (%), etc.) were measured and evaluated according to the annealing
temperature.
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INTRODUCTION

Organic light emitting diodes (OLED) are important materials for the industry as they are used in
various lamps such as solid state light emitting systems, panel illuminators, fluorescent lamps (Skuodis
etal., 2017; Liang et al., 2017; Zhao et al., 2016; Mullemwar et al., 2016). Organic light emitting diodes
are generally composed of five layers. These; the bottom layer is the substrate layer, then the hole transfer
layer, the emissive layer, the electron transfer layer, and finally the cathode layer, respectively. The
emissive layer plays a vital role in the production of OLEDs. Luminescent material such as phosphorus
IS important because it provides high quantum efficiency in OLED devices. 2,6-bis (3- (9H-Carbazol-9-
yl) phenyl) pyridine has become one of the most famous phosphorescent and bipolar host materials as a
light emitting (emissive) layer used in the design of OLED devices. Carbazole electron donors have a
feature that combines high triplet energy and a pyridine electron acceptor with high electron
attractiveness. Bipolar host material is molecules that can mediate hole and transport injection and
contain electron withdrawal. Beyond this; 2,6-bis (3- (9H-Carbazol-9-yl) phenyl) pyridine material can
improve hole electron injection for white and blue phosphorescent organic light emitting diode (OLED)
(Tsai et al., 2014). Many scientists have researched 2,6-bis (3- (9H-Carbazol-9-yl) phenyl) pyridine to
understand the properties of the material, apply the material to the high-tech device and contribute to the
literature. A reported study (Koh et al., 2012) investigated that white-organic light emitting diodes
(WOLEDs) were produced based on blue fluorescence -OLEDs, which are microstructural color
conversion layers containing red and green phosphors. In the emissive layer of the device produced, 2,6-
bis (3- (9H-Carbazol-9-yl) phenyl) pyridine was used, 8 % and 18 % by weight. They achieved large
low-angle spectral variation and color stabilization from the study, but observed that productivity
decreased unusually. In this study, the important benefits of the produced white organic light emitting
diode, which gives an example of color stability and mechanical flexibility, have been demonstrated. In
addition, a versatile and high quality light source was produced, and therefore; this study guided the
development of light sources of the new generation WOLEDs (white light emitting diode). In the
literature, many researchers have produced many high efficiency and high technology organic light
emitting devices using 2,6-bis (3- (9H-Carbazol-9-yl) phenyl) pyridine material (Wu et al., 2017; Guo
etal., 2016; Zhao et al., 2016; Chen et al., 2015; Zhou et al., 2016; Yu et al., 2019; Guo et al., 2020; Liu
et al., 2020).

This research has two main point of novelty. First, when literature review is done, it is seen that
the effect of annealing on the optical properties of 2,6-bis (3- (9H-Carbazol-9-yl) phenyl) pyridine film
has not been studied. From this point of view, the effect of annealing effect on the optical properties of
this film should be investigated. In this way, the change in the optical properties of annealing can be
understood and used in high-tech devices such as WOLED. The other is that the film has not been
produced by spin coating method before.

MATERIALS AND METHODS

The experimental process consists of three steps. The first step is to prepare the material in the
form of a solution, and with the help of spin coating, the material is coated on the substrate layer and
films are obtained. In the last step, the produced films are exposed to various annealing temperatures
and the optical properties of the film are measured.

Obtaining films by spin coating method
First of all, the material was purchased in the form of powder from Sigma Aldrich. The material
was put into tubes by measuring with a precise scale and weighing 0.0132 g. 9 different tubes were
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poured with the same weight of powder material. Then, each tube was dissolved in 3 mL of
Dichloromethane (DCM Dichloromethane) solvent. In order to be homogeneous, tubes shook up should
be at least 25 minutes with RS-VA 10 -vortex shaker machine. Subsequently, the obtained material was
covered with a coating (Vtc-100 Vacuum Spin Coater) machine by rotating on the substrate (the glass -
soda lime glass). Spin coating is an important way of producing thin films in the high tech industry. A
process where the solution is spread almost homogeneously on a surface using centripetal force. The
spin coating can result in a relatively uniform film with a desired thickness. This process is applied as
follows. Firstly, the solution deposited on the substrate. And then, it accelerated the wafer final radial
velocity. Solution viscosity, wafer radial velocity, some ambient factor can affect the spin coating
process. The thickness measurement technique of the films is as follows. Before coating the films, empty
glass thicknesses were measured. Afterward, the film thickness covered with a digital micrometer
(iGaging Digital Electronic Outside Micrometer) was measured. The thickness of the films was
calculated by removing the empty glass thickness from the final thickness. All produced films are of the
same thickness and their thickness is approximately 0.1 micrometer

Annealing of films at various temperatures

The films are annealed in the presence of nitrogen, 30, 50, 70, 90, 110, 120, 140, 160 °C separately.
Optical properties were measured after each annealing, as detailed in the section below. Annealing time
was determined as 20 minutes for each film.

Measuring and Calculating the optical properties of films

The films are annealed in the presence of nitrogen, 30, 50, 70, 90, 110, 120, 140, 160 °C
separately. Optical properties were measured after each annealing and some optical properties were
calculated from experimental results using the single oscillator theory and Tauc theory.

RESULTS AND DISCUSSION

Figure 1 show the photon wavelength graph in response to the absorption value of the 2, 6-bis (3-
(carbazol-9-yl) phenyl) pyridine film, which was subsequently annealed at various temperatures. The
absorption of the film between 400 and 1100 nm is listed as follows depending on the annealing
temperature; room temperature > 30 °C > 50 °C > 70 °C>90 °C > 110 °C > 120 °C > 140 °C > 160 °C. In
short, in the visible and near infrared spectrum, it is seen that the film has a tendency to decrease with
increasing tempering temperature, with the tendency to absorption. In the UV ultraviolet region, the
absorption property of the film shows a nonlinear feature. In the UV ultraviolet region, the highest
absorption occurs at 50 °C annealing temperature, while the lowest absorption is achieved at 160 °C
annealing temperature. Since this absorption value changes the optical band gap energy, which is an
important physical parameter in opto-electronic devices, the control of this parameter is important for
the production of higher quality devices. In the literature research (Wan, 1992); a thin film of polyaniline
has two absorption peaks of 950 nm and 630 nm, which is a point of higher wavelength value than our
value. Figure 2 shows the wavelength graph of the film versus % transmission values at various
annealing temperatures. The highest transmittance in the UV ultraviolet spectrum range was achieved at
about 55 %. This highest transmission value is obtained at annealing temperature of 160 °C. The lowest
transmittance for the UV ultraviolet spectrum range was achieved at about 8 %. In the visible region of
the spectrum, the transmission (%) has increased considerably for films at all annealing temperature
compared to the ultraviolet region. This sharp/steep linear increase in the % transmittance value occurred
at a wavelength of about 350 nm. The highest transmission (%) of the film in the visible region was in
the range of 85-90 %, and this value corresponds to annealing at 160 °C. The lowest transmission (%) in
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the visible region is in the range of 30-35%, which is the value of the film at annealed room temperature.
Films produced in the visible region have 70 % transmission at annealed temperatures of 70 °C and above
(up to 160 °C) and films with these properties have the properties to be used in permeability devices (Lee
1996 et al.; Kim 2016 et al.). To calculate the absorption band edge energy of the film, it is necessary to
take the derivative of the transmission (%) according to the wavelength and draw. Figure 3 shows this
graphic. Absorption band edge energy value according to various annealing temperatures was calculated
by using the formula Ep-e=1240/Amax and the maximum wavelength value was obtained from Figure 3.
Table 1 gives the absorption band edge energies of the film at various annealing temperatures. The
increasing tendency of annealing regimes of the optical band gap energies of the films are as follows;
room temperature-30 °C, 50 °C-70 °C, 90 °C-110 °C and 140 °C - 160 °C in the annealing temperature
range. On the other hand, the annealing regimes of the films with a decreasing tendency of optical band
gap energies can be listed as follows; in annealing ranges of 110 °C- 120 °C and 120 °C- 140 °C. In the
annealing regime of 70 °C to 90 °C of the films, the optical band gap energy does not change. Figure 4
is a graph of (ahv)? versus photon energy plots of films annealed at different temperatures. If the well-
known Tauc theorem ((ahv)" = C.(hv-Ey) is applied to this graph and by selecting n = 1/2 in this equation
and making a linear fit, the value that cuts 0 in the y axis is the allowed-direct optical band gap energy.
Control of these allowed-direct optical band gap energy values is extremely important in the
development of optical devices such as WOLED (white light organic light emitting diode) . These values
are given in Table 1. Allowed-direct optical band energy is increased by increasing the annealing from
room temperature up to 70 °C annealing temperature. On the other hand, increasing the annealing
temperature from 70 °C to 160 °C decreases the optical band gap energy values of the film, where it is in
2 regimes to increase and decrease the effect of the film on the optical band gap energy. While the
highest optical band gap energy was obtained as 3.50 eV from the films, the lowest optical band gap
energy was obtained as 3.35 eV. Our optical bang gap values are lower than the literature study (Cheah
et al., 2020) of Ga20s thin film produced by sol-gel methgod. Figure 5 shows the % reflectance-
wavelength graph for annealing at various temperatures. As seen in the figure, room temperature, 30 °C,
50 °C and 70 °C annealing regime, the reflectance value increases sharply at 350 nm wavelength. The
reflectance of the film in 70 °C annealing temperature increased sharply from 5 % to about 10 %. At
room temperature, 30 °C, 50 °C annealing temperature, the reflectance value of the film increased sharply
from 5 % to about 20 %. The reflectance values of all films remained almost constant after 500 nm
wavelength. While the highest reflectance value in the visible region of the spectrum was obtained in 30
°C annealed film; in the same region, the lowest reflectance value was obtained in the annealed film at
160 °C. As a general trend, the increasing annealing temperature decreases the film's reflectance value.
This is an indication that annealing process plays a role in modifying the film's reflectance properties.
Reflectance property of gold nanorattles impregnated chitosan film was researched in literature (Keshav
et al., 2020) and shows similar behavior of our material after 500 nm wavelength. Figure 6 shows the
graphic that gives the refractive index distribution of the film for different annealing temperatures. The
refractive index values of the films vary between approximately 1.2 and 3.5 according to the changing
wavelength and annealing temperature. It has been observed that the refractive indices of the films
increase from about 1.7 or 2 to about 3.2 in sharp linearly in the films at about 350 nm, at room
temperature, 30 °C, 50 °C and 70 °C annealing temperature. In films with 90 °C, 110 °C, 120 °C, 140 °C
annealing temperatures, the refractive index distribution first increases at 350 nm, and then decreases
with the increase in varying wavelength. On the other hand, in films annealed at 30 °C, 50 °C and 70 °C,
the refractive index values is increasing up to 400 nm wavelength and beyond this wavelength value, it
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is following an almost unchanged course. Table 1 shows the refractive index values (at 440 nm
wavelength) of films depending on the various annealing temperatures. As can be clearly seen in Table
1, the highest refractive index at 440 nm wavelength is 3.46, which was obtained from the annealed film
at 30 °C. The smallest refractive index value was obtained as 2.45 and obtained from annealed film at
120 °C.
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Table 1: Important optical properties of films for various annealed temperatures

Annealed temperature  Absorption band edge Optical band gap Refractive index value

(°C) energy (eV) energy (eV) (at 440 nm)

0da sicakhgi 3.06 3.35 3.39
30 3.21 3.39 3.46
50 2.87 3.42 341
70 3.27 3.50 2.93
90 3.27 3.50 2.88
110 3.31 3.48 2.49
120 3.28 3.46 2.45
140 3.19 3.43 2.71

CONCLUSION

By applying various annealing temperatures of the synthesized 2, 6-bis (3- (carbazol-9-yl) phenyl)
pyridine film using spin coating, the effects of these temperatures on the optical properties of the film
were studied in detail. The use of films in an OLED device, which is an optical device, and thus
improving its optical properties, plays a role in the development of high efficiency devices in device
applications. The highest absorption in the UV ultraviolet region was obtained at 50 °C annealing
temperature, while the lowest absorption was obtained at 160 °C annealing temperature. The highest
transmittance in the UV ultraviolet spectrum range was achieved at about 55 %. This highest
transmittance value was obtained at annealing temperature of 160 °C. In the visible region of the
spectrum, the transmittance has increased considerably for films at all annealing temperature compared
to the ultraviolet region. This sharp/steep linear increase in the % transmittance value occurred at a
wavelength of about 350 nm. Films produced in the visible region have a transparency of over 70 % at
annealing temperatures from 70 °C up to 160 °C. The effect of annealing on the optical band gap energy
of the film is in 2 regimes as an increasing (at annealing regime from room temperature to 70 °C) and a
decreasing (at annealing regime from 70 °C to 140 °C). While the highest optical band gap energy was
obtained as 3.50 eV from the films, the lowest optical band gap energy was obtained as 3.35 eV. The
refractive index values of the films vary between approximately 1.2 and 3.5 according to the changing
wavelength. It is inferred that the refractive indexes of the films increase from about 1.7 or 2 to about
3.2 in sharp linearly in the films at 350 nm, at room temperature, 30 °C, 50 °C and 70 °C annealing
temperature. It was observed that the reflectance values of all films remained almost constant at
wavelengths after 500 nm. Absorption band edge energies were found to vary from 3.06 eV to 3.19 eV
at varying annealing temperatures. The highest refractive index at 440 nm is 3.46, which was obtained
from the annealed film at 30 °C. The smallest refractive index value was obtained as 2.45 and obtained
from annealed film at 120 °C. In the visible and near infrared spectrum, it was seen that the film tends to
decrease with increasing annealed temperature, with an increasing tendency to absorption. In summary,
by changing the annealing temperatures, the optical properties of the film were controlled and it was
observed from experimental results that annealing at different temperatures had an important role on the
optical properties of the film.
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