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Abstract 
 
In this study, a practical jointed approach in the forced vibration investigation of functionally graded material (FGM) structures 
under internal pressure are applied by modified Durbin’s method. The FGM material consists of heterogeneous material that 
shows exponential variation in the thickness. Four types of dynamic loads are applied to the FGM cylinder for forced vibration. 
Displacement and stress distributions due to non-homogeneous constant are intended. Stress distribution dependent on the 
homogeneity parameter is computed and the results obtained for cylindrical structures were compared with the finite element 
method (FEM). The inhomogeneity parameter is empirically regulated, with a continuously changing volume fraction of the 
ingredients. The parameters for homogeneity were randomly selected to show displacement and stress distributions. 
 
Keywords:  Functionally graded materials, Structural elements, Boundary value problems, Modified Durbin’s 
method 
 
 
1. Introduction 

The structural elements of the pressure vessels used in engineering areas such as aerospace 
and petroleum are important in engineering applications such as cylinder and sphere. As a 
result, the internal loads are one of the main problems of industrial structures. It may lead to 
stress gradient and / or cracked nuclei occurring in the stress distribution of the specified loads. 
By the analysis of the structures under the influence of the internal pressure, it facilitates the 
determination of the density of the points affected by the stress and the unsuitable stress 
distributions. Previous research has provided analytical resolutions for homogeneous isotropic 
and orthotropic structures. Tranter [1], Mirsky [2], Klosner and Dym [3], Ahmed [4], Ghosh 
[5] have pioneered their work in the cylinders, discs and spheres due to axial symmetry. 

 
The functional graded materials (FGM) are more advanced structural materials in determining 
the material properties in the direction of the thickness in the solution of problems due to the 
composite materials interfaces. Güven [6] explained the mechanical stress distribution of the 
isotropic functional grade thick walled sphere under the influence of internal pressure. 
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Tutuncu and Ozturk [7] presented exact solutions in the form of stresses occurring in 
functionally graded pressure vessels. A study close to this work was also printed by Horgan 
and Chan [8]. Obata and Noda [9] submitted the studies of constant thermal stresses in order 
to understand the design of the functional graded thick-walled spheres and cylinders and the 
effects of the stresses. Tutuncu and Temel [10] functional-grade hollow cylinders have solved 
the displacements and stresses of the disc and spheres using an analytical method. Differential 
equations and systems obtained in the analysis of stress distributions are not easy to solve 
with analytical methods. In most cases, this is impossible. Therefore, numerical methods are 
applied in case of large equation systems, non-linearity and complex geometry. Therefore, it is 
a good option to select a numerical method to determine the stress distributions of FGM 
cylinders and spheres. 
 
Loy et al. [11] and Pradhan et al. [12] includes the dynamic response of heterogeneous 
cylinders to the vibration of FGM cylindrical projectiles using the Rayleigh-Ritz method. 
Bayat et al. [13] presented a flexible solution for the analysis of rotating discs classified as 
functional in variable thickness by considering the material properties and the disc thickness 
profile as two power law distributions. Xiang et al. [14] presented two recursive algorithms to 
determine extrusion stresses between two adjacent layers in a multilayer cylinder exposed to 
internal and external pressure. The effects of transient waves in the FGM cylinder on stresses 
and displacements using the hybrid numerical method were investigated by Han et al. [15]. 
Assuming that FGM thick hollow cylinders are made from many bottom rollers, the finite 
element vibration analysis is handled by Shakeri et al. [16]. Ng et al. [17] examined the 
stabilization of FGM cylindrical projectiles under axial harmonic loading. 
 
The main idea behind the modelling of FGM structural elements is to create subdivisions of 
material that are homogeneous in themselves with different properties as is the case with 
graded behavior. Although some analytical solutions (see, e.g., Keles [18])for this type of the 
problem is available in the literature, they either are restricted to one inhomogeneity 
parameter for all material properties that is not the case in real or contain complex solutions 
such that usually it is necessary to solve for each parameter separately, which is not practical 
for parametric analysis. From a parametric analysis point of view, for this type of problems 
numerical solution is becoming essential. In this study, we present the application of modified 
Durbin’s method (MDM) as a numerical method for stress and displacement solutions of 
FGM cylinders of variable thickness. As a material feature, the change in thickness of the 
modulus of elasticity(E(r) = E0 rβ) is defined. The results were compared with FEM compared 
with the results. The non-homogeneous β values were used to indicate the distribution over 
the stress. The inhomogeneity constant β used in the study does not represent a specific 
material. Forced vibration analysis of structures under the influence of dynamic internal 
pressure changes over time through the residue theorem of Cauchy, one of the analytical 
solutions, is valid only for simple internal pressure loads. In this context, in order to test the 
accuracy of the numerical method, Keles [18] compared the solution with the literature. It is 
inevitable to use numerical transformation methods to determine displacement and stress 
distributions of structures under point, point, continuous and repulsive internal pressure. 
Durbin's numerical inverse Laplace transform method was chosen in this study. It is seen that 
this method has been applied successfully in vibration analysis for different structural 
elements in the literature (see for example, [19]). Laplace transformation of such loads will 
not be possible, especially if the internal pressure is given in point or point form. It has been 
found in the literature(see for example, [20, 21]) that vibration analysis is successfully applied 
with different methods and assumptions for the load types that are possible for Laplace 
transformation. In this case, Durbin's method will provide a fast and effective result. MDM is 
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an efficient solution procedure whose theoretical background is available in the literature [22, 
23]. The method is also successfully applied in other structural mechanics problems such as 
those involving spherical shells [24], Timoshenko beam [25] and cylinders [26]. Dynamic 
behavior of cylindrical structures of different values of inhomogeneity parameter is presented. 
The numerical method described can be conveniently applied to FGM cylinders, discs and 
spherical structural members. A comparison was made with FEM (ANSYS) to determine the 
accuracy and effectiveness of the numerical method.  
 
 
2. Basic Equation 

The stress and displacement distribution in a thick-walled hollow cylinder will be considered 
as the inner radius a and the outer radius ka where k is a constant.  The elasticity modules 
and density vary throughout the thickness as 𝐸(𝑟) = 𝐸&𝑟' and𝜌(𝑟) = 𝜌&𝑟', respectively. 
The subscripted terms in Table 1 that is ()i and ()o are the material properties of FGM thick-
walled hollow cylinder. 
 

Table 1. Material properties of the FGM thick-walled hollow cylinder. 
 E0 (GPa) 206   ρ0 (g/cm3) 7.85 

E(r)=E0 rβ 
(GPa) 

β r(m) ()i =1 ()o =2 

 ρ(r)= ρ0 rβ 
 (g/cm3) 

β r(m) ()i =1 ()o =2 
-5  206 6.437 -5  7.85 0.2453 
-2  206 51.5 -2  7.85 1.9625 
0  206 206 0  7.85 7.85 
2  206 824 2  7.85 31.4 
5  206 6592 5  7.85 251.2 

 
 

2.1. Basic Formulation of FGM Cylinders 

Strain-displacement and basic equations considering the assumption of plane strain are [7]  
 
 𝜀* =

+,
+*
,   𝜀. =

,
*
, (1) 

𝜎* = 𝐶11(𝑟)𝜀* + 𝐶13(𝑟)𝜀., 

𝜎. = 𝐶13(𝑟)𝜀* + 𝐶11(𝑟)𝜀., 

      
(2) 

 
where, with 𝜈& the Poisson’s ratio, 

 
        𝐶11(𝑟) = ( 56(1786)

(1986)(17386)
)𝑟'  

and 
        𝐶13(𝑟) = ( 5686

(1986)(17386)
)𝑟'.  

 
The only nontrivial equilibrium equation under assumptions can be inscribed in the following 
form [5], 
 

           :;<
:*
+ ;<7;=

*
= 𝜌&𝑟'

:>,
:?>

 (3) 
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Using Eqs. (1) - (3), basic equation of radial displacement becomes 
 

     
 *>:>,

:*>
+ 𝑟 :,

:*
𝑚1 + 𝑚3𝑢 =

*>

B>
:>,
:?>

  (4) 
 

where 𝑐3 =
( D6(EFG6)
(EHG6)(EF>G6)

)

I6
,𝑚1 = 𝛽 + 1,𝑚3 =

86'
(1786)

− 1 
 

with boundary conditions in radial directions  
 

    𝜎* *MN = −𝑃	and   𝜎* *MQN = 0         (5) 
 
 
Converting the dimensionless variables 
 

 
𝑣 = ,

N
, 𝑥 = *

N
, 𝜏 = B?

N
 (6)

  
reduces Eq. (4) in the form 
 

 
:>8
:V>

+ WE
V
+8
+V
+ W>

V>
𝑣 = :>8

:X>
  (7)

 
 

 
and boundary conditions are as follows 
 

 
𝜎* VM1 = −𝑃(𝜏)					𝜎* VMQ = 0 (8) 

   
with the primary conditions 
 

𝑣 = 0 and :8
:X
= 0	when 𝜏 = 0 for  1 ≤ 𝑥 ≤ 𝑘        (9) 

 
The general equation of displacement in Laplace space takes the following form: 
  

    𝑣(𝑥, 𝑝) = £ [v(x,τ)]= 𝑣(𝑥, 𝜏)𝑒7]X^
& 𝑑𝜏      (10)                

 
where p is the Laplace parameter. Eq. (7) is converted to Laplace space by applying initial 
conditions to obtain the following equation:  
 

 
+>8
+V>

+ WE
V
+8
+V
+ (W>

V>
− 𝑝3)𝑣 = 0

  
(11) 

 
The final form of boundary conditions in Laplace space will take the form 
 

 
𝜎* VM1 = −𝑃(𝑝)𝜎* VMQ = 0

  
(12)

  
Solution of Eq. (11) Bessel function expression 
 

 𝑣(𝑥, 𝑝) = 𝑥`(𝐶1𝐼b(𝑝𝑥) + 𝐶3𝐾b(𝑝𝑥))
  

(13) 
 
where In and Kn are Bessel functions of first and second kind, respectively, of order n with	 
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𝜙 = −'
3
, 𝑛 = 1 − 86'

1786
+ '>

f
,  

 
The final solution of the final solution using the iteration formulas (e.g. see reference [27])  
in Laplace space by obtaining C1 and C2 by applying the general equation obtained without 
dimension using boundary conditions is as follows;  
 

 𝑣(𝑥, 𝑝) = −g(])
hEE

𝑥` i(])
j(])

 (14) 
where  
 
𝐹 𝑝 = 𝐾b 𝑝𝑘 𝑆1 + 𝑝𝑘𝐾b71 𝑝𝑘 𝐼b 𝑝𝑥 − 𝐼b 𝑝𝑘 𝑆1 − 𝑝𝑘𝐼b71 𝑝𝑘 𝐾b 𝑝𝑥    (15) 

 
and 
 

𝐺(𝑝) = 𝐾b(𝑝𝑘)𝑆1 + 𝑝𝑘𝐾b71(𝑝𝑘) 𝐼b(𝑝)𝑆1 − 𝑝𝐼b71(𝑝) 	
 − 𝐾b(𝑝)𝑆1 + 𝑝𝐾b71(𝑝) 𝐼b(𝑝𝑘)𝑆1 − 𝑝𝑘𝐼b71(𝑝𝑘)  (16) 

 
where 𝑆1 = (𝑛 −𝑚 − 𝜙) and 𝑚 = hE>(*)

hEE(<)
 

 
For displacement distribution in the FGM cylinder subject to internal pressure, Eq. 14 in 
Laplace space must be converted to real time space. 
 
 
3. Numerical Inversion of Solution by the Modified Durbin’s Method (MDM) 

The numerical solution of forced vibration analysis for the FGM cylinder was obtained for a 
set value of the Laplace parameter. For the conversion of results to time space, the modified 
Durbin method is used. The inverse Laplace transformation method that provides the 
conversion of Durbin to time space is expressed as [18, 28]: 

 
The meaning 𝑓(𝑡) at time 𝑡p is assumed by 

 

 𝑓(𝑡p) ≅
35V][Nps?]

u

− 1
3
𝑅𝑒 𝐹

_
(𝑎)

+𝑅𝑒 (𝐹(𝑝Q)𝐿Q)𝐸𝑥𝑝[𝑖(
3{
|
)𝑗𝑘]|71

QM&
, (j=0,1,2,… N-1) (17) 

 
where 𝐹 𝑝Q  is the Laplace transform of 𝑓(𝑡). The kth Laplace parameter is demarcated as  
𝑝Q = 𝑎 + 𝑖𝑘 3{

u
.  The number N is𝑁 = u

s?
 where T is the solution recess and Δt is the time 

raise. The choice of constant ‘a’ is done by transmission a value to 𝑎𝑇. It is proposed that the 
value of 𝑎𝑇 be in the range 5 to 10. For the mathematical samples offered in this paper this 
value is taken as 6. Finally, the results are adapted by multiplying each term in the precis by 
Lanczos factor Lk as recommended in (e.g. see reference [29]). 
 

 𝐿Q =
��b(��� )

(��� )
, (L0=1) (18) 
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If the Laplace transform of the function 𝑓(𝑡) is not given in closed-form as in the case of 
point-by-point definition, the discrete values need first to be transformed into the Laplace 
domain as follows: 

 𝐹(𝑝Q) = ∆𝑡 𝑓(𝑡b)𝑒7N?�|71
bM& 𝑒7�

>���
�  (19) 

 
For various pressures only the term 𝑃(𝑝) is altered in the solution certain by Eq. (14).  
 
 
 
4. Implementation Disc and Spherical Structures 

The expressions given the preceding sections can readily be used for solutions of FGM 
annular disks in plane stress with the material constants in Eq. (2) redefined as 
 

 𝐶11(𝑟) =
56

1986>
𝑟',     𝐶13(𝑟) =

5686
1986>

𝑟' (20) 
 
As for FGM spheres structure; 𝑢 is  
 

 𝜀* =
:,
:*

 and 𝜀. = 𝜀� =
,
*
 (21) 

 
Expressions between stress-strain are 
 

𝜎* = 𝐶11𝜀* + 𝐶13𝜀. + 𝐶13𝜀� = 𝐶11(𝑟)𝜀* + 2𝐶13(𝑟)𝜀.	
      𝜎. = 𝜎� = 𝐶13𝜀* + 𝐶11𝜀. + 𝐶13𝜀� = 𝐶13(𝑟)𝜀* + (𝐶13(𝑟) + 𝐶11(𝑟))𝜀. (22) 

 
The radial displacement solution given for the FGM cylinder is still legal with the next 
constraints now redefined as 

 

 𝜙 = −(19'
3
), 𝑛 = 𝜙3 − 2( 86'

1786
− 1), 𝑚 = hE>(*)

hEE(*)
, 𝑆1 = (𝑛 − 2𝑚 − 𝜙) (23)                        

 
 
5. Results 

Figures (1,6) show comparison of the methods and evolution of circumferential stress 𝜎.and 
radial displacement v for 			𝜈 = 0.3, 𝑘 = 2.0  and 𝛽 = −5.0, −2.0,0.0,2.0,5.0    The 
boundary conditions for stresses are assumed as 𝜎* VM1 = −𝑃(𝑝), 𝜎* VMQ = 0. In accordance 
with the material and geometric properties used in the numerical method model, commercial 
(ANSYS) finite element code was compared and generated [29]. Due to the symmetry in the 
cylinder, four of the four geometries formed in the finite element model are considered. In the 
finite element model, an 8-axis axial symmetric rectangular element is used. For the modeling 
of the cylindrical structures FGM, each layer was applied with 20 layers having a fixed 
material property value.  
 
Results obtained by Keles [18] are used for validation purposes, analytical. The comparing 
will be illustrated in the Tables 2-3. It can be observed form Tables, the results are in good 
agreement with the same results from Keles [18] It is proven that upon a screening results 
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given in Tables 2-3, a substantial amount of accuracy and efficiency is achieved using the 
MDM method. 
 

Table 2. Comparison of MDM results with Keles [18] for the radial displacements with 
different dynamic loads applied to the inner surface of the cylinder. (β = 0.0, 0.1=ω ,γ=1.0, 

k=2.0) 
𝜏 𝑃1(𝜏) = 𝑃&(1 − 𝐶𝑜𝑠(𝜔𝜏)) 𝑃3(𝜏) = 𝑃& 𝑃�(𝜏) = 𝑃&(1 − 𝑒7�X) 

v C11 / P0 v C11 / P0 v C11 / P0 
 Keles [18] MDM Keles [18] MDM Keles [18] MDM 

0 0 0,000003 0 0,00001 0 0,000001 
5 6,54644 6,54643 4,88701 4,88700 4,17045 4,17043 

10 -2,11269 -2,11267 0,07458 0,07456 0,83551 0,83550 
15 5,33630 5,33629 4,78081 4,78079 4,26004 4,26002 
20 -0,66194 -0,66191 0,23675 0,23674 0,76713 0,76710 
25 7,32722 7,32720 4,62315 4,62313 4,30325 4,30323 
30 -0,91986 -0,91984 0,42225 0,42224 0,73963 0,73960 
35 5,09853 5,09851 4,49282 4,49280 4,3124 4,31239 
40 -1,80397 -1,80396 0,55301 0,55300 0,73936 0,73934 
45 6,66612 6,66610 4,44839 4,44837 4,30764 4,30762 
50 0,16580 0,16579 0,58978 0,58976 0,74312 0,74310 

 
 

Table 3. Comparison of MDM results with Keles [18] for the hoop stresses with different 
dynamic loads applied to the inner surface of the cylinder. (β = 0.0, 0.1=ω ,γ=1.0, k=2.0) 

𝜏 𝑃1(𝜏) = 𝑃&(1 − 𝐶𝑜𝑠(𝜔𝜏)) 𝑃3(𝜏) = 𝑃& 𝑃�(𝜏) = 𝑃&(1 − 𝑒7�X) 
σθ / P0 σθ / P0 σθ / P0 

 Keles [18] MDM Keles [18] MDM Keles [18] MDM 
0 0 0,000003 -0,41145 -0,41142 0,00002 0,00001 
5 5,09078 5,09076 3,60494 3,60491 3,01761 3,01760 

10 -2,51242 -2,51241 -0,35857 -0,35855 0,26815 0,26812 
15 3,655910 3,655909 3,51747 3,51743 3,08857 3,08855 
20 -0,79378 -0,79373 -0,22501 -0,22500 0,21180 0,21179 
25 6,03100 6,03099 3,38763 3,38761 3,12415 3,12413 
30 -1,11281 -1,11280 -0,07223 -0,07220 0,18916 0,18914 
35 3,39960 3,39959 3,28029 3,28028 3,13169 3,13166 
40 -2,18586 -2,18582 0,03545 0,03543 0,18894 0,18893 
45 5,29085 5,29083 3,24369 3,24367 3,12777 3,12776 
50 0,12184 0,12182 0,06574 0,06572 0,19204 0,19202 
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Fig. 1. Dynamic loads: (a) rectangular impulsive load, (b) triangular impulsive load, (c) half 

sinus impulsive load (d) impulsive load given discretely 
 

In this study, results are offered for many impulsive deployed loads. Four cases of impulsive 
loadings (rectangular impulsive load, triangular impulsive load, half sinus impulsive load, 
impulsive load given discretely step) are considered (see Fig. 1). Figs. 2 and 3 show the 
effect of rectangular impulsive load on the radial displacements and circumferential stress of 
the suggested method and FEM. In Figs. 2 and 3, displacement decreases with increasing 
inhomogeneity parameter. Second, the triangular impulsive load is considered. Figs. 4 and 5 
include displacements in the problem solved by the numerical method used and ANSYS 
software. As 𝛽 increases, a decrease occurs in the value of circumferential stress in Figs. 4-5. 
When the numerical results of radial displacements and tangential stresses are compared with 
the results obtained with MDM and FEM, it is seen that the results are almost identical. Third, 
the half sinus impulsive load is considered. A collation of damping of radial displacement and 
stress are obtainable in Figs. 6-7. If the inhomogeneity constant is positive, it expresses the 
increase of hardness by providing stress protective effect in the radial direction. Finally, the 
impulsive load given discretely is considered. The radial displacements and circumferential 
stress of FG cylinder for inhomogeneity constant (𝛽 = −5.0, −2.0,0.0,2.0,5.0) are presented 
in Figs. 8-9. It is clearly obvious that the radial displacements and circumferential stress for 
all approaches are identical (Figs. 8–9). It is seen that the results of Durbin's method solutions 
are overlapping with the model created using a commercial finite element code, FEM [30]. 
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10
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v 
C

11
 / 

P 0

τ  
Fig. 2. Radial displacement versus time for rectangular impulsive load 
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Fig. 3. Hoop stress versus time for rectangular impulsive load 
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Fig. 4. Radial displacement versus time for triangular impulsive load 
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Fig. 5. Hoop stress versus time for triangular impulsive load 
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Fig. 6. Radial displacement versus time for half sinus impulsive load 
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Fig. 7. Hoop stress versus time for half sinus impulsive load 
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Fig. 8. Radial displacement versus time for impulsive load given discretely 
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Fig. 9. Hoop stress versus time for impulsive load given discretely 

 
6. Conclusion  

Numerical model of FGM cylinders for stresses and displacement are obtained and solved by 
Durbin's method. The efficacy and adequacy of the present method is first compared to 
analytical results presented for constant Elastic Modulus and Poisson Ratio. The solution 
procedure can be applied to any continuous grading function option. The solution technique 
and procedure are simple, efficient and well structured, in addition to providing low cost 
accuracy. We have seen that FGM thick-walled cylindrical engineering structures with 
exponential variable properties have a significant effect on mechanical behavior. In particular, 
the positive inhomogeneity constant has a major effect on the stress distribution. Although the 
inhomogeneity parameter is a useful parameter in design, it can be applied for special 
applications in order to control stress distributions and displacement 
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