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Abstract
In this paper we provide new examples of Banach ∗-subalgebras of the matrix algebra
Mn(A ) over a commutative unital C∗-algebra A . For any involutive algebra, we define
two involutions on the triangular matrix extensions. We prove that the triangular matrix
algebras over any commutative unital C∗-algebra are Banach ∗-algebras and that the
primitive ideals of these algebras and some of their Banach ∗-subalgebras are all maximal.
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Involutive rings and linear algebras have been investigated after von Neumanns recog-
nition of the importance of the canonical adjoint of the algebra of bounded operators on
spaces in the study of what are now called von Neumann algebras. For instance, I.N.
Herstein and Susan Montgomery studied the algebraic structures of rings with involutions
resulting in nice results. Also, such rings have been investigated in the context of appli-
cations to Lie algebras, Jordan algebras, Banach ∗-algebras, and von Neumann algebras.

Let n be an integer with n ≥ 2. For any unital algebra A , let Mn(A ) denote the algebra
of n × n matrices over A and let Tn(A ) denote the algebra of n × n upper triangular
matrices over A . Let Vn =

∑n−1
i=1 Ei,i+1, where Eij , 1 ≤ i, j ≤ n, is the matrix with 1 in

the (i, j)-position and 0 elsewhere. Following Lee and Zhou [4], we define

An(A ) = A In +
[ n

2 ]∑
ℓ=2

A V ℓ−1
n +

[ n+1
2 ]∑

i=1

n∑
j=[ n

2 ]+i

A Ei,j ,

and

Bn(A ) = A In +
[ n

2 ]∑
ℓ=3

A V ℓ−2
n +

[ n+1
2 ]+1∑
i=1

n∑
j=[ n

2 ]+i−1
A Ei,j ,

where [x] is called the integer part of x, x ∈ R.
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The algebra Sn(A ) is defined as a subalgebra of Tn(A ) by

Sn(A ) = A In +
∑
i<j

A Ei,j .

Also, the algebra Vn(A ) is defined as a subalgebra of Sn(A ) by

Vn(A ) = A In +
n∑

ℓ=2
A V ℓ−1

n .

Furthermore, we introduce

Un(A ) = A In +
[ n−1

2 ]∑
i=1

n∑
j=[ n

2 ]+1
A Ei,j +

n∑
j=[ n−1

2 ]+2

A E[ n−1
2 ]+1,j .

We define two involutions > and ⋆ on the triangular matrix algebra over any unital
∗-algebra. Suppose that A is a unital algebra with an involution ∗, and for each n ≥ 2
consider the algebra Mn(A ). Let ∗ denote the ∗-transpose involution on Mn(A ). Put
E =

∑
i+j=n+1 Eij . We define an involution > on Mn(A ) by A> = EA∗E, for A =

(aij) ∈ Mn(A ). It is easy to check that A> = (a∗
ℓk), where ℓ = n− j +1 and k = n− i+1.

We show that the subalgebra Un(A ) is closed under the involution >. We prove the
case when n = 2m is an even number. The case of odd numbers can be shown similarly.
Let A = aI2m +

∑m−1
i=1

∑2m
j=m+1 ai,jEi,j +

∑2m
j=m+1 am,jEm,j ∈ U2m(A ). Then

A> = a∗I2m +
m−1∑
i=1

2m∑
j=m+1

a∗
2m−j+1,2m−i+1E2m−j+1,2m−i+1

+
2m∑

j=m+1
a∗

2m−j+1,m+1E2m−j+1,m+1.

Set i′ = 2m − j + 1 and j′ = 2m − i + 1. Then

A> = a∗I2m +
m∑

i′=1

2m∑
j′=m+2

a∗
i′,j′Ei′,j′ +

m∑
i′=1

a∗
i′,m+1Ei′,m+1

= a∗I2m +
m−1∑
i′=1

2m∑
j′=m+2

a∗
i′,j′Ei′,j′ +

2m∑
j′=m+2

a∗
m,j′Em,j′ +

m∑
i′=1

a∗
i′,m+1Ei′,m+1

= a∗I2m +
m−1∑
i′=1

2m∑
j′=m+2

a∗
i′,j′Ei′,j′ +

2m∑
j′=m+2

a∗
m,j′Em,j′ +

m−1∑
i′=1

a∗
i′,m+1Ei′,m+1

+ a∗
m,m+1Em,m+1

= a∗I2m +
m−1∑
i′=1

2m∑
j′=m+1

a∗
i′,j′Ei′,j′ +

2m∑
j′=m+2

a∗
m,j′Em,j′ ∈ U2m(A ).

By inspection, we see that the subalgebras Tn(A ), Sn(A ), An(A ), Bn(A ), and Vn(A )
of Mn(A ) are also self-adjoint with respect to the involution >. Thus these are also
∗-algebras.

Now, we define the second involution. Suppose that A is a unital algebra with an
involution ∗, and for each n = 2m with m ∈ N consider the following matrix:

D =
m∑

i=1
Eii −

n∑
i=m+1

Eii =
(

Im 0
0 −Im

)
∈ Mn(A ).
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We define an involution ⋆ on Mn(A ) by A⋆ = DA>D, for each A ∈ Tn(A ). It is easy
to see that Tn(A ), Sn(A ), and Un(A ) are self-adjoint with respect to the involution ⋆.
Thus these are also ∗-algebras.

Definition 1 ([5]). Let A be an algebra over C. Then A is called a normed algebra if
there is a norm ∥ · ∥ on A satisfying the following condition:

(i) ∥xy∥ ≤ ∥x∥∥y∥, for all x, y ∈ A .

A normed algebra A is called a Banach algebra if it is complete in the norm. If, in
addition, A has a unit 1 such that ∥1∥ = 1, it is called a unital Banach algebra. If a
normed algebra A admits an involution ∗ with the following properties:

(ii) (αx)∗ = αx∗,
(iii) ∥x∗∥ = ∥x∥,

for every x ∈ A and every α ∈ C, then A is called a normed ∗-algebra. A Banach
∗-algebra (or involutive normed algebra) is a complete normed ∗-algebra.

A C*-norm on a complex ∗-algebra A is a norm ∥ · ∥ satisfying Condition (i) and

(iv) ∥x∗x∥ = ∥x∥2, for all x ∈ A .

A complex ∗-algebra equipped with a C*-norm is called a pre-C*-algebra. If A is a pre-
C*-algebra which is complete in the norm then it is called a C*-algebra.

Remark 2. The matrix algebra Mn(C) is a C*-algebra with the conjugate transpose
involution ∗ and the operator norm defined by

∥T∥ = sup
{∥TX∥

∥X∥
| 0 ̸= X ∈ Cn

}
, T ∈ Mn(C).

Note that the norm of a column matrix X in the above definition is the usual Euclidean
norm induced by the standard inner product of Cn. It is a standard fact from linear
algebra that ∥T∥ =

√
λmax(TT ∗), where T ∈ Mn(C), ∗ is the transpose involution of

Mn(C), and λmax(TT ∗) is the greatest eigenvalue of TT ∗.

Lemma 3. The normed ∗-algebra Tn(C) with involution > is a Banach ∗-algebra.

Proof. Equip Tn(C) with the operator norm of Mn(C). Since Mn(C) with the operator
norm is a Banach algebra (and hence so is Tn(C)), to show that Tn(C) is a Banach ∗-
algebra it is enough to prove the condition (iii) in Definition 1, that is, ∥A∥ = ∥A>∥, for
each A ∈ Tn(C). First note that, it suffices to show that ∥A∥ = ∥A>∥ for each invertible
matrix A ∈ Tn(C). To see this, let A ∈ Tn(C) and set An = A + 1

nIn, n ∈ N. Thus
A>

n = A> + 1
nIn. Since A has only finitely many eigenvalues, there exists an integer N

such that for each n ≥ N , An is invertible. Now An → A and A>
n → A> in the operator

norm and so ∥An∥ → ∥A∥ and ∥A>
n ∥ → ∥A>∥. Therefore, the equalities ∥An∥ = ∥A>

n ∥,
n ≥ N , imply that ∥A∥ = ∥A>∥.

Now suppose that A = (aij) ∈ Tn(C) is an invertible upper triangular matrix. Then
aii ̸= 0, for 1 ≤ i ≤ n, A∗ = (aji), A> = (an−j+1,n−i+1), and (A>)∗ = (an−i+1,n−j+1). Let
C = AA∗ = (ci,j) and D = A>(A>)∗ = (di,j). Thus,

ci,j =
n∑

k=1
ai,kaj,k, di,j =

n∑
k=1

an−k+1,n−i+1an−k+1,n−j+1.
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We shall show that λmax(C) = λmax(D). For this, we show that C and D are similar
matrices. Set

P =


a1,n a1,n−1 · · · a1,2 a1,1
a2,n a2,n−1 · · · a2,2 0

...
... ... ...

...
an−1,n an−1,n−1 · · · 0 0
an,n 0 · · · 0 0

 ,

and let PD = (xi,j) and CP = (yi,j). Then

xi,j =
n∑

k=1

n∑
ℓ=1

ai,n−k+1an−ℓ+1,n−k+1an−ℓ+1,n−j+1,

yi,j =
n∑

k=1

n∑
ℓ=1

ak,n−j+1ak,ℓai,ℓ.

Now we have PD = CP . In fact, write k′ = n − ℓ + 1 and ℓ′ = n − k + 1. Then we have

xi,j =
n∑

k=1

n∑
ℓ=1

ai,n−k+1an−ℓ+1,n−k+1an−ℓ+1,n−j+1 =
n∑

k′=1

n∑
ℓ′=1

ak′,n−j+1ak′,ℓ′ai,ℓ′ = yi,j .

The matrix P is invertible since we have
det(P ) = (−1)n+1a1,1(−1)na2,2 · · · (−1)3an−1,n−1(−1)2an,n

= a1,1a2,2 · · · an,n(−1)
n(n+3)

2

= (−1)
n(n+3)

2 det(A ).

Hence D = P −1CP which implies that D and C have the same eigenvalues. Therefore,
∥A∥ =

√
λmax(C) =

√
λmax(D) = ∥A>∥. �

We want to replace C in Lemma 3 with a commutative C*-algebra. This gives a source
of interesting examples. For this we need some preparation. Let A be a C*-algebra and
let n ≥ 2. Consider the ∗-algebra Tn(A ) of upper triangular matrices with entries in
A and the involution >. Equip Tn(A ) with the norm of the C*-algebra Mn(A ) (see
[5, Section 3.4] and [7, Chapter 1] for the definition of this norm).

Theorem 4. Let A be a commutative C∗-algebra and let Tn(A ) be the normed ∗-algebra
defined above. Then Tn(A ) is a Banach ∗-algebra.

Proof. Let A be a commutative C*-algebra. Then there is a locally compact Hausdorff
space X such that A ∼= C0(X) [5]. Thus we may assume that A = C0(X). Let S = (aij) ∈
Tn(C0(X)). The map φ : Mn(C0(X)) → C0(X, Mn(C)) defined by φ((fij))(x) = (fij(x)),
for (fij) ∈ Mn(C0(X)) and x ∈ X, is a ∗-isomorphism of C*-algebras (see e.g., [7]). For
each x ∈ X set S(x) = φ(S)(x) = (aij(x)) ∈ Mn(C). By Lemma 3, ∥S(x)>∥ = ∥S(x)∥,
x ∈ X. Thus we have

∥S>∥ = sup
x∈X

∥S(x)>∥ = sup
x∈X

∥S(x)∥ = ∥S∥.

Therefore, Tn(A ) is a Banach ∗-algebra. �
Corollary 5. Let A be a commutative C*-algebra and let n ≥ 2. Then the ∗-algebras
Sn(A ), An(A ), Bn(A ), Un(A ), and Vn(A ) with involution > are Banach ∗-subalgebras
of Tn(A ).

Now we deal with the other involution ⋆. As in Theorem 4, we equip Tn(A ) with the
norm of the C*-algebra Mn(A ).
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Theorem 6. Let A be a commutative C∗-algebra and let n ≥ 2 be an even integer. Then
the normed ∗-algebra Tn(A ) with involution ⋆ is a Banach ∗-algebra.

Proof. As in the proof of Lemma 3, it is enough to verify Condition (iii) in Definition 1
for Tn(A ), that is, ∥S∥ = ∥S⋆∥, for each S ∈ Tn(A ). Let S ∈ Tn(A ). We consider the
matrix D in the unital algebra Mn(A ∼), where A ∼ denotes the unitization of A , i.e.,
A ∼ = A ⊕C (see [5, Section 1.2]), since A may not be unital. Note that D = D−1 = D∗

and hence D is a unitary in Mn(A ∼). Thus ∥D∥ = 1. Then we have

∥S⋆∥ = ∥DS>D∥ ≤ ∥D∥ · ∥S>∥ · ∥D∥ = ∥S>∥.

Thus ∥S⋆∥ ≤ ∥S>∥. On the other hand, by Theorem 4, ∥S>∥ = ∥S∥. Hence, ∥S⋆∥ ≤ ∥S∥.
By replacing S with S⋆ we get ∥S∥ = ∥(S⋆)⋆∥ ≤ ∥S⋆∥. Therefore, ∥S⋆∥ = ∥S∥, and so
Tn(C) is a Banach ∗-algebra. �

Corollary 7. Let A be a commutative C*-algebra and let n ≥ 2 be an even integer. Then
the ∗-algebras Sn(A ) and Un(A ) with involution ⋆ are Banach ∗-subalgebras of Tn(A ).

The following result (i.e., the existence of finite dimensional complex ∗-algebras that do
not admit any C*-norm, but at the same time they have Banach ∗-algebra structures) is
not well known in the theory of operator algebras.

Remark 8. Let A be a commutative unital C*-algebra and n ≥ 2. Then there is no
C*-norm on the finite dimensional complex ∗-algebras Tn(A ).

Proof. Assume on the contrary that there is a C*-norm on Tn(A ), say ∥ ∥. Then

∥E1,n∥2 = ∥E1,nE>
1,n∥ = 0.

So ∥E1,n∥ = 0, which is a contradiction. Thus there is no C*-norm on Tn(A ). �

Let A be an algebra with unity and H a Hilbert space. Recall from [2] that, a rep-
resentation of A in H is an algebra homomorphism π from A into the algebra L (H) of
all linear maps of H into itself. A subspace K of H is said to be (π)-invariant, if every
representing operator π(A ) maps K into itself. A representation is called irreducible if it
has some non-zero representing operators, and H is its only non-zero (π)-invariant sub-
space. Recall from [6] that, an ideal P of A is called primitive if it is the kernel of some
irreducible representation of A , or equivalently, P = (M : A ) = {a ∈ A | aA ⊆ M}, for
some maximal left ideal M of A .

Theorem 9. Let A be an algebra with unity and n ∈ N. Then every primitive ideal of
Tn(A ) is of the form P0Ek,k +

∑
k ̸=i≤j A Ei,j, where P0 is a primitive ideal of A and

1 ≤ k ≤ n. Also, every primitive ideal of the rings Sn(A ), An(A ), Bn(A ), Sn(A ), and
Vn(A ) has a component P0In, where P0 is a primitive ideal of A (e.g., every primitive
ideal of Sn(A ) is of the form P0In +

∑
i<j A Ei,j).

Proof. Let P be a primitive ideal of Tn(A ). Then P = (M : Tn(A )) for some maximal
left ideal M of Tn(A ). Let N be the set of all elements of Tn(A ) with zero main diagonal.
Clearly, N is a nilpotent ideal of Tn(A ) and so N ⊆ J(Tn(A )) ⊆ M , where J(Tn(A ))
is the Jacobson radical of Tn(A ). Also one can see that

φ : Tn(A )/N → A ⊕ A ⊕ · · · ⊕ A , given by φ
(
(ai,j) + N

)
= (a1,1, a2,2, . . . , an,n),

is an isomorphism. Since M is a maximal left ideal of Tn(A ), M/N is a maximal left
ideal of Tn(A )/N , then φ(M/N) is a maximal left ideal of A ⊕ A ⊕ · · · ⊕ A . Therefore,
M = M0Ek,k +

∑
k ̸=i≤j A Ei,j , for some 1 ≤ k ≤ n and some maximal left ideal M0 of A .

So P = (M : Tn(A )) = (M0 : A )Ek,k +
∑

k ̸=i≤j A Ei,j . Thus P0 = (M0 : A ) is a primitive
ideal of A and P = P0Ek,k +

∑
k ̸=i≤j A Ei,j . The other cases can be shown similarly. �
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Let A be a commutative unital C*-algebra and I be an ideal of A . Then by [5,
Theorem 5.4.4], I is primitive if and only if it is maximal. As a consequence of this result,
we obtain the following.

Corollary 10. Let A be a commutative unital C*-algebra and let n ∈ N. Then the
primitive ideals of the Banach ∗-algebra Tn(A ) (resp., Sn(A ), An(A ), Bn(A ), Un(A ),
or Vn(A )) are all maximal.

Let X be a topological space and let x and y be points in X. Then x and y can be
separated if each lies in a neighborhood which does not contain the other point. X is a
T1-space if any two distinct points in X are separated, or equivalently, every singleton set
of X is closed.

The hull-kernel topology on the space of primitive ideals of a noncommutative algebra
was first systematically studied by Nathan Jacobson [3]. Let A be an algebra with unity
and I be a subset of A . Let hull(I) denote the set of primitive ideals of A containing
I. If J is a non-empty set of primitive ideals of A , we denote by ker(J) the intersection
of the ideals in J . We set ker(∅) = A . The closure of a set J of primitive ideals is
J = hull(ker(J)). It is well-down that the topological space of primitive ideals of A is
T1-space if and only if all primitive ideals of A are maximal.

Corollary 11. Let A be a unital commutative C*-algebra. Then the primitive ideal space
of the Banach ∗-algebra Tn(A ) (resp., Sn(A ), An(A ), Bn(A ), Un(A ), or Vn(A )) is a
T1-space.

Acknowledgment. This research was done when the first author was a PhD student
at Tarbiat Modares University. The research of the first author was partially supported
by a grant (No. 96000090) from Iran National Science Foundation (INSF).

References
[1] O.M. Di Vincenzo, P. Koshlukov and R. La Scala, Involutions for upper triangular

matrix algebras, Adv. in Appl. Math. 37, 541–568, 2006.
[2] J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977.
[3] N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc, Nat,

Acad, Sci. U.S.A. 31, 333–338, 1945.
[4] T.K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (6), 2287–

2299, 2004.
[5] G.J. Murphy, C*-Algebras and Operator Theory Academic Press, 1990.
[6] T.W. Palmer, Banach Algebras and the General Theory of ∗-Algebras Volume I Al-

gebras and Banach Algebras, Encyclopedia of Mathematics and its Applications, Vol.
1, 1994.

[7] V. Paulsen, Completely Bounded Maps and Operator Algebras, vol. 78, Cambridge
University Press, 2002.


