Fundamental Journal of Mathematics and Applications, 3 (2) (2020) 94-100

Research Article or Mt
% FuMA Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma
ISSN: 2645-8845
doi: 10.33401/fujma.733415

Projective Curvature Tensor on N(k)—Contact Metric Manifold
Admitting Semi-Symmetric Non-Metric Connection

Mustafa Altin

Technical Sciences Vocational School Bingol University, Bingol, Turkey

Article Info Abstract
Keywords: N(k)-contact metric mani- The object of the present paper is to classify N(x)-contact metric manifolds admitting the
folds, Projective curvature tensor, Semi- semi-symmetric non-metric connection with certain curvature conditions the projectively

symmetric non-metric connection
2010 AMS: 53C25, 53C35, 53D10
Received: 06 May 2020

Accepted: 18 August 2020

Available online: 15 December 2020

curvature tensor. We studied projective flat, & —projectively flat, ¢ —projectively flat N(k)-
contact metric manifolds admitting the semi-symmetric non-metric connection. Also,
we examine such manifolds under some local symmetry conditions related to projective
curvature tensor.

1. Introduction

An almost contact metric manifold is a (2n+ 1)—dimensional differentiable manifold with a structure (¢,&,1, ) such as

P2(W)=-Wi+n(W)EnE) =1, ¢(E)=0, n(@(W1))=0,8(p(W1),0(Ws)) = g(Wi,W2) — n((W1))n((W2)) (1.1)

for any vector fields Wi, W, € y (M), where g is Riemannian metric, ¢ is a (1, 1)—tensor field, & is a vector field and ) is a 1—
form on M [1]. Blair, et al. [2] introduced the (x, it )-nullity distribution of an almost contact metric manifold M that is defined
by

N(i,pt) : p — Np(x, 1)
Ny(x, 1) = {Ws € D(T,M) : ROWy,Wa)Ws = (kI + ph) [g(Wa, W3)W; — (Wi, W3)Wh] }

for all Wi, W, € T'(TM), where k and p are real constants and p € M. If & € N(k, 1), then M is called (k, i) —contact metric
manifold. If 4 = 0, the (k, 1 )-nullity distribution reduces to k-nullity distribution.

The idea of x-nullity distribution on a contact metric manifold was firstly presented by Tanno in 1988 [3]. x-nullity distribution
of an almost contact metric manifold (M, ¢,&,1n,g) is a distribution defined as

N(K): p — Np(k) = {Ws € T(T,M) : R(W),Wo)Ws5 = K [g(Wa, W3)W; — g(Wy,W3)Wh]}

for any Wi, W € I'(T,M) and x € R, where R is the Riemannian curvature tensor of M. If & belongs to k—nullity distribution
then M is called N(x)—contact metric manifold. Thus on a N(k) contact metric manifold, we have

R(W1,W2)¢ = k[n(W)Wi — (W)W
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A N(x)-contact metric manifold is Sasakian if and only if k = 1. Also, if k = 0, then the manifold is locally isometric to the
product E"1(0) x §"(4) for n > 1 and flat for n = 1 [4]. The Riemannian geometry of N(k)—contact metric manifolds is
studied in [2], [5]-[9]. Levi-Civita connection V is a torsion free, i.e has zero torsion, and a metric connection, i.e Vg = 0.
There are some kinds of linear connections except for Levi-Civita connection which is not need to be torsion free or metric.
One of them is semi-symmetric non-metric connection [10]. Manifolds with semi-symmetric non-metric connection have
been studied by many researchers [11]-[15]. In the Riemannian geometry of contact manifolds curvature tensors-such as
conformal, concircular, projective curvature tensor etc.-have important applications. Some of geometric properties of structure
on manifolds have been examined by the certain conditions on these curvature tensors. Many works on contact manifolds are
stated in [16]-[23].

In this paper we study projective curvature tensor on N(k)-contact metric manifolds with semi-symmetric non metric
connection. In [24], Barman gave the curvature relations on such as manifolds. We use these properties and we examine flatness
conditions of projective curvature tensor. Specifically, we given results for &-projectively flat, pseudo-quasi-projectively
flat and ¢ —projectively flat on N(k)-contact metric manifolds with semi-symmetric non metric connection. After we

investigate ¢ —projectively semi-symmetric on N(x)-contact manifolds admitting the semi-symmetric non-metric connection,
* K * K * K *
we characterize this manifolds satisfying Q.P =0 and S.P = 0, where P, Q, Ric are projective curvature tensor, Ricci tensor,

Ricci curvature tensor, with a semi-symmetric non metric connection, respectively.
2. Preliminaries

Let (M, ¢,&,m,g) be an almost contact metric manifold. The h = % L9, L denotes the Lie derivative along vector field E.

For any W) € I'(TM), we have
Vi, & = —oWi — ohW;

An almost contact metric manifold M is called K—contact if & is Killing vector field. M is called normal contact metric
manifold if Ny +2dn ® & =0, where Ny is the Nijenhuis tensor of ¢. A normal contact metric manifold is called Sasakian.
On the other hand a contact metric manifold is Sasakian if and only if

R(W1,W2)E = [n(W2)W; — (W) W]

for all W, W, € I'(TM). On a K—contact and Sasakian manifold 2 = 0.

A N(x)-contact metric manifold is Sasakian if k¥ = 1. N(k)-contact metric manifolds are characterized the different values of
k. As we mentioned in the introduction when & = 0 then the manifold M is locally isometric to E*1)(0) x S (4). On a
N(x)-contact metric manifold M1 we have following relations (for details see [1] ):

(Viw, 9 )Wa = g(Wy +hWy, Wa)E — 1 (Wa) (W) +hWy),
(Vw, n)W2 = g(W1 +hWy, 9 W2).
The Riemannian curvature R of a N(x)—contact metric manifold has following properties:

R(Wi,W2)& = k[n(W2)W1 —n(Wi)Wa], 2.1
R(E, W)W, = k[g(W,Wa)E —n(Wa)W/] (2.2

for all Wi, W, € T'(TM). On the other hand the Ricci curvature of M is stated as [1];

Ric(Wi,W2) = 2(n — 1)g(W1,W2) +2(n— 1)g(hW1,W2) + 2(nk — (n— 1))n(W1)n (W2) (2.3)
Ric((PWl s ¢W2) = RiC(Wl s Wz) — 2)’11(‘7‘[ (W])T] (Wz) — 4(7’1 — 1)g(hW1 7Wz) 2.4)
Ric(Wy, &) = 2knn(Wy) (2.5)

and the scalar curvature is given by
r=2n(2n+x-2).

Kk
Example 2.1. E. Boeckx [25] gave a classification for non-Sasakian (k,U)—spaces. The number Iy = \/ﬁ is called by

Boeckx invariant. D.E. Blair, et al. [26] gave an example of N(k)—contact metric manifolds by using Boeckx invariant. They
constructed (2n+ 1)-dimensional N(1 — %)-conmct metric manifold, n > 1. For details see [26].

*
Let define a map Von a Riemann manifold M as

*
Vi, Wo = Vi, Wa + (W) Wy
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*
where V is Levi-Civita connection on M. This map is a linear connection. The torsion of V is given by

*

T (W1, Wa) = n(W2)W) —n (W)W,

for all W, W, € T(TM). Also we have

(Vi) (Wi, Wa) = = (Wy)g(Wa, U) — 1 (Wa)g(Wi,U) #0.

*
Thus V is not symmetric and not metric connection. This type of connection is called by semi-symmetric non-metric connection

[10].

N(x)— contact metric manifolds with a semi-symmetric non-metric connection were studied by Barman [24]. For the sake of
brevity we denote (M, 6) by a N(x)—contact metric manifolds with a semi-symmetric non-metric connection. Barman gave
the curvature of (M, %) as follow:

*

R(Wi,W2)W3 = R(W1,Wa)W3 + (W1, 9W3)Ws + g(hWi, 9W3)Wo — (W )0 (W3) W, — g(Wa, 9 W3) Wy
— g(hWo, @W3)W; +n(W3)n (W2)W). (2.6)

Thus, we have following curvature properties [24]:

*

R(S, W2)Ws = kg(W2,W3)¢ — (k + 1)n (W3)Wa — g (W2, §W3)§ — g(hW2, 9 W3)E + 1 (W3)n(W2)& 2.7)

R(E,W2)E = (i + 1) (n(Wa)E —Wa)

RW1,W2)¢ = (k+ 1) (n(Wo)W1 —n(W1)W2).

*

The Ricci curvature of a (M, V) is given by

RiC(Wz,W3) = RiC(WQ,W3) — 2ng(W2, ¢W3) — an(hWQ, ¢W’;) +2n17 (W3)T](W2) (2.8)
Thus, we have
Ric(W,, &) =2n(x+1)n (W) (2.9)
F=2n+4r

* * *
where Ric, R and r are the Ricci tensor, the Riemann curvature tensor and scalar curvature admitting the semi-symmetric
non-metric connection respectively [24].

The projective curvature tensor P admitting the semi-symmetric non-metric connection is defined by
* * 1 * *
P(Wy,Wo)W3 = R(W,W2)W5 — n <RiC(W27W3)W1 —RiC(WuWa)Wz) ) (2.10)
n

for all Wi, Wo,W3 € TM.

*
3. Flatness conditions of projective curvature tensor on (M,V)

*
In this section, we examine that a (M, V) is &-projectively flat, pseudo-quasi-projectively flat and ¢ —projectively flat.

*
Definition 3.1. A (M, V) is called

*
o &-projectively flat if we have P(Wy,W,)E = 0 for all W\,W, € T(TM),
*
e pseudo-quasi-projectively flat if we have g(P(oW1,Wr)W3,0Wy) = 0 for all Wi,Wo , W3 € T(TM),
*
o @-projectively flat if we have g(P(9Wi, 9Wa) oW, 9Wy) = 0 for all W1, W, W3 € T(TM).

*
Theorem 3.2. A (M,V) is always &-projectively flat.
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Proof. By putting W3 = & in (2.10), we obtain

POW1 Wa)E = R(W), Wh)& — (R*ic(Wz,g)Wl—R*ic(Wl,g)%).

S
Also from (2.7) and (2.9), we get

;’(Wqu)% =R(W1,W2)& — (W)W +n(Wa)W — zfln (2n(k+1)n(W2)Wy —2n(k+1)n (W1 )W2).

and take into account (2.1), we have

*

PW,Wp)E=0 (3.1
for all W, W, e T(TM). O

*
Theorem 3.3. If (M, V) is pseudo-quasi-projectively flat, then M is an Einstein manifold admitting Levi-Civita connection.

Proof. Using (2.10), we have

(P(OW1, Wa)Ws, 0W3) = R(OWy, Wa, W3, pWs) 21 [Ric(Wa, Ws)g(9W1, 0Wa) — Ric(0Wr, Ws)g(Wa, oW4)].  (3.2)

n
*

Let (M, V) be a pseudo-quasi-projectively flat. Then, by using (2.8) in (3.2) , it follows that

I*?((DW],WQ,WQ}, ¢W4) = %[(RiC(WLWﬁ — an(Wg, (PW3) — an(/’lWQ, ¢W3) + 2117] (WQ)T](W3))g(¢W1,¢W4)

— (Ric(¢Wi, W3) —2ng(¢W1, 9W3) — 2ng(ho Wy, 9W3)) g(W2, 9 Wy)]
and from (2.6) we get
1 . .

R(¢W1,W2,W3, ¢W4) = n (RZC(WQ, W3)g(¢W1,¢W4) —RlC(¢W1,W3)g(W2, ¢W4)) . 3.3)
Take a local orthonormal basis set of M as {ey,ez,...,ea, &}, then {¢pe, Pea, ..., Per,, &} is also a local orthonormal basis.
Putting W) = Wy = ¢; in (3.3) and summing over i = 1 to 2n, we get

2n 1 2n

Y R(¢ei, W, W3, 9e;) = o Y (Ric(Wa, W3)g(9ei, 9ei) — Ric(9ei, Ws)g(Wa, 9e;)) | -

i=1 i=1

From (2.2) and (2.5), we obtain
Ric(W2,W3) = 2nkg(W2,W3).

*
Theorem 3.4. Leta (M,V) be ¢-projectively flat. If & is Killing vector field, then the manifold is an Einstein manifold.
Proof. Firstly, putting W, = ¢W, and Wz = ¢W3 in (3.2), we get

(PO, OWs)OWs, 0Wa) = R(oW1 0Ws, 0Ws, 0Wa) — 5. ( Ric(oWs, 0W3)(9Wi 01) — Ric(o Wi, oWn)e(oWs, 0W) ) . G

Now, by using (2.8) in (3.4) and from definition of @-projectively flat, it follows that
* 1
R(9W1, Wa, W3, 0Ws) = 5[ (Ric(9Wa, 9W) — 2ng(§Wa, 9 Ws) — 2ng(hg W2, 6°Ws)) (9 W1, 9 Wa)
— (Ric(9W1,9Ws) — 2ng (oW1, 9°Ws) — 2ng(ho W1, 9°W3)) g(9Wa, 9 Wi )]

and from (1.1), we get

R(¢Wla¢W27¢W37¢W4) = 21 (RZC(¢W2,¢W3)g(¢W17¢W4) _Rlc(¢le¢W3)g(¢W2?¢W4)) (35)

2n
For local orthonormal basis {e;, ez, ..., e, e1, Qea, ..., per,,E} of M by putting W) = Wy = ¢; in (3.5) and summing over
i=1to2n, we get

1 2n

o Y (Ric(¢Wa, 9W3)g(dei, de;) — Ric(ei, 9W3)g(9Ws, de;))

i=1

2n
Y R(9ei, 9Wa, 0Ws, ger) =
i=1

From (2.2) and (2.5), we obtain
RiC(¢W2,¢W3) = 2an(¢W2,(PW3).
Also, from (2.4) we have
Ric(Wo,W3) =2nkg(Wo,W3) +4(n— 1)g(hW,, W3)
If € is Killing vector field then M is an Einstein manifold. O
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*
4. Symmetry conditions admitting projective curvature tensor on (M, V)

*
In this section, we study on a (M, V) under certain symmetry conditions. We firstly examine ¢ —projectively semi-symmetric
* *  x * * *
(M, V) and then we characterize this manifolds satisfying Q.P = 0 and Ric.P = 0, where Q is the Ricci operator defined by
* *
RiC(Wl,Wz) = g(QWl,Wz).

* *
Definition 4.1. A (M, V) is said to be ¢ —projectively semisymmetric if P(W;,W>)¢ = 0 for all Wy ,W, € T(M).
*
Theorem 4.2. A ¢ —projectively (M, V) is isometric to Example 2.1.

*

Proof. Suppose (M, V) be a ¢ —projectively . Then, we have
* *
P(Wi,W2)9Ws — ¢(P(W;, W2)W3) = 0. (4.1)
From (2.10), it follows that
x x 1 [ = ot
P(W1,W2) W3 = R(W;, W) W3 — o (RZC(WL PW3)W —RlC(W1,¢W3)W2> : (4.2)
Using (2.8) in (4.2), we obtain
* * 1
P(W1,W2) W3 = R(W,W>)pW; — o {Ric(Wa, 9W3)W) — 2ng(Ws, 9> W3)W; — 2ng(hWa, $*W3)W; }
1 .
+ 5, {Ric(Wi, W) Wa — 2ng (W, 0*Ws)Ws — 2ng (W1, 0*W3)Ws }
From (2.1), (2.2) and (2.6), we have

" 1. L.
P(W1,W2) W3 = kg(Wa, 9W3)W| — kg(W1, 9W3)W — %RIC(WZ, PW3)W) + ﬂRlC(W1,¢W3)W2- (4.3)

Also, by applying ¢ to 1*3, we get
O (P(Wi, Wo)W3) = 0 (R(Wy, Wa)Ws) — Z*Ind) Ric(Wa, Ws)W, — Ric(Wy, Ws)Ws |, (4.4)
and using (2.8) in (4.4) yields
O (PW1, Wa)W5) = RV, Wa)Wa) — o {Ric(Wa, Wa) — 2ng(Ws, 0W3) — 2ng (W3, 0Ws) + 20 (W2 (W3)} oWy
+ 2*1n {Ric(Wy,W3) —2ng(Wy, 9W3) — 2ng(hW1, 9 W3) + 2nn (W1)n (W3) } oW,
Thus from (2.4) and (2.6), we have
¢(1‘*’(W1,W2)W3) = kg(Wo,W3) oW, — kg(W), W3) oW, — iRic(Wz,Wg)d)Wl + iRic(Wl,Wg)¢W2. 4.5)

2n 2n
Putting (2.3), (4.3) and (4.5) in (4.1), we have

P(W;,Wa)Ws — 0 (P(W1,Wa)Ws) = Kg(Wa, 9Ws) Wi — Kg(Wi, 9Ws)Wa — 2(n2; 3 [g(W2,0W3) + g(hW2, 9W3)] W)
+ 2(n2; J [g(W1,W3) + g (AW, 9W3)| Wy — kg(Wa, W3) W1 + kg(W1, W3) oW
(4.6)
+ %[2(71— 1) (g(W2, W3) +g(hW2, W3)) +2(nk — (n— 1)n(W2) 1 (W3))|o Wy
= %[Z(H — 1)(g(W1,W3) +g(hW1,W3)) +2(nk — (n — 1)n(W1)n(W3))|¢W>
Let take inner product with Wy of (4.6) and then to contract W, and Wy, we obtain
{2;<(1 ) +2(”22”“)}g(wl,¢w3) 1 {2(n— 1)} g (Wi, 9W3) =0, @.7)



Fundamental Journal of Mathematics and Applications

99

Now, putting W3 = ¢Wj in (4.7) and from (1.1), we get
n?>—2n+1
n

{2r<<1 )2 )}g<¢w1,¢w3>+{2<n 1)} g(AW1, W3) = 0.

Taking trace in both sides of (4.8) and using trh = 0, we obtain

n—1
K= .

n

Thus M is isometric to Example 2.1.
* *  x
Theorem 4.3. Ona (M,V), we have Q.P = 0.

Proof. For all Wy, W,, W3 € I'(TM), we have

* *

(Q(W1).P)(Wa, Ws) = Q(P(W1,W2)Ws) — P(QWi, Wa)Ws — P(W1, QW) Ws — P(Wy, Wa) OWs.

From (2.8) and (2.9), we have

OWs = 2(n— 1)(Wa + hWa) + 2n(9Wa + 0hWs ) +2(nk + 1) (Wa)E

and, so

*

OF = 2n(x+1)E.
Thus, for W3 = £ in (4.9) we get

*

(Q(W1).P)(Wa, &) = Q(P(W1, W)E) — P(QW1, Wa)E — P(W1,QWa)E — P(Wy, W2) QE .
From (3.1), (4.10) and (4.11), it follows that
0.P=0.

* * *
Theorem 4.4. A (M, V) satisfies P.Ric = 0 if and only if M is an Einstein manifold.

*

* *
Proof. Let P.Ric = 0 satisfies on (M, V) , then we get
* * * *
Ric(P(Wy,W)Ws,W}) + Ric(W5, P(Wy,Wo)W;) = 0.
Putting W; = W, = € in (4.12), we have
* * * *
RiC(P(é,Wz)W3, 5) +RiC(W3,P(€,W2)€) =0.
Also, from (2.10), we get
. * 1 (= *
P(&,W2)W5 = R(§,W2)Ws — o <RlC(Wz7W3)5 —Rlc(é»WﬁWz) ;
from (2.7), (2.8), (2.9), it follows that
* 1 .
P(é,Wz)W3 = Kg(W27W3>§ — %RlC<W2,W3)§.
Again putting W3 = &£ in (4.14) and using (2.5), we obtain

P(E, W)€ =0.
Using (2.9), (4.14) and (4.15) in (4.13), it follows that
Ric(Wp,W3) = 2nkg(Wo, Ws).
Conversely, let M be an Einstein manifold , i.e Ric(W>,Ws) = 2nkg(W>,Ws). Then, we get
1

*
P(W] ,Wz)Wg, = K(g(Wz,W3)W1 — g(Wl ,W3)W2) - — (ang(Wz,%)W] — Zan(W] ,W3)W2) .

2n

* * K%
which implies P(W;,W,)W; = 0. This also give us P.Ric = 0.

(4.8)

(4.9)

(4.10)

4.11)

4.12)

(4.13)

(4.14)

(4.15)
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