https://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 70, Number 1, Pages 265-268 (2021) DO I: 10.31801/cfsuasmas.733614 ISSN 1303-5991 E-ISSN 2618-6470

Received by the editors: May 7, 2020; Accepted: December 19, 2020

PSEUDO PURE-INJECTIVE OBJECTS

Mustafa Kemal BERKTAS

Department of Mathematics, U¸sak University, U¸sak, TURKEY

ABSTRACT. We show that if M and N are pure essentially equivalent objects in a finitely accessible additive category A such that M is pseudo pure-Ninjective and N is pseudo pure-M-injective, then $M \cong N$.

1. Introduction

Recently, the famous Schröder-Bernstein problem in set theory has been solved for automorphism-invariant modules (equivalently pseudo-injective modules [\[8\]](#page-3-1)) by Guil et al. [\[10\]](#page-3-2). They prove that if M, N are automorphism invariant modules such that there are monomorphisms $f : M \to N$ and $g : N \to M$, then $M \cong N$ ([\[10,](#page-3-2) Theorem 3.1]). This result is an extension of a result by Alahmadi et al. $(2, Corollary 2.3).$ They prove that if M and N are automorphism-invariant modules of finite Goldie dimension such that there is a monomorphism from M to N and a monomorphism from N to M, then $M \cong N$. The present paper contains a generalization of $[2, \text{Corollary } 2.3]$ $[2, \text{Corollary } 2.3]$ to finitely accessible additive categories (Corollary [5\)](#page-2-0). Then we show that if M and N are pure essentially equivalent objects in a finitely accessible additive category such that M is pseudo pure-N-injective and N is pseudo pure-M-injective, then $M \cong N$ (Theorem [6\)](#page-2-1).

Following [\[7\]](#page-3-4), an additive category $\mathcal A$ is called finitely accessible (or locally finitely presented) if it has direct limits, the class of finitely presented objects \mathcal{A}_0 is skeletally small and every object is a direct limit of finitely presented objects. A sequence $0 \to X \stackrel{f}{\to} Y \stackrel{g}{\to} Z \to 0$ in the finitely accessible additive category A (with $gf = 0$) is called pure exact provided it induces an exact sequence

$$
0 \to \text{Hom}_{\mathcal{A}}(F, X) \to \text{Hom}_{\mathcal{A}}(F, Y) \to \text{Hom}_{\mathcal{A}}(F, Z) \to 0
$$

 c 2021 Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

265

²⁰²⁰ Mathematics Subject Classification. Primary 18C35; Secondary 18E05.

Keywords and phrases. Schröder-Bernstein problem, pseudo-injective object, pure Goldie dimension, finitely accessible additive category.

 \blacksquare mkb@usak.edu.tr

^{0000-0003-4395-9521.}

for all finitely presented objects F of \mathcal{A}_0 . In this case, f is called a *pure-monomorphism* and g a pure-epimorphism. An object M of A is called pure-injective if every pure exact sequence in A with the first term M splits. Throughout A will denote a finitely accessible additive category.

2. RESULTS

Let A, A' and A'' be objects in A. A pure monomorphism $p : A \to A'$ is said to be *pure essential* if whenever $f : A' \to A''$ is a morphism such that fp is a pure monomorphism, then f also must be a pure monomorphism (4) .

Lemma 1. Let $f : A \rightarrow B$ be a pure essential monomorphism in A. If f splits, then $A \cong B$.

Proof. Assume f splits. Then there exists an epimorphism $g : B \to A$ such that $gf = 1_A$. Since f is pure essential, g must be a monomorphism.

Lemma 2. Let $f : A \to B$ and $g : B \to C$ be pure monomorphisms in A. If $g f$ is a pure essential monomorphism, then g is a pure essential monomorphism.

Proof. Let $h: C \to D$ be pure monomorphism in A such that hg is a pure monomorphism. Then hgf is a pure monomorphism. Since gf is pure essential, h is a pure monomorphism. \square

A non-zero object in $\mathcal A$ is *pure uniform* if all non-zero subobjects are pure essential. An object A of A is said to have *finite pure Goldie dimension* if A has a pure essential subobject that is the finite direct sum of indecomposable pure subobjects whose every non-zero subobject is pure essential($[5]$).

Let M, N be objects in A. Recall from [\[6\]](#page-3-7) that M is called *pseudo pure-N*injective if every pure-monomorphisms $f: Y \to N$ and $g: Y \to M$ in A, where Y is any object in A, there exists a homomorphism $\varphi : N \to M$ such that $\varphi f = g$. If M is pseudo pure- M -injective, then M is called *pseudo pure-injective*. Clearly every pure-injective object is pseudo pure-injective.

Lemma 3. Let M be a pseudo pure-injective object of finite pure Goldie dimension in A. Then every pure monomorphism $f : M \to M$ is an isomorphism.

Proof. Let $f : M \to M$ be a pure monomorphism. Consider the following diagram.

Since M is pseudo pure-injective, there exists $\varphi : M \to M$ such that $\varphi f = 1_M$. Hence f splits. Since M has finite pure Goldie dimension, f is pure essential by Lemma [2](#page-1-0) and f is an isomorphism by Lemma [1.](#page-1-1)

Recall that a ring R is called *semilocal* if $R/J(R)$ is a semisimple artinian ring where $J(R)$ denotes the Jacobson radical of R.

Now we are ready to give the following different generalized form of $[4,$ Theorem 5] and [\[9,](#page-3-8) Corollary 4.5].

Corollary 4. Let M be a pseudo pure-injective object of finite pure Goldie dimension in A. Then endomorphism ring of M is semilocal.

Proof. This follows from [\[4,](#page-3-5) Theorem 5] by using Lemma [3.](#page-1-2)

Now we give the slight generalization of [\[2,](#page-3-3) Corollary 2.3]. In [\[10\]](#page-3-2), they remark that; their result $(10,$ Theorem 3.1) can not be applied, for instance, to flat modules. It is well known that for an associative ring R with identity the category of flat right R-modules is an accessible category (see $[1,$ Chapter 2]).

Corollary 5. Let M, N be two pseudo pure-injective objects of finite pure Goldie dimension and let $f : M \to N$ and $g : N \to M$ be pure-monomorphisms in A. Then $M \cong N$.

Proof. Let M, N be two pseudo pure-injective objects of finite pure Goldie dimension and let $f : M \to N$ and $g : N \to M$ be pure-monomorphisms in A. Then fg is an endomorphism of N and fg is a pure monomorphism. By Lemma [3,](#page-1-2) it is an automorphism of N. Thus f is a pure epimorphism and so f is an isomorphism. \Box

Recall from [\[5\]](#page-3-6) (also see [\[11\]](#page-3-9)) that two objects M and N in A are pure essentially equivalent if there exist pure essential subobjects M' of M and N' of N such that $M' \cong N'$. Let M and N be two objects such that both are finite direct sums of pure uniform objects. Notice that, using [\[3,](#page-3-10) Theorem 1], if there are pure monomorphisms $f : M \to N$ and $g : N \to M$, then M and N are pure essentially equivalent.

Theorem 6. Let M and N be two pure essentially equivalent objects in A . If M is pseudo pure-N-injective and N is pseudo pure-M-injective, then $M \cong N$.

Proof. Assume M and N are pure essentially equivalent and N is pseudo pure-M-injective. Let M' and N' be pure essential subobjects of M and N such that $M' \cong N'$, respectively. Then we have a commutative diagram

such that $\varphi_N f = i_N$ where f is the composite morphism of $i_M : M' \to M$ and the isomorphism $s: N' \to M'$. Notice that i_N (i_M) is pure essential. Since f is pure essential, φ_N is a pure monomorphism. Similarly, there exists a pure monomorphism $\varphi_M : N \to M$. Since N is pseudo pure-M-injective, we have a commutative diagram

such that $\psi \varphi_M = 1_N$. This means that φ_M splits. Similarly, φ_N splits. We know that i_N is a pure essential monomorphism. Therefore φ_N (also φ_M) is pure essential by Lemma [2](#page-1-0) and we obtain that $M \cong N$ by Lemma [1.](#page-1-1)

Declaration of Competing Interests The author has no competing interest to declare.

REFERENCES

- [1] Adámek, J. and Rosicky, J., Locally presentable and accessible categories, Cambridge University Press, Cambridge, 1994.
- [2] Alahmadi, A., Facchini, A. and Tung, N. K., Automorphism-invariant modules, Rend. Semin. Mat Univ. Padova, 133 (2015), 241-259.
- [3] Berktaş, M. K., A uniqueness theorem in a finitely accessible additive category, Algebr. Represent. Theor., 17 (2014), 1009-1012.
- [4] Berktaş, M. K., On objects with a semilocal endomorphism rings in finitely accessible additive categories, $Algebra$. Represent. Theor., 18 (2015), 1389-1393.
- [5] Berktaş, M. K., On pure Goldie dimensions, $Comm.$ $Algebra$, 45 (2017), 3334-3339.
- [6] Berktaş, M. K. and Keskin Tütüncü, D., The Schröder-Bernstein problem for objects in Grothendieck categories, preprint.
- [7] Crawley-Boevey, W., Locally finitely presented additive categories, Comm. Algebra, 22 $(1994), 1641–1674.$
- [8] Er, N., Singh, S. and Srivastava, A. K., Rings and modules which are stable under automorphisms of their injective hulls, $J.$ $Algebra$, 379 (2013), 223-229.
- [9] Facchini, A. and Herbera, D., Local morphisms and modules with a semilocal endomorphism ring, $Algebra$. Represent. Theor., 9 (2006), 403-422.
- [10] Guil Asensio, P. A., Kaleboğaz, B. and Srivastava A. K., The Schröder-Bernstein problem for modules, J. Algebra 498 (2018), 153-164.
- [11] Krause, H. Uniqueness of uniform decompositions in abelian categories, J. Pure Appl. Alge $bra, 183$ (2003), 125-128.