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ABSTRACT In this study, the dynamic behavior of a chaotic system is explored and its dynamical analysis
is performed by Lyapunov exponents, fractional dimension, dependence to initial conditions and bifurcation
diagram. In addition, the bifurcation analysis of the chaotic system is studied with respect to a certain
parameter. The electronic circuit implementation of a chaotic system is realized and compared with the phase
portraits obtained from Matlab and circuit realization. Also, passive control technique is applied to stabilize
and suppress the chaos in the chaotic system. Numerical simulations are presented to verify the theoretical
analysis and the effectiveness of the proposed control method.
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INTRODUCTION

After the first chaotic system is discovered and introduced by
Lorenz Lorenz (1963), many researches have been performed to
explore new chaotic systems with different features Koyuncu et al.
(2020); Akgul et al. (2016b,a). Chaos-based applications are an
important scientific as well as engineering issue. A lot of novel
chaotic systems have been discovered and presented from different
disciplines especially during the last decades Lai et al. (2018); Wang
et al. (2017); Ren et al. (2018); Pham et al. (2017); Varan and Akgul
(2018). Comprehensive studies and implementations of various
chaotic processes in different fields such as physics, control Wei
et al. (2018), computer science, cryptology Çavuşoğlu et al. (2017),
steganography Akgul et al. (2017), electronic circut implementation
Kai et al. (2017); Li et al. (2018); Tuna and Fidan (2016), artificial
neural network Vaidyanathan et al. (2020); Tuna et al. (2019) and
synchronization Rajagopal et al. (2019) are introduced in the litera-
ture.

The chaotic oscillations and trajectories should be eliminated
and diminished if they are undesirable. So, the control of the chaos
or chaotic system has become important and paid attention by
many researchers. After Ott et al. proposed the method for the
chaos control named as OGY method Ott et al. (1990), many control
methods are proposed to control the chaos or reduce-eliminate the
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chaotic oscillations occured in any applications such as sliding
mode control Uyaroǧlu et al. (2012); Kocamaz et al. (2017), adaptive
control Asadollahi et al. (2020), linear feedback control Fu et al.
(2020); Kocamaz et al. (2017), passive control Yu (1999); Qi et al.
(2004); Uyaroglu and Emiroglu (2015); Emiroglu and Uyaroglu
(2010). In this paper, control application and electronic circuit real-
izations are executed for chaos-based applications with dynamical
analysis.

Inspring from previous studies, in the dynamical analysis and
some applications of chaos is given in this article. After intro-
duction section, the paper is organized as follows: The dynamic
analysis of chaotic system is realized in Section 2. In Section 3,
electronic circuit work is implemented on oscilloscope as real-time
application. Control application of the chaotic system is presented
in Section 4. Conclusion is given in last section.

THE USED CHAOTIC SYSTEM AND ITS DYNAMICAL
ANALYSIS

The chaotic system is defined by the differential equation 1 as
below Azarang et al. (2016):

ẋ = −a(x + y) + bz + cyz
ẏ = dx− y

ż = −e(x2 + y2 − xy)− f z

(1)

Initial values of system are taken as x(0) = 0.1, y(0) = −0.1 and
z(0) = 0.2.This chaotic system has ten terms and six parameters
(a,b,c,d,e and f). The values of these parameters are a = 10, b = 1.5,
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c = 3, d = 70, e = 0.5 and f = 5. The chaotic system has given by
the following equation 2:

ẋ = −10(x + y) + 1.5z + 3yz
ẏ = 70x− y

ż = −0.5(x2 + y2 − xy)− 5z

(2)

Sensitivity to initial conditions
It is expected to be precisely independent from the initial condi-
tions in the time series for a chaotic system. The potential state
of the chaotic system will lead to substantially distant behaviour.
Long-term prediction of the time series of the system is difficult
due to the sensitive dependence on initial condition of the system.
Time series of the chaotic system are given for initial conditions
x1(0) = 0.1 and x2(0) = 0.0001 in Figure 1.

Figure 1 Time series for x1(0) = 0.1 and x2(0) = 0.0001

Phase portraits
The phase portraits of the chaotic system for the state variables
x, y and z with the initial conditions (0.1, -0.1, 0.2). It can be seen
from the phase portrait figures that this chaotic system shows rich
dynamical behaviors. The phase plains of the chaotic system are
illustrated in Figure 2.

Figure 2 Phase portraits of the chaotic system

Lyapunov exponents spectrum and fractional dimension
The Lyapunov Exponent (LE) spectrum of the chaotic system with
a varying parameter d ∈ [0− 1] is depicted in Figures 3 and 4.
The 3D system is a chaotic system since the first LE (blue line),
the second LE (green line) and the third LE (red line) are positive,
zero and negative values respectively. The system shows chaotic
behaviour because of at least one LE is positive Akgul et al. (2016b).

Figure 3 The LE spectrum of the system (for d parameter)

Figure 4 gives detailed LE spectrum with respect to parameter
d changing in the range 0.37-0.5.

Figure 4 The LE spectrum of the system with respect to d vary-
ing between 0.37− 0.5

The LE of the system are calculated numerically with the param-
eter values a = 10, b = 1.5, c = 3, d = 70, e = 0.5 and f = 5 and
the initial conditions as x(0) = (0.1,−0.1, 0.2). The determined
values of the LEs are

L1 = 2.4954, L2 = 0, L3 = −18.4945 (3)
Obtaining the Lyapunov dimension of the system as

DL = j +
1
|Lj+1|

j

∑
i=1

Li = 2 +
L1 + L2
|L3|

= 2.134999. (4)

Bifurcation Analysis
Figure 5 and Figure 6 show the bifurcation diagrams which cor-
responds to the maximum LE spectrum, shown in Figure 3 and 4.
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As can be seen in Figure 5 the system behaves chaotic between the
varying parameter d about 0− 0.45, 0.46− 1 for parameters a = 10,
b = 1.5, c = 3, d = 70, e = 0.5 and f = 5.

Figure 5 Bifurcation Diagram (between 0-1)

The detailed chaotic behaviour in bifurcation diagram with
parameter d for varying in the range of 0-1 are given in Figure 6.
System has not chaotic behaviour between about 0.45–0.46.

Figure 6 Bifurcation Diagram for varying paramater d (between
0.25-0.55)

ELECTRONIC CIRCUIT DESIGN

The circuit design of the system is given in Figure 7. Electronic
circuit implementation of the chaotic system is designed for the
parameters a = 10, b = 1.5, c = 3, d = 70, e = 0.5, f = 5 with
initial conditions x(0) = 0.1, y(0) = −0.1, z(0) = 0.2.

TL081 opamp and the AD633 multipliers were used in elec-
tronic circuit and R1 = 40Kohm, R2 = 40Kohm, R3 = 266Kohm,
R4 = 13.3Kohm, R5 = 100Kohm, R6 = 100Kohm, R7 = 5.7Kohm,
R8 = 399Kohm, R9 = 100Kohm, R10 = 100Kohm, R11 = 80Kohm,
R12 = 80Kohm, R13 = 80Kohm, R14 = 80Kohm, R15 = 100Kohm,
R16 = 100Kohm C1 = C2 = C3 = 1nF, Vn = −15V, Vp = 15V
are chosen.

The oscilloscope outputs of the system has been seen in Figure 8.
The circuit implementation outputs verify the results of the chaotic
system modelled in MATLAB.

PASSIVE CONTROL OF THE CHAOTIC SYSTEM

In this section, the passive control method is applied to the system
(1) for controlling the chaos Yu (1999); Qi et al. (2004); Uyaroglu and
Emiroglu (2015); Emiroglu and Uyaroglu (2010). The controlled
system (5) is obtained by adding the designed controllers u1 and
u2 as below.

ẋ = −10(x + y) + 1.5z + 3yz + u1

ẏ = 70x− y

ż = −0.5(x2 + y2 − xy)− 5z + u2

(5)

Suppose that state variables,

z = y

y =

y1

y2

 =

x

z

 (6)

After that, the system can be described by generalized form
defined in passive theory:

ż = 70y1 − z
ẏ1 = −10y1 + 10z + 1.5y2 + 3zy2 + u1

ẏ2 = 0.5y1
2 − 0.5z2 + 0.5y1z− 5y2 + u2

(7)

So, writing the generalized form of the system by using passive
control theory given below Yu (1999); Qi et al. (2004),

ż = f0(z) + p(z, y)y,

ẏ = b(z, y) + a(z, y)u
(8)

where

f0(z) = [−z]

p(z, y) = [70 0]

b(z, y) =

 −10y1 + 10z + 1.5y2 + 3zy2

0.5y1
2 − 0.5z2 + 0.5y1z− 5y2



a(z, y) =

1 0

0 1


The storage function can be selected as,

W(z) =
1
2

z1
2 (9)

is the Lyapunov function of f0(z) by condition W(0) = 0.
Considering (9), the derivative of W(z) can be obtained as fol-

lows.

Ẇ =
d
dt

W(z) =
∂W(z)

∂z
f0(z) = [z][−z] = −z2 ≤ 0 (10)

It can be obtained that the chaotic system is going to be mini-
mum phase with expression (11).
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Figure 7 The experimental circuit of system
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(a) xy plain

(b) xz plain

(c) yz plain

Figure 8 The phase portraits of chaotic system with a=10, b=1.5,
c=3, d=70, e=0.5 and f=5 on the oscilloscope

∂W(z)
∂z

f0(z) ≤ 0. (11)

As W(z) ≥ 0 and Ẇ(z) ≤ 0, the zero dynamics of the controlled
system (5) is Lyapunov stable, so f0(z) is globally asymptotically
stable. So, the system is said to be as a passive system with the use
of following state feedback Yu (1999); Qi et al. (2004).

According to passive control theory Uyaroglu and Emiroglu
(2015); Yu (1999); Qi et al. (2004), the system (5) can be called as
passive system. From the property of passive control theory, the
control signal u is determined as follows.

u = a(z, y)−1
[
−bT(z, y)− ∂

∂z
W(z)p(z, y)− αy + v

]
(12)

where W(z), α and v are the Lyapunov function of f0(z), the
positive real values and an external reference input respectivelyYu
(1999); Qi et al. (2004); Emiroglu and Uyaroglu (2010).

The system with control signal u (5) can be considered as a
passive system. It is asymptotically controlled around equilibrium
point at origin globally by the state feedback controller as follows.

u1 = −(10 + α)x− 60y + 1.5z + 3yz + v

u2 = 0.5x2 − 0.5y2 + 0.5xy− (5 + α)z + v
(13)

When passive controller is applied at t = 25 s to the system, it is
showed the convergence of the system to its zero equilibrium point
as shown in Figs. 9 and 10. Also the controlled chaotic system
(controller is active from the beginning of the simulations-activated
at t = 0s) converging to zero equilibrium points is shown in phase
trajectory figure (Fig. 10).

The designed feedback controllers for control of the chaotic
system are constructed based on passive theory. After the passivity
based controllers are designed, the control signals with external
signal v = 0 are applied to the chaotic system.

The time series of the controlled chaotic system with passivity
based controller applied at t = 25 s are shown in Fig. 9. Also,
phase space of the controlled system is shown in Fig. 10.

As it can be seen from the Figs. 9 and 10, the system can be con-
trolled at its zero equilibrium point asymptotically and converges
to the equilibrium point at origin, after the controllers are applied
to the system. Passive controller provides the global asymptotical
stability of the controlled system due to designing the controller
by using Lyapunov stability theory.

CHAOS Theory and Applications 14



Figure 9 Time series of the controlled system with the controllers activated at 25 s.

Figure 10 Phase space of the controlled system

RESULTS AND DISCUSSION

In this study, the dynamics of a chaotic system is explored such as
Lyapunov exponents, Lyapunov dimension, phase portraits and
bifurcation diagrams. The numerical simulations as well as theo-
retical analysis are also presented to indicate the chaotic dynamic
behavior of a system. We determined the sensitivity to initial con-
ditions on the chaotic system. Electronic circuit implementation
of the chaotic system has been presented and compared to Matlab
simulations. it is confirmed that comparisons between Matlab sim-
ulation and electronic circuit experimental results are consistent
with each other and demonstrated from the phase portraits. Next,
based on passive theory, the controllers are designed to stabilize
the chaotic system to its zero equilibrium point. It is showed that
chaos control can be achieved using passive control method and
the stability of the controlled system is ensured by the controller
designed based on Lyapunov stability theory.
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onance and its control with sliding mode technique for volt-
age transformer circuits: A case study of manual single phase
switching operation in three-phase transmission system. Opto-
electronics and Advanced Materials, Rapid Communications
6.

Vaidyanathan, S., I. Pehlivan, L. G. Dolvis, K. Jacques, M. Alcin,
et al., 2020 A novel ann-based four-dimensional two-disk hyper-
chaotic dynamical system, bifurcation analysis, circuit realisa-
tion and fpga-based trng implementation. International Journal
of Computer Applications in Technology 62: 20–35.

Varan, M. and A. Akgul, 2018 Control and synchronisation of a
novel seven-dimensional hyperchaotic system with active con-
trol. Pramana 90: 54.

Wang, Z., A. Akgul, V.-T. Pham, and S. Jafari, 2017 Chaos-based
application of a novel no-equilibrium chaotic system with coex-
isting attractors. Nonlinear Dynamics 89: 1877–1887.

Wei, Z., A. Akgul, U. E. Kocamaz, I. Moroz, and W. Zhang, 2018
Control, electronic circuit application and fractional-order anal-

ysis of hidden chaotic attractors in the self-exciting homopolar
disc dynamo. Chaos, Solitons & Fractals 111: 157–168.

Yu, W., 1999 Passive equivalence of chaos in Lorenz system. IEEE
Transactions on Circuits and Systems I: Fundamental Theory
and Applications 46: 876–878.

How to cite this article: Adiyaman, Y., Emiroglu S., Ucar, M. K., 
and Yildiz, M. Dynamical analysis, electronic circuit design and 
control application of a different chaotic system. Chaos Theory 
and Applications, 2(1), 10-16, 2020.

CHAOS Theory and Applications 16


