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Abstract

In the present paper, new analytical solutions for the conformable space-time fractional (2+1)-dimensional
breaking soliton, third-order KdV and Burger’s equations are obtained by using the simplified tan(@)—
expansion method (SITEM). Here, fractional derivatives are described in conformable sense. The obtained
traveling wave solutions are expressed by the trigonometric, hyperbolic, exponential and rational func-
tions. Simulation of the obtained solutions are given at the end of the paper.
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1. Introduction

Nonlinear fractional partial differential equations have significant applications in various fields of science and
engineering such as fluid mechanics, mechanics of materials, biology, plasma physics, finance, chemistry, image
processing (see, for example, [1-5]). Traveling wave solutions to nonlinear fractional partial differential equations
play an important role in the study of nonlinear physical phenomena. The traveling wave solutions of the nonlinear
partial differential equations have been investigated by using various method such as exponential rational function
method, (G’/G)-expansion method, Exp-function method, extended sinh-Gordon equation expansion method,
modified exponential rational function method, Jacobi elliptic equation method (see, for example,[6-10]).

(2+1)-dimensional breaking soliton equations describe the (2 + 1)-dimensional interaction of a Riemann wave
propagating along the y-axis with a long wave along the x-axis. (G’ /G)-expansion method, extended tanh-function
method, improved Riccati equations method, sine-cosine method, improved extended Fan sub-equation method,
generalized (G’/G)-expansion method and extended three wave method have been applied to the (2+1)-dimensional
breaking soliton equations [11-18]. The space-time fractional (2 + 1)-dimensional breaking soliton equations with
modified Riemann-Liouville derivative have been solved by using new fractional Jacobi elliptic equation method,
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new fractional sub-equation method, modified simple equation method, improved fractional sub-equation method,
exponential rational function method, new fractional Jacobi elliptic equation method [19-23]. (G’/G)-expansion
method has been studied for the space fractional (2 + 1)-dimensional breaking soliton equations with modified
Riemann-Liouville derivative [24].

The general projective Riccati equation method, Exp-function method, extended hyperbolic function method and
collocation method with the modified exponential cubic B-spline have been applied to the third-order KdV equation
[25-28]. Time-fractional generalized third-order KdV equation with modified Riemann-Liouville derivative has
been solved by using generalized Kudryashov method [29].

Burger’s equation plays a major role in the study of nonlinear waves since it is used as a mathematical
model in turbulence problems, in the theory of shock waves, and in continuous stochastic processes [30]. Hopf-
Cole transformation and a reproducing kernel function method, a semi-analytical iterative method, (G'/G,1/G)-
expansion method have been applied to the Burger’s equation [31-33].

In this paper, the conformable space-time fractional (2+1)-dimensional breaking soliton, third-order KdV and
Burger’s equations have been solved by using the simplified tan(%@)—expansion method (SITEM). SITEM has
been applied to the Kundu-Eckhaus equation only for the parameter p = 0 in [34]. In our work, SITEM for the
nonzero parameter p has been applied to the space-time fractional some evolution equations with conformable
fractional derivative. New analytic solutions for these equations have been reported. Note that space-time fractional
(2+1)-dimensional breaking soliton, third-order KdV and Burger’s equations including conformable derivatives
have not yet been solved.

2. Description of the conformable fractional derivative and its properties

For a function f : (0,00) — R, the conformable fractional derivative of f of order 0 < « < 1 is defined as (see,
for example, [35])

flt+et=) — £(t)

TY f(1) = lim - @1)
Some important properties of the the conformable fractional derivative are as follows:
T (af +b9)(t) = T f(t) +bT7g(t), Va,be R,
T = e, 22)

’

T (fg(t) = 79 () f (9(1))-

3. Analytic solutions to the conformable space-time fractional (2+1)-dimensional breaking
soliton equations

The breaking soliton equations can be used to describe the (2 + 1)-dimensional interaction of a Riemann wave
propagating along the y-axis with a long wave propagating along the x-axis. The u(z, y,t) and v(z, y, t) represent
the physical field and some potential, respectively. This equation was studied by Bogoyavenskii [36].

Conformable space-time fractional (2+1)-dimensional breaking soliton equations are given in the following
form[23]

TPu+TPTI T u+ T fv + wTfu =0, (3.1)
TJu=T/v, 0<a<1l,0<B<1, 0<0<1 (3.2)

Let us consider the following transformation

u(z,y,t) =U(E), v(x,y,t) =V () f—kﬁ—l—mﬁ—kny—g (3.3)
7y7 - b) 7y7 - b - a B 0, .
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where k, m and n are constants. Using the third property in Eq.(2.2), we can compute the following derivatives

Tru(ent) = TU(E) = - E 0 —wwg)

Tue,.0) = T20(E) = o 2 e,

Tiute,.t) = T0() =y £ OE — e,

T T u(w, y, t) = nm*kU" (£),

T0(a,.0) = TIV(E) =P E D (e, (34

Substituting Eqs.(3.4) into Egs.(3.1)-(3.2), we obtain the following differential equations

kU +m*nU" +4mUV’' +4mVU’' =0, (3.5)
nU' = mV’. (3.6)

Integrating of Egs.(3.5)-(3.6) with zero constant of integration and eliminating V', we have
kU +m?nU" + 4nU? = 0. (3.7)

Let us suppose that the solution of Eq.(3.7) can be expressed in the following form

N N -
U(ﬁ)kzoAk[p+tan (qs(za)rJr’;Bk{antan (@)] k. (3.8)

Here, ¢(&) satisfies the following ordinary differential equation

¢'(§) = asin((S)) + beos(4(§)) + ¢, (3.9)

and a, b, ¢, Ax(0 < k < N)and Bi(1 < k < N) are constants to be determined. The solution of Eq. (3.9) is given
as follows:
Forb=¢, a=0,

tan(%) =bl+c1 —p.
Forb=c¢, a#0,
tan(g) = ¢y exp(a&) — g.

Forb#c, A=a?>+b>—-c?>0,

10} _ 2 cm exp(ﬁf) + caro eXP(T2§)
tan(g) T b—c exp(r1€) + cq exp(raf) P

Forb#c¢, A=a’>+b>—-c2=0,

10) __a n 2 Co .
—c b—ccp+ ¢

Forb#c¢, A=a’>+12-c?<0,

p o, V=A —c1sin(Y52€) + ¢3 cos(Y52¢)

tan(f)z )
2 b—c b—c 1 cos( EA§)+02sin( EAE)

where c; and ¢, are arbitrary constants, 7, = (a + p(b — ¢) + VA)/2and ro = (a + p(b — ¢) — VA)/2.
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Substituting Eq.(3.8) into Eq.(3.7) and then by balancing the highest order derivative term and nonlinear term in
result equation, the value of N can be determined as 2. Therefore, Eq.(3.8) reduces to

U(€) = Ao+ Ay [p+tan (@)} + As [ert‘cm (@)r

v B [p+tan (@)r + By [p+tan(@)}72. (3.10)

Substituting Eq.(3.10) into Eq.(3.7), collecting all the terms with the same power of tan(%), we can obtain a set of
algebraic equations for the unknowns Ay, 41,43, B, Bs, k, m, n

8nA3 + 3nAsb?m? — 6nAsbem? + 3nAac*m? =0,
64npAZ +

Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:

Case 1: Aoz—%(b—c)mz( b c+2ap+bp? —cp?), Ay =0,A, =0,B; = 4m 2(—ab — ac+ 2a%p — b*p + *p +
3abp? — 3acp? + b?p3 — 2bep?® + ?p3), By = —émQ(—b —c+2ap +bp? — cp?)? k= —Am?n :
Forb=cand a =0,

Ui (€) = fgm2b2 [bg + cl} ) (3.11)
Forb=cand a # 0,
3, ) b1-1 3 )
Uz(§) = ym”(=2ab + 2a°p) {p + c1 exp(ag) — ﬂ — gm*(=2b+ 2ap)
[p + c1 exp(af) — g} - (3.12)

For A > 0and b # ¢,

3
Us(€) = _§(b —)m?(—=b — ¢+ 2ap + bp* — cp?)

3 . . .
+ Zmz(fab — ac+ 2a*p — b?p + Zp + 3abp? — 3acp?® + b?p> — 2bep® + 2p?)

2 cyry exp(ri€) + corgexp(ra€) -
[b } (3.13)

—c cexp(ri€) + co exp(raf)

2 crrypexp(ri) + cora exp(r26) } -2

3 2 242
— —m“(=b—c+2ap+bp° —c [
( p+bp” —p) b—c c1exp(ri€) + coexp(raf)

8

For A < 0and b # ¢,

3
Us(§) = -5 (b= c)m*(—=b— ¢+ 2ap + bp* — cp?)

3
+  Sm?(—ab — ac+ 2a*p — b?p + *p + 3abp® — 3acp® + b*p? — 2bep® + *p?)

N V—A —cp sin(¥ gAf) + ¢o cos(¥ ;A )}—1
b—c b-c ¢ cos(—v_Aﬁ)Jchsin(—V;Af)

(3.14)

4
[p+
3 m?(—b— ¢+ 2ap + bp* — ¢ )[
8 P+ 0p P b_
V—A —c1sin(¥Y5 26) + ¢y cos(YL52 f]
b—c c1 cos(¥Y5= 2¢6) + ¢y sin(Y52¢)

HereE——Amn —|—m —|—n0
Case2: Ag = —gm (2a —b? + ¢® + 6abp — 6acp+3b2 2—6bcp —|—302p2) A =0, A2—0 31 3m2(—ab—ac+
2a2p—b2p—|—02p+3abp — 3acp?® + b2p3 — 2bcp? + 2p3), By = —2m?(=b — ¢+ 2ap + bp? — cp?)%, k = Am®n :
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Forb=cand a =0,

Forb=cand a # 0,

For A > 0and b # ¢,

For A <0and b # ¢,

+

Here ¢ = Am? n +m

Case 3: Ay = —f(b -

8
0,By =0,k =—-Am?n:

Us(€) = —%m2b2 [bg + cl} - (3.15)

Us(§) = _im%z + gm (—ab + a”p) {p + 1 exp(ag) — g] -

3 b1—2
+ —imz(—b—&—ap)Q p+ c1exp(al) — ﬂ . (3.16)

1
Uz (¢) = f§m2(2a2 —b? + ¢ + 6abp — 6acp + 3b°p? — 6bep? + 3¢%p?)

Sm?(—ab — ac + 2a®p — b*p + *p + 3abp® — 3acp® + b*p® — 2bcp® + *p?)

For A > 0and b # ¢,

For A <0and b # ¢,

[ 2 cyry exp(ri€) + corg exp(ra€) } - (3.17)
b—c crexp(ri§) + cz2 exp(rzf) '
2 crryexp(rif) + carg exp(r2f) 12
2.2 —bh— 2 b 2 2\2 171
8m ( ¢+ 2ap + op cp ) [b—c 1 exp(r1£)+02exp(r2§) }
1
Us(€) = —§m2(2a2 — b® + ® + 6abp — 6acp + 3b°p* — 6bep® + 3¢*p?)
“m2(—ab — ac + 2a*p — b*p + Ap + 3abp® — 3acp® + b*p® — 2bep® + *p?)
[+ + VEA —arsin(Y526) + e cos(¥52 >} - (3.18)
p .
b—c¢ b—c clcos("_Af)—l—CQSin(“gAf)
3
g™m m?(—b — ¢+ 2ap + bp? — cp?)? [p—f—ﬁ
vV—A —cy sin(—VgAE) + ¢3 cos( ‘/275)] -2
b—c ¢ COS(—VEAS) + co sin(—vgb‘f)
o
° 4+ n.
c)m2( b—c+2ap+bp* —cp?), A1 = 3(b—c)m*(a+bp— cp), Ay = —2(b—¢)?m?, B, =
Uy(€) = b—C)m (—=b— ¢+ 2ap + bp® — cp?)
3 c1ry exp(ri) + corp exp(raé)
+ +bp —
™M m(a+bp—c )[ c1 exp(ri€) + o exp(r2€) }
3 oreiriexp(rif) + carg exp(raé) 12
_ 3. 3.19
2 [ c1 exp(ri€) + cz exp(ra€) G2
3
Uio(€) = _§(b —c)m?(=b — ¢ + 2ap + bp* — cp?)
— V=R 6) 4 ¢y cos(Y5E¢E)
S+ bp — ) [plo — ) + o+ A S FercoslTy
{ c1 cos( Y5 26) + ¢y s1n(TA§) }
e g (Y=A VA2
%mQ [p(b —¢)+at+v-A cisin(*5=8) +ezcos(F5 f)] ) (3.20)

c1 COS(@&) +co sin(@f)
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Here ¢ = —Am? n —|—m —|—n0
Case 4: Ay = —gm (2a —b% + ¢ + 6abp — 6acp + 3b%p? — 6bep? + 3cp?), Ay = %(b —c)m?(a + bp — cp), Ay =

—%(b —¢)’m?, By =0,By =0,k = Am?n :
Forb=canda # 0,
1
Ui (€) = jm?a?. (3.21)
For A > 0and b # ¢,

1
Ui2(€) = f§m2(2a2 —b? 4 ¢® 4 6abp — 6acp + 3b%p? — 6bep? + 3cp?)

ciry exp(r§) + cara eXP(Tzf)}

3
2 bp —
+ 2m (a+bp )[ c1 exp(ri1€) + coexp(raf)

3 2[c1r1exp(ri€) + cary exp(raé)
R 3.22
2" { c1exp(ri§) + cz exp(raf) } 022
For A <0and b # ¢,
Ui3(§) = —ém2(2a2 — b2 4 ¢ + 6abp — 6acp + 3b%p? — 6bep? + 302p2)
3, —cp sin(¥5= 26) + ¢ cos(¥5 2¢)
+ -m“(a+bp—cp)|lp(b—c)+a+VvV—-A
4 ( )[ ( ) c1 cos( Y5 §)+0281H(C§) }
(V=A V=4
3 —c1sin(¥Y5=&) 4 ¢z cos(Y5=¢) 72
- —-m7lplb—c)+a+V-A . (3.23)
8 [ ( ) c1 COS(—V;A@ + co sin(—ngg) ]
Here £ = Am*nt- =+ mi C 4l . Usmg formula V(¢) = 2U(&) the unknown function V' (£) can be computed.

The solutlons us(z, y, t), uz(z,y,t) and uy(z,y,t) of the Egs.(3.1)-(3.2) are simulated as traveling wave solutions
for various values of the physical parameters in Fig.1-Fig.6. Figs.1, 2 show kink waves solutions, Figs.3 and 4 show
solitary waves solutions, Figs.5, 6 show periodic waves solutions of Eqs.(3.1)-(3.2). Figs.1 and 2 are 3D and 2D
plots of the traveling wave solution us(x, 1,t) and us(z, 1, 1) in Eq.(3.12)for parameters o = 0.75, § =1, § = 0.5,
m = —0.05n=05a=1 b=5 c=5, ¢t =1, coc = 2and p = 0.1. Figs.3 and 4 are 3D and 2D plots
of the traveling wave solution us(z,1,t) and us(z,1,1) in Eq.(3.13) for « = 0.75, § =1, 6§ = 0.5, m = 0.5,
n=202a=01 bb=05 ¢c=002 ¢ =1, ¢ =1andp = 2. Figs.5 and 6 are 3D and 2D plots of the
traveling wave solution u4(z,1,t) and u4(x,1,1) in Eq.(3.14) for = 0.5, 8 =1, § = 0.5, m = 0.5, n = 0.2,
a=0.05, b=10.2, c=0.6, ¢c; =1, co =1and p = 1. Note that the 3D graphs describe the behavior of u in space
and time ¢ at fixed y = 1, which represents the change of amplitude and shape for each obtained traveling wave
solutions. 2D graphs describe the behavior of u in space « at fixed time ¢ = 1 and fixed y = 1. All graphics in figures
are drawn by the aid of Mathematica 10.

4. Analytic solutions to the conformable space-time fractional Korteweg-de Vries (KdV)
equation

Conformable space-time fractional KdV equation is given in the following form[25]

TPu+ TPTPT u + 6uTPu=00<a<1, 0<B<1. (4.1)

Let us consider the following transformation
to 8
u(x,t) =U(E), {= k— +m— 5 (4.2)

where k, m are constants. Substituting (4.2) into Eq.(4.1) we obtain the following differential equations

kU +m3U" 4+ 6mUU’ = 0. (4.3)
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Integrating of Eq.(4.3)with zero constant of integration, we have
kU +m3U"” + 3mU? = 0. (4.4)

Let us suppose that the solution of Eq.(4.4) can be expressed in the form Eq.(3.8). Substituting Eq.(3.8) into Eq.(4.4)
and then by balancing the highest order derivative term and nonlinear term in result equation, the value of N can be

determined as 2. Therefore, Eq.(3.8) reduces to Eq.(3.10). Substituting Eq.(3.10) into Eq.(4.4), collecting all the terms

with the same power of tan(%), we can obtain a set of algebraic equations for the unknowns Ao, A1,42, B1,Bs, k, m:

6A%m + 3A450°m® — 6Asbem® + 3A5¢2m? = 0,
48pAZm + ...
Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:
Case 1: Ay = —3(b— c)m?*(—=b— ¢+ 2ap + bp? — cp?), Ay = 0, A3 = 0, B = m*(—ab — ac + 2ap — b*p + *p +
3abp? — 3acp? + b?p3 — 2bep?® + ?p3), By = f%mQ(fb —c+2ap +bp? — cp?)? k= —Am?3 :
Forb=cand a =0,

Uy (€) = —2m?b? [bg n cl} - (4.5)

Forb=cand a # 0,

—2

Us(€) = 2m2(a2p —ab)|p+ ¢y exp(a) — S} - — 2m2(ap — b)2 [p + ¢y exp(a&) — 2} . (4.6)

For A > 0and b # ¢,

1
Us(€) = —5(6 —)m?(—=b — ¢+ 2ap + bp* — cp?)

+ m2(—ab — ac + 2a*p — b*p + *p + 3abp® — 3acp® + b*p® — 2bep® + *p?)

2 cyryexp(ri€) + cars exp(rgf)} -1 47
b—c crexp(ri§) + caexp(rzf) .
1, 2 2192 2 can eXp(Tlf) + core eXP(TQS) —2
— mP(—b— e+ 2ap + bp? —
2" ( ¢+ 2ap +bp” = cp’) [b—c c1 exp(r1€) + co exp(r2€)
For A <0and b # ¢,
1
Us(€) = fi(b — c)mz(fb — ¢+ 2ap + bp? — cp2)
+ m?%(—ab — ac + 2ap — b*p + p + 3abp® — 3acp® + b*p?® — 2bep® + Pp?)
[p L V—A—c1 sin(—ngf) + co cos( ;A )} -1 (48)
b—c b—c ¢ cos(vgA )—i—cQsin(—VgAf)

1 V=A —c;sin(¥=2¢) + V=Agy -2
— §m2(—b—c+2ap+bp2—cp2)2[p+ a + 1 sin{ 2 §) + ez cos( 2 ) .

b—c b—c ¢ cos(—ngg)Jchsin( ;Ag)

Here ¢ = —~Am®L + m‘%.

Case 2: Ag = —tm?(2a® — b + ¢ + 6abp — 6acp + 3b*p? — 6bep? + 3¢?p?), Ay =0, A2 = 0, By = m?*(—ab — ac +
2a%p — b%p + 2p + 3abp? — 3acp® + b2p3 — 2bcp3 + 2p?), By = —%mQ(—b —c+2ap +bp? — cp?)?, k= Am3 :
Forb=canda =0,

Us(€) = —2m?b? [bg + cl} - (4.9)

Forb=cand a # 0,

Us(§) = _%m%z +2m?(a®p — ab) [P + c1exp(af) — g B
— 2m?(ap — b)? [p + ¢y exp(a&) — g} _2, (4.10)
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For A > 0and b # ¢,

1
Uz () = 76m2(2a2 —b? 4 ® 4 6abp — 6acp + 3b%p? — 6bep? + 3¢p?)

+ m%(—ab — ac + 2ap — b*p + p + 3abp® — 3acp® + b*p® — 2bep® + *p?)
2 ariexp(rf) +cors exp(?’z&)} -

b—c c1exp(ri€) + coexp(r2€) (4.11)
— %m2(—b — ¢+ 2ap + bp* — cp2)2 [b 3 . 012 Eigg:ig I 2213?:2(55) B
For A <0and b # ¢,
Us(§) = —ém2(2a2 — % + ¢ + 6abp — 6acp + 3b%p* — 6bep? + 3c2p?)
4+ m?*(—ab — ac + 2a*p — b*p + *p + 3abp® — 3acp® + b*p?® — 2bep® + *p?)
[p Lo V=A —csin(Y52€) + ¢ cos(Y526) - @12)

b—c b-—c clcos(V_A§)+CQSin(V;A§)

1
— §m2(—b—c+2ap+bp — cp?)? [

b
V—A —cysin(¥5= 26) + ¢y cos(L52¢) }
b—c c1 cos(¥Y5= 26) + ey sin( Y52 5

— 3t~ il
Here ¢ = Am E—l—m%

Case 3: Ag = —1(b— c)m*(=b — c+ 2ap + bp® — cp?), A1 = (b — c)m?*(a + bp — cp), Ay = —1(b— ¢)*m?, By =
O,BQ:O,k:—Am?’:
For A > 0and b # ¢,

Uy(§) = (b m2(=b — ¢ + 2ap + bp?* — cp?)

+ 2m2(a+bp —cp

c1 exp(ri€) + cz exp(ra€)

)
{cm exp(ri€) + cara exp(?‘zﬁ)}
)
)

)
C o2 [clrl exp(rlg

+ corg exp(raf)
413
c1 exp(ri§) + cz exp(r2) ] (4.13)
For A <0and b # ¢,
1
Uro(§) = *i(b — C)m2(fb — ¢+ 2ap + bp? — cp?)
+ (b= c)m>(a+bp —cp) {p L% V-A —c1 sin(@f) +co cos(\/?g)}
b—c b= ¢ycos(Y5RE) + cpsin(Y3E)
TN o oain( V=D (VAo

+ —%(b — ¢)?m? [p—i— @ . V—A —cisin(¥5=E) + cp cos( Y5 g)} w1

b—c b-c ¢ cos(ngf)—FcQsin(—ngf)

— 3" z”
Here § = —Am” = -l—m%

Case 4: Ag = —%m2(2a2 — b2 + ¢ + 6abp — 6acp + 3b*p* — 6bep? + 3c¢?p?), Ay = (b — c)m?(a + bp — cp), Ay =
—3(b—¢)*m?, By =0,By = 0,k = Am? :
Forb=cand a # 0,

Ui (€) = —%m2a2. (4.15)
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For A > 0and b # ¢,
1
Ui2(€) = 76m2(2a2 —b? 4 ® 4 6abp — 6acp + 3b%p? — 6bep? + 3c%p?)

+ 2m*(a+bp —

ep) [clrl exp(ri€) + core exp(rgﬁ)}
c1exp(ri§) + ca2 exp(rz€)

cir1 exp(ri) + corg exp(r2f)
_ 416
" { crexp(ri§) + ez exp(r2f) } (410
For A <0and b # ¢,
Ui3(€) = f%m2(2a2 —b? 4 ¢ 4 6abp — 6acp + 3b%p? — 6bep? + 3¢%p?)
vV-A V-4
—cy sin(¥5=¢&) + ¢ cos(Y5=¢)
+ m%(a+bp—cp)|plb—c)+a+V-A
( ){ ( ) c1 cos( Y5 26) + ey sm(‘/if) ]
_ V-A \/7

_ %m2 [p(b O tatvV A2 sin(*5¢) +ezcos(*5- 5)} . (4.17)

c1 cos( \/75) + ¢y Sln(gﬁ)

Here ¢ = Am3L + m2- 5

The solutlon uis(x,t) of the Eq.(4.1) is simulated in Fig.7-Fig.8 as periodic waves solutions. 3D plot of the
obtained solution uq3(z, t) is given for parametersa = 0.5, 8 =1,m =0.5,a =05, b=0.25, c=1, ¢c;1 =1, co =3
and p = 1 in Fig.7. Fig.8 demonstrate the same solution with 2D plot for —40 <z <40 att = 1.

5. Analytic solutions to the conformable space-time fractional Burger’s equation

Conformable space-time fractional Burger’s equation is given in the following form[31]

Teu+uTPu—TPTPu=0,0<a<1, 0<pg<1. (5.1)
Let us consider the following transformation
u(z,t) =U(E), {= Ko 4 mi (5.2)
o B
where k, m are constants. Substituting Eq.(5.2) into Eq.(5.1) we obtain the following differential equations
kU +mUU —m2U" = 0. (5.3)
Integrating of Eq.(5.3)with zero constant of integration, we have
kU + %UZ —m2U’ = 0. (5.4)

Let us suppose that the solution of Eq.(5.4) can be expressed in the form Eq.(3.8). Substituting Eq.(3.8) into Eq.(5.4)
and then by balancing the highest order derivative term and nonlinear term in result equation, the value of N can
be determined as 1. Therefore, Eq.(3.8) reduces to

UE) = Ao + A [p+tan (@)} + B [p+tan (@)} B (5.5)
Substituting Eq.(5.5) into Eq.(5.4), collecting all the terms with the same power of tan(%), we can obtain a set of
algebraic equations for the unknowns Ay, 41,B;, k, m:
A%m + A1bm? — Ajem?® =0,
241k 4+ 240A1m — 2aA;m? + 4A?mp + 24:bm?p — 2A1em®p = 0,
2A0k + Agm + 6A2mp? 4+ 2A, Bym + 6A1kp — Ajbm? — Ajem? — bBym?
+ Bijem?-— 4aA1m2p + A1bm?p? — Arem®p? + 6A9A1mp = 0,
2Bk +4A2 mp + 240Biym + 4Aokp + 2aBym? + 6 A1 kp? + 2A2 smp
+ 6A40Aimp? — 2A,bm*p — 2A1em?p — 2aA1m2p? + 4A, Bymp = 0,
Bim + Admp? + A3mp* + 2B1kp + bBym? + Biem?® + 2Aokp® + 24, kp?
+ 240A mp® + 24, Bymp? — A1bm?p? — Arem?®p? 4+ 2A0Bimp = 0.
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Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:
Case 1: Ag = —am = Vm2A —mp(b—c¢), Ay = 0, B; = m(—b— c+ 2ap + bp? — cp?), k = FmvVm?2A :

Forb=cand a =0,

Uy (€) = —2bm [bg + cl] - (5.6)

For b= cand a # 0,
Us.s(€) = —am + Vim?a? + 2m(ap — b) [ p + e1 explag) — 2] - (57)

For A >0and b # ¢,
Uss(€) = —am + Vm2A — mp(b — ¢) (5.8)

2 cyryexp(ri€) + corgexp(ra€) -1
b—c ¢ exp(ri€) + coexp(raf)

+  m(=b—c+ 2ap + bp* — cp?)

For A <0and b # ¢,

Us,7(§) = —am £ Vm2A — mp(b — ¢) (5.9)
9 a vV—A —clsin(ﬂg)—i—chos( Bg)-1
+om(=b et 2ap +bp *CPQ)[” b—c ' b—c o cos( ‘2A£)+cQsin( ‘Z)Aé) '

2 2

Here £ = :Fm\/m2A% + m%.

Case2: Ag =am £ Vm2A+mp(b—rc),A1 = —m(b—c),By =0,k =Fmvm2A:
For A > 0and b # ¢,

Uso(§) =am £+ vm2A+ mp(b—c) (5.10)
c1ry exp(ri€) + cara exp(raﬁ)}
c1exp(rié) + caexp(rad) 1

— 2m

For A < 0and b # ¢,

U10711(€) =am =+t Vm2A + mp(b — C) (511)

VA V=A
—cq sin( &) + c2 cos( )
— mpb—c)+a+V-A 2 2 .
[< ) clcos(V;A )—f—CQSin(V;A )}

Here £ = IFm\/mzA% + m%.

The solution us(x,t) in Eq.(5.8) is simulated in Fig.9-Fig.10. These figures show kink wave solutions. Figs.9 and
10 are 3D and 2D plots of the traveling wave solution us(z,t) and us(x,1) in Eq.(5.8) fora = 0.75, 5 =1, 6 =0.5,
m=05a=2, b=5 ¢=2, ¢,=1, co=1andp=0.2.
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-0.10

20

Figure 1. 3D plot of the obtained traveling wave solution us(z, 1,t) in Eq.(3.12).

-20

~0.14 -

Figure 2. 2D plot of the obtained traveling wave solution us(x, 1,1) in Eq.(3.12).

x

Figure 3. 3D plot of the obtained traveling wave solution u3(z, 1,t) in Eq.(3.13).
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Figure 4. 2D plot of the obtained traveling wave solution u3(z,1, 1) in Eq.(3.13).

-1.2F

Figure 6. 2D plot of the obtained traveling wave solution u4(x, 1,1) in Eq.(3.14).
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Figure 7. 3D plot of the obtained traveling wave solution u;3(z, t) in Eq.(4.17).
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Figure 9. 3D plot of the obtained traveling wave solution us(x,t) in Eq.(5.8).
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-30 -20 -10 10 20 30

Figure 10. 2D plot of the obtained traveling wave solution us(z, 1) in Eq.(5.8).

6. Conclusion

The fundamental goal of the paper has been to construct an approximation to the solution of the conformable
space-time fractional (2+1)-dimensional breaking soliton, third-order KdV and Burger’s equations by SITEM.
The obtained solutions are traveling wave solutions of the conformable space-time fractional (2+1)-dimensional
breaking soliton, third-order KdV and Burger’s equations. These equations have been converted into its equivalent
nonlinear ordinary differential equation by using fractional complex transformation. Solutions of the obtained

nonlinear ordinary differential equation have been seek in the form of the summation of the function p + tan(@).

Substituting the summation of the function p + tan(@) into the nonlinear ordinary differential equation and
equalizing coefficients of the term with the same degree, nonlinear algebraic system is obtained. Solving the
nonlinear algebraic system, we have the traveling wave solutions.

There are many types of traveling waves that are of particular interest in solitary wave theory. Three of these
types are the solitary waves, the periodic waves and the kink waves. The solitary waves are asymptotically zero at
large distances, the periodic waves have periodicity, the kink waves rise or descend from one asymptotic state to
another. The 3D and 2D graphics of the obtained solutions have been presented in the paper. Figs.1- 2, Figs.9-10
show kink waves solutions, Figs.5- 6, Figs.7-8 have periodic waves solutions and Figs.3-4 give solitary waves
solutions. This method changes the given difficult problems into simple one and solve easily by using MATLAB
programming. The obtained solutions are new and have not been reported in former literature. The method can

also be applied to other nonlinear fractional partial differential equations.
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