

RESEARCH ARTICLE

Various spectra and energies of commuting graphs of finite rings

Walaa Nabil Taha Fasfous¹, Rajat Kanti Nath^{*1}, Reza Sharafdini²

¹Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India ²Department of Mathematics, Faculty of Science, Persian Gulf University, Bushehr 75169-13817, Iran

Abstract

The commuting graph of a non-commutative ring R with center Z(R) is a simple undirected graph whose vertex set is $R \setminus Z(R)$ and two vertices x, y are adjacent if and only if xy = yx. In this paper, we compute various spectra and energies of commuting graphs of some classes of finite rings and study their consequences.

Mathematics Subject Classification (2010). 16P10, 05C50, 15A18, 05C25

Keywords. commuting graph, spectrum, energy, finite ring

1. Introduction

Let R be a non-commutative ring with center Z(R). The commuting graph of R, denoted by Γ_R , is a simple undirected graph whose vertex set is $R \setminus Z(R)$ and two vertices x, y are adjacent if and only if xy = yx. In recent years, many mathematicians have considered commuting graph of different rings and studied various graph theoretic aspects (see [1,3,12,13,17,19,20,23]). Some generalizations of Γ_R are also considered in [2,9].

In Section 2, we compute spectrum, Laplacian spectrum and Signless Laplacian spectrum of commuting graphs of some classes of finite rings. Recall that the spectrum of a graph \mathcal{G} denoted by Spec(\mathcal{G}) is the set

$$\left\{\lambda_1^{k_1},\lambda_2^{k_2},\ldots,\lambda_n^{k_n}\right\},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the adjacency matrix of \mathcal{G} with multiplicities k_1, k_2, \ldots, k_n respectively. Let $A(\mathcal{G})$ and $D(\mathcal{G})$ denote the adjacency matrix and degree matrix of a graph \mathcal{G} respectively. Then the Laplacian matrix and Signless Laplacian matrix of \mathcal{G} are given by $L(\mathcal{G}) = D(\mathcal{G}) - A(\mathcal{G})$ and $Q(\mathcal{G}) = D(\mathcal{G}) + A(\mathcal{G})$ respectively. Let L-spec(\mathcal{G}) and Q-spec(\mathcal{G}) be the Laplacian spectrum and Signless Laplacian spectrum of \mathcal{G} respectively. Then L-spec(\mathcal{G}) = $\left\{\beta_1^{b_1}, \beta_2^{b_2}, \ldots, \beta_m^{b_m}\right\}$ and Q-spec(\mathcal{G}) = $\left\{\gamma_1^{c_1}, \gamma_2^{c_2}, \ldots, \gamma_n^{c_n}\right\}$, where $\beta_1, \beta_2, \ldots, \beta_m$ are the eigenvalues of $L(\mathcal{G})$ with multiplicities b_1, b_2, \ldots, b_m and $\gamma_1, \gamma_2, \ldots, \gamma_n$ are the eigenvalues of $Q(\mathcal{G})$ with multiplicities c_1, c_2, \ldots, c_n respectively. The energy, Laplacian energy and Signless Laplacian energy of a graph \mathcal{G} are given by

^{*}Corresponding Author.

Email addresses: w.n.fasfous@gmail.com (W.N.T. Fasfous), rajatkantinath@yahoo.com (R.K. Nath), sharafdini@pgu.ac.ir (R. Sharafdini)

Received: 15.03.2019; Accepted: 24.02.2020

$$E(\mathfrak{G}) = \sum_{\lambda \in \operatorname{Spec}(\mathfrak{G})} |\lambda|,$$

$$LE(\mathfrak{G}) = \sum_{\mu \in \operatorname{L-spec}(\mathfrak{G})} \left| \mu - \frac{2|e(\mathfrak{G})|}{|v(\mathfrak{G})|} \right| \text{ and } (1.1)$$

$$LE^{+}(\mathfrak{G}) = \sum_{\nu \in \operatorname{Q-spec}(\mathfrak{G})} \left| \nu - \frac{2|e(\mathfrak{G})|}{|v(\mathfrak{G})|} \right|,$$

where $v(\mathfrak{G})$ and $e(\mathfrak{G})$ are the set of vertices and edges of \mathfrak{G} , respectively.

Throughout the paper R denotes a non-commutative finite ring and p, q denote distinct primes. $\frac{R}{Z(R)}$ denotes the additive quotient group. Also, K_n denotes a complete graph on n vertices and lK_n denotes the disjoint union of l copies of K_n .

2. Various spectra

In [19], various spectra of commuting graphs of some small order finite non-commutative rings have been computed. In this section we consider more classes of finite non-commutative rings. The following theorem is useful in computing various spectra of commuting graphs of finite rings.

Theorem 2.1 ([18, Theorem 2.1]). If $\mathcal{G} = l_1 K_{n_1} \sqcup l_2 K_{n_2} \sqcup \cdots \sqcup l_m K_{n_m}$, then

(a) Spec(
$$\mathfrak{G}$$
) = { $(-1)^{\sum_{i=1}^{m} l_i(n_i-1)}, (n_1-1)^{l_1}, (n_2-1)^{l_2}, \dots, (n_m-1)^{l_m}$ }.
(b) L-spec(\mathfrak{G}) = { $0^{\sum_{i=1}^{m} l_i}, n_1^{l_1(n_1-1)}, n_2^{l_2(n_2-1)}, n_m^{l_m(n_m-1)}$ }.

(c) Q-spec(
$$\mathfrak{G}$$
) = { $(2n_1 - 2)^{l_1}, (n_1 - 2)^{l_1(n_1 - 1)}, (2n_2 - 2)^{l_2}, (n_2 - 2)^{l_2(n_2 - 1)}, \dots, (2n_m - 2)^{l_m}, (n_m - 2)^{l_m(n_m - 1)}$ }.

Theorem 2.2. Let $|R| = p^4$ and R has unity.

(a) If
$$|Z(R)| = p$$
 then $\operatorname{Spec}(\Gamma_R) = \left\{ (-1)^{(p^2+p+1)(p^2-p-1)}, (p^2-p-1)^{p^2+p+1} \right\}$,
L-spec $(\Gamma_R) = \left\{ 0^{p^2+p+1}, (p^2-p)^{(p^2+p+1)(p^2-p-1)} \right\}$ and
Q-spec $(\Gamma_R) = \left\{ (2p^2-2p-2)^{p^2+p+1}, (p^2-p-2)^{(p^2+p+1)(p^2-p-1)} \right\}$; or
 $\operatorname{Spec}(\Gamma_R) = \left\{ (-1)^{l_1(p^2-p-1)+l_2(p^3-p-1)}, (p^2-p-1)^{l_1}, (p^3-p-1)^{l_2} \right\}$,
L-spec $(\Gamma_R) = \left\{ 0^{l_1+l_2}, (p^2-p)^{l_1(p^2-p-1)}, (p^3-p)^{l_2(p^3-p-1)} \right\}$ and Q-spec $(\Gamma_R) = \left\{ (2p^2-2p-2)^{l_1}, (p^2-p-2)^{l_1(p^2-p-1)}, (2p^3-2p-2)^{l_2}, (p^3-p-2)^{l_2(p^3-p-1)} \right\}$,
where $l_1 + l_2(p+1) = p^2 + p + 1$.
(b) If $|Z(R)| = p^2$ then $\operatorname{Spec}(\Gamma_R) = \left\{ (-1)^{(p+1)(p^3-p^2-1)}, (p^3-p^2-1)^{p+1} \right\}$,
L-spec $(\Gamma_R) = \left\{ 0^{p+1}, (p^3-p^2)^{(p+1)(p^3-p^2-1)} \right\}$ and
Q-spec $(\Gamma_R) = \left\{ (2p^3-2p^2-2)^{p+1}, (p^3-p^2-2)^{(p+1)(p^3-p^2-1)} \right\}$.

Proof. (a) If |Z(R)| = p then, by Theorem 2.5 of [22], we have $\Gamma_R = (p^2 + p + 1)K_{(p^2-p)}$ or $l_1K_{(p^2-p)} \sqcup l_2K_{(p^3-p)}$, where $l_1 + l_2(p+1) = p^2 + p + 1$. Hence, the result follows from Theorem 2.1.

(b) If $|Z(R)| = p^2$ then, by Theorem 2.5 of [22], we have $\Gamma_R = (p+1)K_{(p^3-p^2)}$. Hence, the result follows from Theorem 2.1.

Theorem 2.3. Let $|R| = p^5$ with unity and Z(R) is not a field.

$$\begin{array}{ll} \text{(a)} & If \ |Z(R)| = p^2 \ then \ \mathrm{Spec}(\Gamma_R) = \left\{ (-1)^{(p^2+p+1)(p^3-p^2-1)}, (p^3-p^2-1)^{p^2+p+1} \right\}, \\ & \mathrm{L-spec}(\Gamma_R) = \left\{ 0^{p^2+p+1}, (p^3-p^2)^{(p^2+p+1)(p^3-p^2-1)} \right\} \ and \\ & \mathrm{Q-spec}(\Gamma_R) = \left\{ (2p^3-2p^2-2)^{p^2+p+1}, (p^3-p^2-2)^{(p^2+p+1)(p^3-p^2-1)} \right\}; \ or \\ & \mathrm{Spec}(\Gamma_R) = \left\{ (-1)^{l_1(p^3-p^2-1)+l_2(p^3-p-1)}, \ (p^3-p^2-1)^{l_1}, (p^3-p-1)^{l_2} \right\}, \\ & \mathrm{L-spec}(\Gamma_R) = \left\{ 0^{l_1+l_2}, \ (p^3-p^2)^{l_1(p^3-p^2-1)}, \ (p^3-p)^{l_2(p^3-p-1)} \right\} \ and \\ & \mathrm{Q-spec}(\Gamma_R) = \left\{ (2p^3-2p^2-2)^{l_1}, (p^3-p^2-2)^{l_1(p^3-p^2-1)}, (2p^3-2p-2)^{l_2}, \\ & (p^3-p-2)^{l_2(p^3-p-1)} \right\}, \ where \ l_1+l_2(p+1) = p^2+p+1. \end{array} \right.$$

$$(b) \ If \ |Z(R)| = p^3 \ then \ \mathrm{Spec}(\Gamma_R) = \left\{ (-1)^{(p+1)(p^4-p^3-1)}, (p^4-p^3-1)^{p+1} \right\}, \\ & \mathrm{L-spec}(\Gamma_R) = \left\{ 0^{p+1}, (p^4-p^3)^{(p+1)(p^4-p^3-1)} \right\} \ and \\ & \mathrm{Q-spec}(\Gamma_R) = \left\{ (2p^4-2p^3-2)^{p+1}, (p^4-p^3-2)^{(p+1)(p^4-p^3-1)} \right\}. \end{array} \right.$$

Proof. (a) If $|Z(R)| = p^2$ then, by Theorem 2.7 of [22], we have $\Gamma_R = (p^2 + p + 1)K_{(p^3 - p^2)}$ or $l_1K_{(p^3 - p^2)} \sqcup l_2K_{(p^3 - p)}$, where $l_1 + l_2(p+1) = p^2 + p + 1$. Hence, the result follows from Theorem 2.1.

(b) If $|Z(R)| = p^3$ then, by Theorem 2.7 of [22], we have $\Gamma_R = (p+1)K_{(p^4-p^3)}$. Hence, the result follows from Theorem 2.1.

Theorem 2.4. Let |R| = pq and $Z(R) = \{0\}$.

$$\begin{aligned} \text{(a)} \quad &If \ (p-1) \ | \ (pq-1) \ then \ \operatorname{Spec}(\Gamma_R) = \left\{ (-1)^{\frac{(pq-1)(p-2)}{p-1}}, (p-2)^{\frac{pq-1}{p-1}} \right\}, \ \text{L-spec}(\Gamma_R) = \\ & \left\{ 0^{\frac{pq-1}{p-1}}, (p-1)^{\frac{(pq-1)(p-2)}{p-1}} \right\} \quad and \quad \operatorname{Q-spec}(\Gamma_R) = \left\{ (2p-4)^{\frac{pq-1}{p-1}}, (p-3)^{\frac{(pq-1)(p-2)}{p-1}} \right\}. \end{aligned}$$

$$(\text{b)} \quad If \ (q-1) \ | \ (pq-1) \ then \ \operatorname{Spec}(\Gamma_R) = \left\{ (-1)^{\frac{(pq-1)(q-2)}{q-1}}, (q-2)^{\frac{pq-1}{q-1}} \right\}, \ \text{L-spec}(\Gamma_R) = \\ & \left\{ 0^{\frac{pq-1}{q-1}}, (q-1)^{\frac{(pq-1)(q-2)}{q-1}} \right\} \quad and \quad \operatorname{Q-spec}(\Gamma_R) = \left\{ (2q-4)^{\frac{pq-1}{q-1}}, (q-3)^{\frac{(pq-1)(q-2)}{q-1}} \right\}. \end{aligned}$$

$$(\text{c)} \quad If \ l_1(p-1) + l_2(q-1) = pq-1 \ then \ \operatorname{Spec}(\Gamma_R) = \left\{ (-1)^{l_1(p-2)+l_2(q-2)}, (p-2)^{l_1}, (q-2)^{l_2} \right\}, \ \text{L-spec}(\Gamma_R) = \left\{ 0^{l_1+l_2}, (p-1)^{l_1(p-2)}, (q-1)^{l_2(q-2)} \right\} \quad and \ \ \text{Q-spec}(\Gamma_R) = \left\{ (2p-4)^{l_1}, (p-3)^{l_1(p-2)}, (2q-4)^{l_2}, (q-3)^{l_2(q-2)} \right\}. \end{aligned}$$

Proof. It was shown in [23, Theorem 2.8] that

$$\Gamma_R = \begin{cases} \frac{pq-1}{p-1}K_{p-1}, & \text{if } (p-1) \mid (pq-1) \\ \frac{pq-1}{q-1}K_{q-1}, & \text{if } (q-1) \mid (pq-1) \\ l_1K_{p-1} \sqcup l_2K_{q-1}, & \text{if } l_1(p-1) + l_2(q-1) = pq-1. \end{cases}$$

Hence, the result follows from Theorem 2.1.

Theorem 2.5. Let $|R| = p^2 q$ and $Z(R) = \{0\}$.

$$\begin{aligned} \text{(a)} \quad &If \ t \in \{p,q,p^2,pq\} \ and \ (t-1) \mid (p^2q-1) \ then \ \operatorname{Spec}(\Gamma_R) = \left\{ (-1)^{\frac{(p^2q-1)(t-2)}{t-1}}, \\ &(t-2)^{\frac{p^2q-1}{t-1}} \right\}, \ \text{L-spec}(\Gamma_R) = \left\{ 0^{\frac{p^2q-1}{t-1}}, (t-1)^{\frac{(p^2q-1)(t-2)}{t-1}} \right\} \ and \\ &Q\text{-spec}(\Gamma_R) = \left\{ (2t-4)^{\frac{p^2q-1}{t-1}}, (t-3)^{\frac{(p^2q-1)(t-2)}{t-1}} \right\}. \end{aligned}$$
$$\begin{aligned} \text{(b)} \quad &If \ l_1(p-1) + l_2(q-1) + l_3(p^2-1) + l_4(pq-1) = p^2q - 1 \ then \ \operatorname{Spec}(\Gamma_R) \\ &= \left\{ (-1)^{l_1(p-2)+l_2(q-2)+l_3(p^2-2)+l_4(pq-2)}, (p-2)^{l_1}, (q-2)^{l_2}, (p^2-2)^{l_3}, (pq-2)^{l_4} \right\}, \end{aligned}$$

$$\begin{split} \text{L-spec}(\Gamma_R) &= \Big\{ 0^{l_1+l_2+l_3+l_4}, (p-1)^{l_1(p-2)}, (q-1)^{l_2(q-2)}, (p^2-1)^{l_3(p^2-2)}, \\ (pq-1)^{l_4(pq-2)} \Big\} \quad and \quad \text{Q-spec}(\Gamma_R) &= \Big\{ (2p-4)^{l_1}, (p-3)^{l_1(p-2)}, (2q-4)^{l_2}, \\ (q-3)^{l_2(q-2)}, (2p^2-4)^{l_3}, (p^2-3)^{l_3(p^2-2)}, (2pq-4)^{l_4}, (pq-3)^{l_4(pq-2)} \Big\}. \end{split}$$

Proof. (a) By [23, Theorem 2.9], we have $\Gamma_R = \frac{p^2q-1}{t-1}K_{t-1}$ if $t \in \{p, q, p^2, pq\}$ and $(t-1) \mid (p^2q-1)$. Hence, the result follows from Theorem 2.1.

(b) By [23, Theorem 2.9], we also have $\Gamma_R = l_1 K_{p-1} \sqcup l_2 K_{q-1} \sqcup l_3 K_{p^2-1} \sqcup l_4 K_{pq-1}$ if $l_1(p-1) + l_2(q-1) + l_3(p^2-1) + l_4(pq-1) = p^2q - 1$. Hence, the result follows from Theorem 2.1.

Theorem 2.6. Let $|R| = p^3 q$ and R has unity. If |Z(R)| = pq then

Spec(
$$\Gamma_R$$
) = {(-1)^{(p+1)(p^2q-pq-1)}, $(p^2q - pq - 1)^{p+1}$ },
L-spec(Γ_R) = { 0^{p+1} , $(p^2q - pq)^{(p+1)(p^2q-pq-1)}$ } and
Q-spec(Γ_R) = { $(2p^2q - 2pq - 2)^{p+1}$, $(p^2q - pq - 2)^{(p+1)(p^2q-pq-1)}$ }.

Proof. If |Z(R)| = pq then, by [23, Theorem 2.12], we have $\Gamma_R = (p+1)K_{p^2q-pq}$. Hence, the result follows from Theorem 2.1.

We conclude this section with the following result.

 $\begin{aligned} \text{Theorem 2.7. Let } |R| &= p^{3}q, \ R \ has \ unity \ and \ |Z(R)| = p^{2}. \end{aligned}$ $(a) \ If \ (p-1) \ | \ (pq-1) \ then \ \operatorname{Spec}(\Gamma_{R}) &= \left\{ \left(-1\right)^{\frac{(pq-1)(p^{3}-p^{2}-1)}{p-1}}, \left(p^{3}-p^{2}-1\right)^{\frac{pq-1}{p-1}} \right\}, \\ \text{L-spec}(\Gamma_{R}) &= \left\{ 0^{\frac{pq-1}{p-1}}, \left(p^{3}-p^{2}\right)^{\frac{(pq-1)(p^{3}-p^{2}-1)}{p-1}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ (2p^{3}-2p^{2}-2)^{\frac{pq-1}{p-1}}, \left(p^{3}-p^{2}-2\right)^{\frac{(pq-1)(p^{2}-p^{2}-1)}{p-1}} \right\}. \end{aligned}$ $(b) \ If \ (q-1) \ | \ (pq-1) \ then \ \operatorname{Spec}(\Gamma_{R}) &= \left\{ \left(-1\right)^{\frac{(pq-1)(p^{2}-p^{2}-1)}{q-1}}, \left(p^{2}q-p^{2}-1\right)^{\frac{pq-1}{q-1}} \right\}, \\ \text{L-spec}(\Gamma_{R}) &= \left\{ 0^{\frac{pq-1}{q-1}}, \left(p^{2}q-p^{2}\right)^{\frac{(pq-1)(p^{2}-p^{2}-1)}{q-1}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ (2p^{2}q-2p^{2}-2)^{\frac{pq-1}{q-1}}, \left(p^{2}q-p^{2}-2\right)^{\frac{(pq-1)(p^{2}q-p^{2}-1)}{q-1}} \right\}. \end{aligned}$ $(c) \ If \ l_{1}(p-1) + l_{2}(q-1) = pq-1 \ then \\ \text{Spec}(\Gamma_{R}) &= \left\{ (-1)^{l_{1}(p^{3}-p^{2}-1)+l_{2}(p^{2}q-p^{2}-1)}, \left(p^{3}-p^{2}-1\right)^{l_{1}}, \left(p^{2}q-p^{2}-1\right)^{l_{2}} \right\}, \\ \text{L-spec}(\Gamma_{R}) &= \left\{ 0^{l_{1}+l_{2}}, \left(p^{3}-p^{2}\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(p^{2}q-p^{2}-1\right)^{l_{1}}, \left(p^{2}q-p^{2}-1\right)^{l_{2}} \right\}, \\ \text{L-spec}(\Gamma_{R}) &= \left\{ 0^{l_{1}+l_{2}}, \left(p^{3}-p^{2}\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(p^{2}q-p^{2}-1\right)^{l_{1}}, \left(p^{2}q-p^{2}-2\right)^{l_{2}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ (2p^{3}-2p^{2}-2)^{l_{1}}, \left(p^{3}-p^{2}-2\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(2p^{2}q-p^{2}-2\right)^{l_{2}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ 0^{l_{1}+l_{2}}, \left(p^{3}-p^{2}-2\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(p^{2}q-p^{2}-2\right)^{l_{2}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ (2p^{3}-2p^{2}-2)^{l_{1}}, \left(p^{3}-p^{2}-2\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(2p^{2}q-2p^{2}-2\right)^{l_{2}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ (2p^{3}-2p^{2}-2)^{l_{1}}, \left(p^{3}-p^{2}-2\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(2p^{2}q-2p^{2}-2\right)^{l_{2}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ (2p^{3}-2p^{2}-2)^{l_{1}}, \left(p^{3}-p^{2}-2\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(2p^{2}q-2p^{2}-2\right)^{l_{2}} \right\} \ and \\ \text{Q-spec}(\Gamma_{R}) &= \left\{ (2p^{3}-2p^{2}-2)^{l_{1}}, \left(p^{3}-p^{2}-2\right)^{l_{1}(p^{3}-p^{2}-1)}, \left(2p^{2}q-2p^{2}-2\right)^{l_{2}} \right\} \ and$

Proof. If $|Z(R)| = p^2$ then, by [23, Theorem 2.12], we have

$$\Gamma_R = \begin{cases} \frac{pq-1}{p-1} K_{p^3-p^2}, & \text{if } (p-1) \mid (pq-1) \\ \frac{pq-1}{q-1} K_{p^2q-p^2}, & \text{if } (q-1) \mid (pq-1) \\ l_1 K_{p^3-p^2} \sqcup l_2 K_{p^2q-p^2}, & \text{if } l_1(p-1) + l_2(q-1) = pq-1. \end{cases}$$

Hence, the result follows from Theorem 2.1.

1918

3. Various energies

If $\frac{R}{Z(R)}$ is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$, then it was shown in Theorem 3.1 of [19] that

$$E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p^2 - 1)|Z(R)| - 2(p + 1).$$
(3.1)

As a consequence of (3.1), in the following results, we compute various energies of commuting graphs of several well-known classes of finite rings.

Theorem 3.1. If $|R| = p^2$, then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p^2 - p - 2)$.

Proof. If R is a non-commutative ring of order p^2 , then Z(R) has only one element. Therefore, the additive group $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Hence the result follows from (3.1).

Theorem 3.2. If $|R| = p^3$ and R has unity, then

$$E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p^3 - 2p - 1)$$

Proof. If R is a non-commutative ring with unity of order p^3 , then Z(R) has p elements. Therefore, the additive group $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Hence the result follows from (3.1).

A ring R is called an n-centralizer ring if $|\operatorname{Cent}(R)| = n$, where $\operatorname{Cent}(R) = \{C_R(x) : x \in R\}$. Various properties of n-centralizer rings can be found in [5, 10, 11]. In the following results we compute various energies of some finite n-centralizer rings.

Theorem 3.3. If $|\operatorname{Cent}(R)| = 4$, then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 6|Z(R)| - 6$.

Proof. It was shown in [11, Theorem 3.2] that the additive quotient group $\frac{R}{Z(R)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ if R is a finite 4-centralizer ring. Hence, the result follows from (3.1) putting p = 2. \Box

Theorem 3.4. If $|\operatorname{Cent}(R)| = 5$, then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 16|Z(R)| - 8$.

Proof. It was shown in [11, Theorem 4.3] that the additive quotient group $\frac{R}{Z(R)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ if R is a finite 5-centralizer ring. Hence, the result follows from (3.1).

Theorem 3.5. If R is a finite p-ring and $|\operatorname{Cent}(R)| = (p+2)$, then

$$E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p^2 - 1)|Z(R)| - 2(p + 1).$$

Proof. It was shown in [11, Theorem 2.12] that the additive quotient group $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ if R is a finite (p+2)-centralizer p-ring. Hence, the result follows from (3.1).

In 1976, MacHale [16] initiated the study of commutativity degree of a finite ring R denoted by Pr(R). Recall that the commutativity degree of R is the probability that a randomly chosen pair of elements of R commute. Recent results on Pr(R) can be found in [4,6–8]. In the following theorem we compute various energies of Γ_R for some given values of Pr(R).

Theorem 3.6. Let p be the smallest prime dividing |R|. If $\Pr(R) = \frac{p^2 + p - 1}{p^3}$ then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p^2 - 1)|Z(R)| - 2(p+1).$

$$E(\mathbf{1}_{R}) - EE(\mathbf{1}_{R}) - EE(\mathbf{1}_{R}) - 2(p-1)|Z(R)| - 2(p+1).$$

Proof. By Theorem 2 of [16] we have $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Hence, the result follows from (3.1).

We have the following corollary to the above theorem.

Corollary 3.7. If $Pr(R) = \frac{5}{8}$ then

 $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 6|Z(R)| - 6.$

Now we compute various energies of Γ_R for the rings considered in Section 2. Note that one can do this using Theorems 2.1 - 2.7 and (1.1). However, using the following theorem one can also compute various energies.

Theorem 3.8. If $\mathfrak{G} = l_1 K_{n_1} \sqcup l_2 K_{n_2}$, then $E(\mathfrak{G}) = 2l_1(n_1 - 1) + 2l_2(n_2 - 1)$. Further, if $n_1 = n_2 = n$ then

$$E(lK_n) = LE(lK_n) = LE^+(lK_n) = 2l(n-1)$$

where $l = l_1 + l_2$.

Proof. By Theorem 2.1(a) we have

Spec(
$$\mathcal{G}$$
) = $\left\{ (-1)^{\sum_{i=1}^{2} l_i(n_i-1)}, (n_1-1)^{l_1}, (n_2-1)^{l_2} \right\}.$

Therefore, (1.1) gives

$$E(\mathfrak{G}) = |-1| \sum_{i=1}^{2} l_i(n_i - 1) + l_1|n_1 - 1| + l_2|n_2 - 1|$$

= $l_1(n_1 - 1) + l_2(n_2 - 1) + l_1(n_1 - 1) + l_2(n_2 - 1)$
= $2l_1(n_1 - 1) + 2l_2(n_2 - 1).$

If $n_1 = n_2 = n$ and $l = l_1 + l_2$ then $\mathcal{G} = lK_n$ and so $E(lK_n) = 2l(n-1)$. In this case, we also have $|v(lK_n)| = ln$, $|e(lK_n)| = \frac{ln(n-1)}{2}$ and so $\frac{2|e(lK_n)|}{|v(lK_n)|} = n-1$.

By Theorem 2.1(b) we have L-spec $(lK_n) = \{0^l, n^{l(n-1)}\}$. Therefore

$$\left| 0 - \frac{2|e(lK_n)|}{|v(lK_n)|} \right| = n - 1 \text{ and } \left| n - \frac{2|e(lK_n)|}{|v(lK_n)|} \right| = 1.$$

Hence, (1.1) gives

$$LE(lK_n) = (n-1)l + l(n-1) = 2l(n-1).$$

Again, by Theorem 2.1(c) we also have Q-spec $(lK_n) = \{(2n-2)^l, (n-2)^{l(n-1)}\}$. Therefore

$$\left|2n-2-\frac{2|e(lK_n)|}{|v(lK_n)|}\right| = n-1 \text{ and } \left|n-2-\frac{2|e(lK_n)|}{|v(lK_n)|}\right| = 1.$$

Hence, (1.1) gives

$$LE^+(lK_n) = (n-1)l + l(n-1) = 2l(n-1)$$

This completes the proof.

Theorem 3.9. Let R have unity and $|R| = p^4$.

(a) If |Z(R)| = p then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p^2 + p + 1)(p^2 - p - 1)$ or $E(\Gamma_R) = 2l_1(p^2 - p - 1) + 2l_2(p^3 - p - 1)$, where $l_1 + l_2(p + 1) = p^2 + p + 1$. (b) If $|Z(R)| = p^2$ then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p + 1)(p^3 - p^2 - 1)$.

Proof. By Theorem 2.5 of [22], we have $\Gamma_R = (p^2 + p + 1)K_{(p^2-p)}$ or $l_1K_{(p^2-p)} \sqcup l_2K_{(p^3-p)}$ (where $l_1 + l_2(p+1) = p^2 + p + 1$) if |Z(R)| = p and $(p+1)K_{(p^3-p^2)}$ if $|Z(R)| = p^2$. Hence, the result follows from Theorem 3.8.

Theorem 3.10. Let R have unity, $|R| = p^5$ and Z(R) is not a field.

(a) If $|Z(R)| = p^2$ then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p^2 + p + 1)(p^3 - p^2 - 1)$ or $E(\Gamma_R) = 2l_1(p^3 - p^2 - 1) + 2l_2(p^3 - p - 1)$, where $l_1 + l_2(p + 1) = p^2 + p + 1$. (b) If $|Z(R)| = p^3$ then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p + 1)(p^4 - p^3 - 1)$.

Proof. By Theorem 2.7 of [22], we have $\Gamma_R = (p^2 + p + 1)K_{(p^3 - p^2)}$ or $l_1K_{(p^3 - p^2)} \sqcup l_2K_{(p^3 - p)}$ (where $l_1 + l_2(p+1) = p^2 + p + 1$) if $|Z(R)| = p^2$ and $(p+1)K_{(p^4 - p^3)}$ if $|Z(R)| = p^3$. Hence, the result follows from Theorem 3.8.

Theorem 3.11. Let |R| = pq and $Z(R) = \{0\}$.

(a) If
$$(p-1) | (pq-1)$$
 then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = \frac{2(pq-1)(p-2)}{p-1}$.
(b) If $(q-1) | (pq-1)$ then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = \frac{2(pq-1)(q-2)}{q-1}$.
(c) If $l_1(p-1) + l_2(q-1) = pq-1$ then $E(\Gamma_R) = 2l_1(p-2) + 2l_2(q-2)$.

Proof. It was shown in [23, Theorem 2.8] that

$$\Gamma_R = \begin{cases} \frac{pq-1}{p-1} K_{p-1}, & \text{if } (p-1) \mid (pq-1) \\ \frac{pq-1}{q-1} K_{q-1}, & \text{if } (q-1) \mid (pq-1) \\ l_1 K_{p-1} \sqcup l_2 K_{q-1}, & \text{if } l_1 (p-1) + l_2 (q-1) = pq - 1 \end{cases}$$

Hence, the result follows from Theorem 3.8.

Theorem 3.12. Let $|R| = p^2 q$ and $Z(R) = \{0\}$. (a) If $t \in \{p, q, p^2, pq\}$ and $(t - 1) \mid (p^2q - 1)$ then

$$E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = \frac{2(p^2q - 1)(t - 2)}{t - 1}.$$
(b) If $l_1(p - 1) + l_2(q - 1) + l_3(p^2 - 1) + l_4(pq - 1) = p^2q - 1$ then

$$E(\Gamma_R) = 2\left(p^2q - 1 - (l_1 + l_2 + l_3 + l_4)\right).$$

Proof. (a) By [23, Theorem 2.9], we have $\Gamma_R = \frac{p^2q-1}{t-1}K_{t-1}$ if $t \in \{p, q, p^2, pq\}$ and $(t-1) \mid (p^2q-1)$. Hence, the result follows from Theorem 3.8.

(b) By [23, Theorem 2.9], we also have $\Gamma_R = l_1 K_{p-1} \sqcup l_2 K_{q-1} \sqcup l_3 K_{p^2-1} \sqcup l_4 K_{pq-1}$ if $l_1(p-1) + l_2(q-1) + l_3(p^2-1) + l_4(pq-1) = p^2q - 1$. Hence, the result follows from Theorem 2.5 and (1.1).

Theorem 3.13. Let R have unity and $|R| = p^3q$. If |Z(R)| = pq then

$$E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = 2(p+1)(p^2q - pq - 1).$$

Proof. If |Z(R)| = pq then, by [23, Theorem 2.12], we have $\Gamma_R = (p+1)K_{p^2q-pq}$. Hence the result follows from Theorem 3.8.

Theorem 3.14. Let R have unity, $|R| = p^3 q$ and $|Z(R)| = p^2$.

(a) If
$$(p-1) | (pq-1)$$
 then $E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = \frac{2(pq-1)(p^3-p^2-1)}{p-1}$.
(b) If $(q-1) | (pq-1)$ then

$$E(\Gamma_R) = LE(\Gamma_R) = LE^+(\Gamma_R) = \frac{2(pq-1)(p^2q - p^2 - 1)}{q-1}.$$

(c) If
$$l_1(p-1) + l_2(q-1) = pq - 1$$
 then
 $E(\Gamma_R) = 2l_1(p^3 - p^2 - 1) + 2l_2(p^2q - p^2 - 1)$

Proof. If $|Z(R)| = p^2$ then, by [23, Theorem 2.12], we have

$$\Gamma_R = \begin{cases} \frac{pq-1}{p-1} K_{p^3-p^2}, & \text{if } (p-1) \mid (pq-1) \\ \frac{pq-1}{q-1} K_{p^2q-p^2}, & \text{if } (q-1) \mid (pq-1) \\ l_1 K_{p^3-p^2} \sqcup l_2 K_{p^2q-p^2}, & \text{if } l_1(p-1) + l_2(q-1) = pq-1. \end{cases}$$

Hence, the result follows from Theorem 3.8.

Note that the rings considered above are CC-rings. Recall that a non-commutative ring R is called a CC-ring if all the centralizers of its non-central elements are commutative. In other words, $C_R(x)$ for all $x \in R \setminus Z(R)$ is commutative, where $C_R(x) := \{y \in R : xy = yx\}$ is the centralizer of x. The study of CC-rings was initiated by Erfanian et al. in [13]. In the following theorem we compute energy of a CC-ring.

Theorem 3.15. Let R be a finite CC-ring with distinct centralizers S_1, S_2, \ldots, S_n of non-central elements of R. Then $E(\Gamma_R) = 2(|R| - |Z(R)| - n)$.

Proof. By Theorem 2.1 of [12] we have

Spec
$$(\Gamma_R) = \{(-1)^{\sum_{i=1}^n |S_i| - n(|Z(R)| + 1)}, (|S_1| - |Z(R)| - 1)^1, \dots, (|S_n| - |Z(R)| - 1)^1\}.$$

Therefore

$$E(\Gamma_R) = \sum_{i=1}^n |S_i| - n(|Z(R)| + 1) + (|S_1| - |Z(R)| - 1) + \dots + (|S_n| - |Z(R)| - 1)$$
$$= 2\sum_{i=1}^n |S_i| - 2n|Z(R)| - 2n.$$

Since $\sum_{i=1}^{n} |S_i| = |R| + (n-1)|Z(R)|$, we get the required expression for $E(\Gamma_R)$.

Corollary 3.16. Let R be a finite CC-ring and A be any finite commutative ring. Then $E(\Gamma_{R\times A}) = 2(|R||A| - |Z(R)||A| - n)$, where $n = |\operatorname{Cent}(R)| - 1$.

Proof. Follows from Theorem 3.15 noting that $R \times A$ is a CC-ring, $|\operatorname{Cent}(R)| = |\operatorname{Cent}(R \times A)|$ and $Z(R \times A) = Z(R) \times A$.

4. Some consequences

A finite non-commutative ring R is called super integral if spectrum, Laplacian spectrum and Signless Laplacian spectrum of Γ_R contain only integers. The notion of super integral ring was introduced in [19]. It can be seen that all the rings considered in Section 2 are super integral.

A finite graph \mathcal{G} is called hyperenergetic and borderenergetic if $E(\mathcal{G}) > E(K_{|v(\mathcal{G})|})$ and $E(\mathcal{G}) = E(K_{|v(\mathcal{G})|})$ respectively. Similarly, \mathcal{G} is called L-hyperenergetic and L-borderenergetic if $LE(\mathcal{G}) > LE(K_{|v(\mathcal{G})|})$ and $LE(\mathcal{G}) = LE(K_{|v(\mathcal{G})|})$ respectively; \mathcal{G} is called Q-hyperenergetic and Q-borderenergetic if $LE^+(\mathcal{G}) > LE^+(K_{|v(\mathcal{G})|})$ and $LE^+(\mathcal{G}) =$ $LE^+(K_{|v(\mathcal{G})|})$ respectively. The study of hyperenergetic graph was initiated by Walikar et al. [24] and Gutman [15] in 1999. The concepts of borderenergetic and L-borderenergetic graphs were introduced by Gong et al. [14] and Tura [21] in the years 2015 and 2017 respectively.

A finite graph \mathcal{G} is called super hyperenergetic if it is hyperenergetic, L-hyperenergetic and Q-hyperenergetic. Similarly, we define super borderenergetic graph. In this section, we show that the commuting graphs of the rings considered in Section 3 are neither super hyperenergetic nor super borderenergetic.

Theorem 4.1. If $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ then Γ_R is neither super hyperenergetic nor super borderenergetic.

Proof. We have $|v(\Gamma_R)| = |Z(R)|(p^2-1)$, since $|R| = p^2|Z(R)|$ and $|v(\Gamma_R)| = |R| - |Z(R)|$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(|Z(R)|(p^2 - 1) - 1).$$

Since $2(|Z(R)|(p^2-1)) - (p+1) < 2(|Z(R)|(p^2-1)-1)$, by (3.1) the result follows. \Box

Corollary 4.2. Γ_R is neither super hyperenergetic nor super borderenergetic if

- (a) R is of order p^2 .
- (b) R is of order p^3 with unity.
- (c) R is a 4-centralizer ring.

- (d) R is a 5-centralizer ring.
- (e) R is a (p+2)-centralizer p-ring.
- (f) p is the smallest prime dividing |R| and $\Pr(R) = \frac{p^2 + p 1}{n^3}$.
- (g) $\Pr(R) = \frac{5}{8}$.

Proof. In any of the above cases, the additive quotient group $\frac{R}{Z(R)}$ is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p. Hence, the result follows from Theorem 4.1.

Theorem 4.3. If R is a non-commutative ring with unity of order p^4 then Γ_R is neither super hyperenergetic nor super borderenergetic.

Proof. If |Z(G)| = p then $|v(\Gamma_R)| = p^4 - p$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(p^4 - p - 1)$$
$$= 2((p^2 + p + 1)(p^2 - p) - 1).$$

We have $2(p^2 + p + 1)(p^2 - p - 1) < 2(p^4 - p - 1)$. Also

$$2l_1(p^2 - p - 1) + 2l_2(p^3 - p - 1) < 2((p^2 + p + 1)(p^2 - p) - 1)$$

if l_1, l_2 are positive integers such that $l_1 + l_2(p+1) = p^2 + p + 1$. Hence, the result follows Theorem 3.9.

If $|Z(G)| = p^2$ then $|v(\Gamma_R)| = p^4 - p^2$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(p^4 - p^2 - 1).$$

We have

$$2(p+1)(p^3 - p^2 - 1) < 2(p^4 - p^2 - 1)$$

Hence, the result follows Theorem 3.9.

Theorem 4.4. If R is a non-commutative ring with unity of order p^5 such that Z(R) is not a field then Γ_R is neither super hyperenergetic nor super borderenergetic.

Proof. If $|Z(R)| = p^2$ then $|v(\Gamma_R)| = p^5 - p^2$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(p^5 - p^2 - 1)$$
$$= 2((p^3 - p^2)(p^2 + p + 1) - 1).$$

We have $2(p^2 + p + 1)(p^3 - p^2 - 1) < 2(p^5 - p^2 - 1)$. Also

$$2l_1(p^3 - p^2 - 1) + 2l_2(p^3 - p - 1) < 2((p^3 - p^2)(p^2 + p + 1) - 1)$$

if l_1, l_2 are positive integers such that $l_1 + l_2(p+1) = p^2 + p + 1$. Hence, the result follows from Theorem 3.10.

If $|Z(R)| = p^3$ then $|v(\Gamma_R)| = p^5 - p^3$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(p^5 - p^3 - 1).$$

We have $2(p+1)(p^4 - p^3 - 1) < 2(p^5 - p^3 - 1)$. Hence, the result follows from Theorem 3.10.

Theorem 4.5. Let R be a non-commutative ring of order pq such that $Z(R) = \{0\}$. Then Γ_R is neither super hyperenergetic nor super borderenergetic.

Proof. We have $|v(\Gamma_R)| = pq - 1$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(pq-2).$$

If $t \in \{p,q\}$ and $(t-1) \mid (pq-1)$ then $\frac{2(pq-1)(t-2)}{t-1} < 2(pq-2)$. Also $2l_1(p-2) + 2l_2(q-2) < 2(pq-2)$ if l_1, l_2 are positive integers and $l_1(p-1) + l_2(q-1) = pq-1$. Hence, the result follows from Theorem 3.11.

1923

Theorem 4.6. Let R be a non-commutative ring of order p^2q such that $Z(R) = \{0\}$. Then Γ_R is neither super hyperenergetic nor super borderenergetic.

Proof. We have $|v(\Gamma_R)| = p^2 q - 1$. Therefore

 $E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(p^2q - 2).$

If $t \in \{p, q, p^2, pq\}$ and $(t-1) \mid (p^2q-1)$ then we have $\frac{2(p^2q-1)(t-2)}{t-1} < 2(p^2q-2)$. Also, $2(p^2q-1-(l_1+l_2+l_3+l_4) < 2(p^2q-2))$ if l_1, l_2 are positive integers such that $l_1(p-1) + l_2(q-1) + l_3(p^2-1) + l_4(pq-1) = p^2q - 1$. Hence, the result follows from Theorem 3.12.

Theorem 4.7. Let R be a non-commutative ring with unity having order p^3q . If |Z(R)| is not a prime then Γ_R is neither super hyperenergetic nor super borderenergetic.

Proof. If |Z(R)| = pq then $|v(\Gamma_R)| = p^3q - pq$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(p^3q - pq - 1).$$

We have $2(p+1)(p^2q - pq - 1) < 2(p^3q - pq - 1)$. Hence, the result follows from Theorem 3.13.

If $|Z(R)| = p^2$ then $|v(\Gamma_R)| = p^3q - p^2$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(p^3q - p^2 - 1).$$

We have $\frac{2(pq-1)(p^3-p^2-1)}{p-1} < 2(p^3q-p^2-1), \frac{2(pq-1)(p^2q-p^2-1)}{q-1} < 2(p^3q-p^2-1) \text{ and } 2l_1(p^3-p^2-1) + 2l_2(p^2q-p^2-1) < 2(p^3q-p^2-1) \text{ if } (p-1) \mid (pq-1), (q-1) \mid (pq-1) \text{ and } l_1(p-1) + l_2(q-1) = pq-1 \text{ respectively. Hence, the result follows from Theorem 3.14. }$

We conclude this paper with the following general result.

Theorem 4.8. If R is finite CC-ring then Γ_R is neither super hyperenergetic nor super borderenergetic.

Proof. We have $|v(\Gamma_R)| = |R| - |Z(R)|$. Therefore

$$E(K_{|v(\Gamma_R)|}) = LE(K_{|v(\Gamma_R)|}) = LE^+(K_{|v(\Gamma_R)|}) = 2(|R| - |Z(R)| - 1).$$

Also, 2(|R|-|Z(R)|-n) < 2(|R|-|Z(R)|-1), where *n* is the number of distinct centralizers of non-central elements of *R*. Hence, the results follows from Theorem 3.15.

Acknowledgment. The authors would like to thank the referee for his/her valuable comments and suggestions. The first author is thankful to Indian Council for Cultural Relations for the ICCR Scholarship.

References

- A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl. 428, 2947–2954, 2008.
- [2] M. Afkhami, Z. Barati, N. Hoseini and K. Khashyarmanesh, A generalization of commuting graphs, Discrete Math. Algorithm. Appl. 7 (1), 1450068 (11 pages), 2015.
- [3] S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, On commuting graphs of semisimple rings, Linear Algebra Appl. 390, 345–355, 2004.
- [4] S.M. Buckley, D. Machale, and A.N. Shé, Finite rings with many commuting pairs of elements, available at http://archive.maths.nuim.ie/staff/sbuckley/Papers/ bms.pdf.
- [5] J. Dutta and R.K. Nath, Rings having four distinct centralizers, Matrix, M. R. Publications, Assam, 2017, pp. 12–18, Ed. P. Begum.

- [6] P. Dutta and R.K. Nath, A generalization of commuting probability of finite rings, Asian-European J. Math. 11 (2), 1850023 (15 pages), 2018.
- [7] P. Dutta and R.K. Nath, On relative commuting probability of finite rings, Miskolc Math. Notes 20 (1), 225–232, 2019.
- [8] J. Dutta, D.K. Basnet and R.K. Nath, On commuting probability of finite rings, Indag. Math. 28 (2), 272–282, 2017.
- [9] J. Dutta, D.K. Basnet and R.K. Nath, On generalized non-commuting graph of a finite ring, Algebra Colloq. 25 (1), 149–160, 2018.
- [10] J. Dutta, D.K. Basnet and R.K. Nath, A note on n-centralizer finite rings, An. Stiint. Univ. Al. I. Cuza Iasi Math. LXIV (f.1), 161–171, 2018.
- [11] J. Dutta, D.K. Basnet and R.K. Nath, Characterizing some rings of finite order, submitted for publication, available at https://arxiv.org/pdf/1510.08207.pdf.
- [12] J. Dutta, W.N.T. Fasfous and R.K. Nath, Spectrum and genus of commuting graphs of some classes of finite rings, Acta Comment. Univ. Tartu. Math. 23 (1), 5–12, 2019.
- [13] A. Erfanian, K. Khashyarmanesh and Kh. Nafar, Non-commuting graphs of rings, Discrete Math. Algorithm. Appl. 7 (3), 1550027 (7 pages), 2015.
- [14] S.C. Gong, X. Li, G.H. Xu, I. Gutman and B. Furtula, Borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 74, 321–332, 2015.
- [15] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc. 64, 199–205, 1999.
- [16] D. MacHale, Commutativity in finite rings, Amer. Math. Monthly, 83, 30–32, 1976.
- [17] A. Mohammadian, On commuting graphs of finite matrix rings, Comm. Algebra 38, 988–994, 2010.
- [18] R.K. Nath, Various spectra of commuting graphs of n-centralizer finite groups, J. Eng. Science and Tech. 10 (2S), 170–172, 2018.
- [19] R.K. Nath, A note on super integral rings, Bol. Soc. Paran. Mat. 38 (4), 213–218, 2020.
- [20] G.R. Omidi and E. Vatandoost, On the commuting graph of rings, J. Algebra Appl. 10 (3), 521–527, 2011.
- [21] F. Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 77, 37–44, 2017.
- [22] E. Vatandoost and F. Ramezani, On the commuting graph of some non-commutative rings with unity, J. Linear Topological Algebra, 5 (4), 289–294, 2016.
- [23] E. Vatandoost, F. Ramezani and A. Bahraini, On the commuting graph of noncommutative rings of order pⁿq, J. Linear Topological Algebra, 3 (1), 1–6, 2014.
- [24] H.B. Walikar, H.S. Ramane and P.R. Hampiholi, On the energy of a graph, Graph Connections, Eds. R. Balakrishnan, H.M. Mulder, A. Vijayakumar., pp. 120–123, Allied Publishers, New Delhi, 1999.