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Abstract
The commuting graph of a non-commutative ring R with center Z(R) is a simple undi-
rected graph whose vertex set is R \ Z(R) and two vertices x, y are adjacent if and only if
xy = yx. In this paper, we compute various spectra and energies of commuting graphs of
some classes of finite rings and study their consequences.
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1. Introduction
Let R be a non-commutative ring with center Z(R). The commuting graph of R,

denoted by ΓR, is a simple undirected graph whose vertex set is R \Z(R) and two vertices
x, y are adjacent if and only if xy = yx. In recent years, many mathematicians have
considered commuting graph of different rings and studied various graph theoretic aspects
(see [1, 3, 12,13,17,19,20,23]). Some generalizations of ΓR are also considered in [2, 9].

In Section 2, we compute spectrum, Laplacian spectrum and Signless Laplacian spec-
trum of commuting graphs of some classes of finite rings. Recall that the spectrum of a
graph G denoted by Spec(G) is the set{

λk1
1 , λk2

2 , . . . , λkn
n

}
,

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of G with multiplicities
k1, k2, . . . , kn respectively. Let A(G) and D(G) denote the adjacency matrix and degree
matrix of a graph G respectively. Then the Laplacian matrix and Signless Laplacian
matrix of G are given by L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) respectively. Let
L-spec(G) and Q-spec(G) be the Laplacian spectrum and Signless Laplacian spectrum of
G respectively. Then L-spec(G) =

{
βb1

1 , βb2
2 , . . . , βbm

m

}
and Q-spec(G) = {γc1

1 , γc2
2 , . . . , γcn

n },
where β1, β2, . . . , βm are the eigenvalues of L(G) with multiplicities b1, b2, . . . , bm and
γ1, γ2, . . . , γn are the eigenvalues of Q(G) with multiplicities c1, c2, . . . , cn respectively.
The energy, Laplacian energy and Signless Laplacian energy of a graph G are given by

∗Corresponding Author.
Email addresses: w.n.fasfous@gmail.com (W.N.T. Fasfous), rajatkantinath@yahoo.com (R.K. Nath),

sharafdini@pgu.ac.ir (R. Sharafdini)
Received: 15.03.2019; Accepted: 24.02.2020

https://orcid.org/0000-0002-5446-4367
https://orcid.org/0000-0003-4766-6523
https://orcid.org/0000-0002-3171-2209


1916 W.N.T. Fasfous, R.K. Nath, R. Sharafdini

E(G) =
∑

λ∈Spec(G)
|λ|,

LE(G) =
∑

µ∈L-spec(G)

∣∣∣∣µ − 2|e(G)|
|v(G)|

∣∣∣∣ and (1.1)

LE+(G) =
∑

ν∈Q-spec(G)

∣∣∣∣ν − 2|e(G)|
|v(G)|

∣∣∣∣ ,

where v(G) and e(G) are the set of vertices and edges of G, respectively.
Throughout the paper R denotes a non-commutative finite ring and p, q denote distinct

primes. R
Z(R) denotes the additive quotient group. Also, Kn denotes a complete graph on

n vertices and lKn denotes the disjoint union of l copies of Kn.

2. Various spectra
In [19], various spectra of commuting graphs of some small order finite non-commutative

rings have been computed. In this section we consider more classes of finite non-commu-
tative rings. The following theorem is useful in computing various spectra of commuting
graphs of finite rings.

Theorem 2.1 ([18, Theorem 2.1]). If G = l1Kn1 ⊔ l2Kn2 ⊔ · · · ⊔ lmKnm, then
(a) Spec(G) =

{
(−1)

∑m

i=1 li(ni−1), (n1 − 1)l1 , (n2 − 1)l2 , . . . , (nm − 1)lm
}

.

(b) L-spec(G) =
{

0
∑m

i=1 li , n
l1(n1−1)
1 , n

l2(n2−1)
2 , n

lm(nm−1)
m

}
.

(c) Q-spec(G) =
{

(2n1 − 2)l1 , (n1 − 2)l1(n1−1), (2n2 − 2)l2 , (n2 − 2)l2(n2−1), . . . ,

(2nm − 2)lm , (nm − 2)lm(nm−1)
}

.

Theorem 2.2. Let |R| = p4 and R has unity.
(a) If |Z(R)| = p then Spec(ΓR) =

{
(−1)(p2+p+1)(p2−p−1), (p2 − p − 1)p2+p+1

}
,

L-spec(ΓR) =
{

0p2+p+1, (p2 − p)(p2+p+1)(p2−p−1)
}

and

Q-spec(ΓR) =
{

(2p2 − 2p − 2)p2+p+1, (p2 − p − 2)(p2+p+1)(p2−p−1)
}

; or

Spec(ΓR) =
{

(−1)l1(p2−p−1)+l2(p3−p−1), (p2 − p − 1)l1 , (p3 − p − 1)l2
}

,

L-spec(ΓR) =
{

0l1+l2 , (p2 − p)l1(p2−p−1), (p3 − p)l2(p3−p−1)
}

and Q-spec(ΓR) ={
(2p2 − 2p − 2)l1 , (p2 − p − 2)l1(p2−p−1), (2p3 − 2p − 2)l2 , (p3 − p − 2)l2(p3−p−1)

}
,

where l1 + l2(p + 1) = p2 + p + 1.
(b) If |Z(R)| = p2 then Spec(ΓR) =

{
(−1)(p+1)(p3−p2−1), (p3 − p2 − 1)p+1

}
,

L-spec(ΓR) =
{

0p+1, (p3 − p2)(p+1)(p3−p2−1)
}

and

Q-spec(ΓR) =
{

(2p3 − 2p2 − 2)p+1, (p3 − p2 − 2)(p+1)(p3−p2−1)
}

.

Proof. (a) If |Z(R)| = p then, by Theorem 2.5 of [22], we have ΓR = (p2 + p + 1)K(p2−p)
or l1K(p2−p) ⊔ l2K(p3−p), where l1 + l2(p + 1) = p2 + p + 1. Hence, the result follows from
Theorem 2.1.

(b) If |Z(R)| = p2 then, by Theorem 2.5 of [22], we have ΓR = (p + 1)K(p3−p2). Hence,
the result follows from Theorem 2.1. �
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Theorem 2.3. Let |R| = p5 with unity and Z(R) is not a field.
(a) If |Z(R)| = p2 then Spec(ΓR) =

{
(−1)(p2+p+1)(p3−p2−1), (p3 − p2 − 1)p2+p+1

}
,

L-spec(ΓR) =
{

0p2+p+1, (p3 − p2)(p2+p+1)(p3−p2−1)
}

and

Q-spec(ΓR) =
{

(2p3 − 2p2 − 2)p2+p+1, (p3 − p2 − 2)(p2+p+1)(p3−p2−1)
}

; or

Spec(ΓR) =
{

(−1)l1(p3−p2−1)+l2(p3−p−1), (p3 − p2 − 1)l1 , (p3 − p − 1)l2
}

,

L-spec(ΓR) =
{

0l1+l2 , (p3 − p2)l1(p3−p2−1), (p3 − p)l2(p3−p−1)
}

and

Q-spec(ΓR) =
{

(2p3 − 2p2 − 2)l1 , (p3 − p2 − 2)l1(p3−p2−1), (2p3 − 2p − 2)l2 ,

(p3 − p − 2)l2(p3−p−1)
}

, where l1 + l2(p + 1) = p2 + p + 1.

(b) If |Z(R)| = p3 then Spec(ΓR) =
{

(−1)(p+1)(p4−p3−1), (p4 − p3 − 1)p+1
}

,

L-spec(ΓR) =
{

0p+1, (p4 − p3)(p+1)(p4−p3−1)
}

and

Q-spec(ΓR) =
{

(2p4 − 2p3 − 2)p+1, (p4 − p3 − 2)(p+1)(p4−p3−1)
}

.

Proof. (a) If |Z(R)| = p2 then, by Theorem 2.7 of [22], we have ΓR = (p2 +p+1)K(p3−p2)
or l1K(p3−p2) ⊔ l2K(p3−p), where l1 + l2(p + 1) = p2 + p + 1. Hence, the result follows from
Theorem 2.1.

(b) If |Z(R)| = p3 then, by Theorem 2.7 of [22], we have ΓR = (p + 1)K(p4−p3). Hence,
the result follows from Theorem 2.1. �
Theorem 2.4. Let |R| = pq and Z(R) = {0}.

(a) If (p − 1) | (pq − 1) then Spec(ΓR) =
{

(−1)
(pq−1)(p−2)

p−1 , (p − 2)
pq−1
p−1

}
, L-spec(ΓR) ={

0
pq−1
p−1 , (p − 1)

(pq−1)(p−2)
p−1

}
and Q-spec(ΓR) =

{
(2p − 4)

pq−1
p−1 , (p − 3)

(pq−1)(p−2)
p−1

}
.

(b) If (q − 1) | (pq − 1) then Spec(ΓR) =
{

(−1)
(pq−1)(q−2)

q−1 , (q − 2)
pq−1
q−1

}
, L-spec(ΓR) ={

0
pq−1
q−1 , (q − 1)

(pq−1)(q−2)
q−1

}
and Q-spec(ΓR) =

{
(2q − 4)

pq−1
q−1 , (q − 3)

(pq−1)(q−2)
q−1

}
.

(c) If l1(p − 1) + l2(q − 1) = pq − 1 then Spec(ΓR) =
{

(−1)l1(p−2)+l2(q−2), (p − 2)l1 ,

(q − 2)l2
}

, L-spec(ΓR) =
{

0l1+l2 , (p − 1)l1(p−2), (q − 1)l2(q−2)
}

and

Q-spec(ΓR) =
{

(2p − 4)l1 , (p − 3)l1(p−2), (2q − 4)l2 , (q − 3)l2(q−2)
}

.

Proof. It was shown in [23, Theorem 2.8] that

ΓR =


pq−1
p−1 Kp−1, if (p − 1) | (pq − 1)
pq−1
q−1 Kq−1, if (q − 1) | (pq − 1)

l1Kp−1 ⊔ l2Kq−1, if l1(p − 1) + l2(q − 1) = pq − 1.

Hence, the result follows from Theorem 2.1. �
Theorem 2.5. Let |R| = p2q and Z(R) = {0}.

(a) If t ∈ {p, q, p2, pq} and (t − 1) | (p2q − 1) then Spec(ΓR) =
{

(−1)
(p2q−1)(t−2)

t−1 ,

(t − 2)
p2q−1

t−1

}
, L-spec(ΓR) =

{
0

p2q−1
t−1 , (t − 1)

(p2q−1)(t−2)
t−1

}
and

Q-spec(ΓR) =
{

(2t − 4)
p2q−1

t−1 , (t − 3)
(p2q−1)(t−2)

t−1

}
.

(b) If l1(p − 1) + l2(q − 1) + l3(p2 − 1) + l4(pq − 1) = p2q − 1 then Spec(ΓR)
=

{
(−1)l1(p−2)+l2(q−2)+l3(p2−2)+l4(pq−2), (p − 2)l1 , (q − 2)l2 , (p2 − 2)l3 , (pq − 2)l4

}
,
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L-spec(ΓR) =
{

0l1+l2+l3+l4 , (p − 1)l1(p−2), (q − 1)l2(q−2), (p2 − 1)l3(p2−2),

(pq − 1)l4(pq−2)
}

and Q-spec(ΓR) =
{

(2p − 4)l1 , (p − 3)l1(p−2), (2q − 4)l2 ,

(q − 3)l2(q−2), (2p2 − 4)l3 , (p2 − 3)l3(p2−2), (2pq − 4)l4 , (pq − 3)l4(pq−2)
}

.

Proof. (a) By [23, Theorem 2.9], we have ΓR = p2q−1
t−1 Kt−1 if t ∈ {p, q, p2, pq} and (t−1) |

(p2q − 1). Hence, the result follows from Theorem 2.1.
(b) By [23, Theorem 2.9], we also have ΓR = l1Kp−1 ⊔ l2Kq−1 ⊔ l3Kp2−1 ⊔ l4Kpq−1 if

l1(p − 1) + l2(q − 1) + l3(p2 − 1) + l4(pq − 1) = p2q − 1. Hence, the result follows from
Theorem 2.1. �

Theorem 2.6. Let |R| = p3q and R has unity. If |Z(R)| = pq then

Spec(ΓR) =
{

(−1)(p+1)(p2q−pq−1), (p2q − pq − 1)p+1
}

,

L-spec(ΓR) =
{

0p+1, (p2q − pq)(p+1)(p2q−pq−1)
}

and

Q-spec(ΓR) =
{

(2p2q − 2pq − 2)p+1, (p2q − pq − 2)(p+1)(p2q−pq−1)
}

.

Proof. If |Z(R)| = pq then, by [23, Theorem 2.12], we have ΓR = (p + 1)Kp2q−pq. Hence,
the result follows from Theorem 2.1. �

We conclude this section with the following result.

Theorem 2.7. Let |R| = p3q, R has unity and |Z(R)| = p2.

(a) If (p − 1) | (pq − 1) then Spec(ΓR) =
{

(−1)
(pq−1)(p3−p2−1)

p−1 , (p3 − p2 − 1)
pq−1
p−1

}
,

L-spec(ΓR) =
{

0
pq−1
p−1 , (p3 − p2)

(pq−1)(p3−p2−1)
p−1

}
and

Q-spec(ΓR) =
{

(2p3 − 2p2 − 2)
pq−1
p−1 , (p3 − p2 − 2)

(pq−1)(p3−p2−1)
p−1

}
.

(b) If (q − 1) | (pq − 1) then Spec(ΓR) =
{

(−1)
(pq−1)(p2q−p2−1)

q−1 , (p2q − p2 − 1)
pq−1
q−1

}
,

L-spec(ΓR) =
{

0
pq−1
q−1 , (p2q − p2)

(pq−1)(p2q−p2−1)
q−1

}
and

Q-spec(ΓR) =
{

(2p2q − 2p2 − 2)
pq−1
q−1 , (p2q − p2 − 2)

(pq−1)(p2q−p2−1)
q−1

}
.

(c) If l1(p − 1) + l2(q − 1) = pq − 1 then
Spec(ΓR) =

{
(−1)l1(p3−p2−1)+l2(p2q−p2−1), (p3 − p2 − 1)l1 , (p2q − p2 − 1)l2

}
,

L-spec(ΓR) =
{

0l1+l2 , (p3 − p2)l1(p3−p2−1), (p2q − p2)l2(p2q−p2−1)
}

and

Q-spec(ΓR) =
{

(2p3 − 2p2 − 2)l1 , (p3 − p2 − 2)l1(p3−p2−1), (2p2q − 2p2 − 2)l2 ,

(p2q − p2 − 2)l2(p2q−p2−1)
}

.

Proof. If |Z(R)| = p2 then, by [23, Theorem 2.12], we have

ΓR =


pq−1
p−1 Kp3−p2 , if (p − 1) | (pq − 1)
pq−1
q−1 Kp2q−p2 , if (q − 1) | (pq − 1)

l1Kp3−p2 ⊔ l2Kp2q−p2 , if l1(p − 1) + l2(q − 1) = pq − 1.

Hence, the result follows from Theorem 2.1. �
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3. Various energies
If R

Z(R) is isomorphic to Zp × Zp, then it was shown in Theorem 3.1 of [19] that

E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p2 − 1)|Z(R)| − 2(p + 1). (3.1)
As a consequence of (3.1), in the following results, we compute various energies of com-
muting graphs of several well-known classes of finite rings.
Theorem 3.1. If |R| = p2, then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p2 − p − 2).
Proof. If R is a non-commutative ring of order p2, then Z(R) has only one element.
Therefore, the additive group R

Z(R)
∼= Zp × Zp. Hence the result follows from (3.1). �

Theorem 3.2. If |R| = p3 and R has unity, then
E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p3 − 2p − 1).

Proof. If R is a non-commutative ring with unity of order p3, then Z(R) has p elements.
Therefore, the additive group R

Z(R)
∼= Zp × Zp. Hence the result follows from (3.1). �

A ring R is called an n-centralizer ring if | Cent(R)| = n, where Cent(R) = {CR(x) : x ∈
R}. Various properties of n-centralizer rings can be found in [5, 10, 11]. In the following
results we compute various energies of some finite n-centralizer rings.
Theorem 3.3. If | Cent(R)| = 4, then E(ΓR) = LE(ΓR) = LE+(ΓR) = 6|Z(R)| − 6.

Proof. It was shown in [11, Theorem 3.2] that the additive quotient group R
Z(R)

∼= Z2 ×Z2
if R is a finite 4-centralizer ring. Hence, the result follows from (3.1) putting p = 2. �
Theorem 3.4. If | Cent(R)| = 5, then E(ΓR) = LE(ΓR) = LE+(ΓR) = 16|Z(R)| − 8.

Proof. It was shown in [11, Theorem 4.3] that the additive quotient group R
Z(R)

∼= Z3 ×Z3
if R is a finite 5-centralizer ring. Hence, the result follows from (3.1). �
Theorem 3.5. If R is a finite p-ring and | Cent(R)| = (p + 2), then

E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p2 − 1)|Z(R)| − 2(p + 1).

Proof. It was shown in [11, Theorem 2.12] that the additive quotient group R
Z(R)

∼= Zp×Zp

if R is a finite (p + 2)-centralizer p-ring. Hence, the result follows from (3.1). �
In 1976, MacHale [16] initiated the study of commutativity degree of a finite ring R

denoted by Pr(R). Recall that the commutativity degree of R is the probability that a
randomly chosen pair of elements of R commute. Recent results on Pr(R) can be found in
[4,6–8]. In the following theorem we compute various energies of ΓR for some given values
of Pr(R).

Theorem 3.6. Let p be the smallest prime dividing |R|. If Pr(R) = p2+p−1
p3 then

E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p2 − 1)|Z(R)| − 2(p + 1).

Proof. By Theorem 2 of [16] we have R
Z(R)

∼= Zp × Zp. Hence, the result follows from
(3.1). �

We have the following corollary to the above theorem.
Corollary 3.7. If Pr(R) = 5

8 then

E(ΓR) = LE(ΓR) = LE+(ΓR) = 6|Z(R)| − 6.

Now we compute various energies of ΓR for the rings considered in Section 2. Note that
one can do this using Theorems 2.1 - 2.7 and (1.1). However, using the following theorem
one can also compute various energies.
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Theorem 3.8. If G = l1Kn1 ⊔ l2Kn2, then E(G) = 2l1(n1 − 1) + 2l2(n2 − 1). Further, if
n1 = n2 = n then

E(lKn) = LE(lKn) = LE+(lKn) = 2l(n − 1),
where l = l1 + l2.

Proof. By Theorem 2.1(a) we have

Spec(G) =
{

(−1)
∑2

i=1 li(ni−1), (n1 − 1)l1 , (n2 − 1)l2

}
.

Therefore, (1.1) gives

E(G) = | − 1|
2∑

i=1
li(ni − 1) + l1|n1 − 1| + l2|n2 − 1|

= l1(n1 − 1) + l2(n2 − 1) + l1(n1 − 1) + l2(n2 − 1)
= 2l1(n1 − 1) + 2l2(n2 − 1).

If n1 = n2 = n and l = l1 + l2 then G = lKn and so E(lKn) = 2l(n − 1). In this case, we
also have |v(lKn)| = ln, |e(lKn)| = ln(n−1)

2 and so 2|e(lKn)|
|v(lKn)| = n − 1.

By Theorem 2.1(b) we have L-spec(lKn) =
{

0l, nl(n−1)
}

. Therefore∣∣∣∣0 − 2|e(lKn)|
|v(lKn)|

∣∣∣∣ = n − 1 and
∣∣∣∣n − 2|e(lKn)|

|v(lKn)|

∣∣∣∣ = 1.

Hence, (1.1) gives
LE(lKn) = (n − 1)l + l(n − 1) = 2l(n − 1).

Again, by Theorem 2.1(c) we also have Q-spec(lKn) =
{

(2n − 2)l, (n − 2)l(n−1)
}

. There-
fore ∣∣∣∣2n − 2 − 2|e(lKn)|

|v(lKn)|

∣∣∣∣ = n − 1 and
∣∣∣∣n − 2 − 2|e(lKn)|

|v(lKn)|

∣∣∣∣ = 1.

Hence, (1.1) gives
LE+(lKn) = (n − 1)l + l(n − 1) = 2l(n − 1).

This completes the proof. �
Theorem 3.9. Let R have unity and |R| = p4.

(a) If |Z(R)| = p then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p2 + p + 1)(p2 − p − 1) or
E(ΓR) = 2l1(p2 − p − 1) + 2l2(p3 − p − 1), where l1 + l2(p + 1) = p2 + p + 1.

(b) If |Z(R)| = p2 then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p + 1)(p3 − p2 − 1).

Proof. By Theorem 2.5 of [22], we have ΓR = (p2 + p + 1)K(p2−p) or l1K(p2−p) ⊔ l2K(p3−p)
(where l1 + l2(p + 1) = p2 + p + 1) if |Z(R)| = p and (p + 1)K(p3−p2) if |Z(R)| = p2. Hence,
the result follows from Theorem 3.8. �
Theorem 3.10. Let R have unity, |R| = p5 and Z(R) is not a field.

(a) If |Z(R)| = p2 then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p2 + p + 1)(p3 − p2 − 1) or
E(ΓR) = 2l1(p3 − p2 − 1) + 2l2(p3 − p − 1), where l1 + l2(p + 1) = p2 + p + 1.

(b) If |Z(R)| = p3 then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p + 1)(p4 − p3 − 1).

Proof. By Theorem 2.7 of [22], we have ΓR = (p2 +p+1)K(p3−p2) or l1K(p3−p2) ⊔l2K(p3−p)
(where l1 + l2(p+1) = p2 +p+1) if |Z(R)| = p2 and (p+1)K(p4−p3) if |Z(R)| = p3. Hence,
the result follows from Theorem 3.8. �
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Theorem 3.11. Let |R| = pq and Z(R) = {0}.
(a) If (p − 1) | (pq − 1) then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(pq−1)(p−2)

p−1 .

(b) If (q − 1) | (pq − 1) then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(pq−1)(q−2)
q−1 .

(c) If l1(p − 1) + l2(q − 1) = pq − 1 then E(ΓR) = 2l1(p − 2) + 2l2(q − 2).

Proof. It was shown in [23, Theorem 2.8] that

ΓR =


pq−1
p−1 Kp−1, if (p − 1) | (pq − 1)
pq−1
q−1 Kq−1, if (q − 1) | (pq − 1)

l1Kp−1 ⊔ l2Kq−1, if l1(p − 1) + l2(q − 1) = pq − 1.

Hence, the result follows from Theorem 3.8. �
Theorem 3.12. Let |R| = p2q and Z(R) = {0}.

(a) If t ∈ {p, q, p2, pq} and (t − 1) | (p2q − 1) then

E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p2q − 1)(t − 2)
t − 1

.

(b) If l1(p − 1) + l2(q − 1) + l3(p2 − 1) + l4(pq − 1) = p2q − 1 then

E(ΓR) = 2
(
p2q − 1 − (l1 + l2 + l3 + l4

)
.

Proof. (a) By [23, Theorem 2.9], we have ΓR = p2q−1
t−1 Kt−1 if t ∈ {p, q, p2, pq} and (t−1) |

(p2q − 1). Hence, the result follows from Theorem 3.8.
(b) By [23, Theorem 2.9], we also have ΓR = l1Kp−1 ⊔ l2Kq−1 ⊔ l3Kp2−1 ⊔ l4Kpq−1 if

l1(p − 1) + l2(q − 1) + l3(p2 − 1) + l4(pq − 1) = p2q − 1. Hence, the result follows from
Theorem 2.5 and (1.1). �
Theorem 3.13. Let R have unity and |R| = p3q. If |Z(R)| = pq then

E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(p + 1)(p2q − pq − 1).

Proof. If |Z(R)| = pq then, by [23, Theorem 2.12], we have ΓR = (p + 1)Kp2q−pq. Hence
the result follows from Theorem 3.8. �
Theorem 3.14. Let R have unity, |R| = p3q and |Z(R)| = p2.

(a) If (p − 1) | (pq − 1) then E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(pq−1)(p3−p2−1)
p−1 .

(b) If (q − 1) | (pq − 1) then

E(ΓR) = LE(ΓR) = LE+(ΓR) = 2(pq − 1)(p2q − p2 − 1)
q − 1

.

(c) If l1(p − 1) + l2(q − 1) = pq − 1 then
E(ΓR) = 2l1(p3 − p2 − 1) + 2l2(p2q − p2 − 1).

Proof. If |Z(R)| = p2 then, by [23, Theorem 2.12], we have

ΓR =


pq−1
p−1 Kp3−p2 , if (p − 1) | (pq − 1)
pq−1
q−1 Kp2q−p2 , if (q − 1) | (pq − 1)

l1Kp3−p2 ⊔ l2Kp2q−p2 , if l1(p − 1) + l2(q − 1) = pq − 1.

Hence, the result follows from Theorem 3.8. �
Note that the rings considered above are CC-rings. Recall that a non-commutative ring

R is called a CC-ring if all the centralizers of its non-central elements are commutative. In
other words, CR(x) for all x ∈ R\Z(R) is commutative, where CR(x) := {y ∈ R : xy = yx}
is the centralizer of x. The study of CC-rings was initiated by Erfanian et al. in [13]. In
the following theorem we compute energy of a CC-ring.
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Theorem 3.15. Let R be a finite CC-ring with distinct centralizers S1, S2, . . . , Sn of
non-central elements of R. Then E(ΓR) = 2(|R| − |Z(R)| − n).

Proof. By Theorem 2.1 of [12] we have

Spec(ΓR) = {(−1)

n∑
i=1

|Si|−n(|Z(R)|+1)
, (|S1| − |Z(R)| − 1)1, . . . , (|Sn| − |Z(R)| − 1)1}.

Therefore

E(ΓR) =
n∑

i=1
|Si| − n(|Z(R)| + 1) + (|S1| − |Z(R)| − 1) + · · ·

+ (|Sn| − |Z(R)| − 1)

= 2
n∑

i=1
|Si| − 2n|Z(R)| − 2n.

Since
n∑

i=1
|Si| = |R| + (n − 1)|Z(R)|, we get the required expression for E(ΓR). �

Corollary 3.16. Let R be a finite CC-ring and A be any finite commutative ring. Then
E(ΓR×A) = 2(|R||A| − |Z(R)||A| − n), where n = | Cent(R)| − 1.

Proof. Follows from Theorem 3.15 noting that R×A is a CC-ring, | Cent(R)| = | Cent(R×
A)| and Z(R × A) = Z(R) × A. �

4. Some consequences
A finite non-commutative ring R is called super integral if spectrum, Laplacian spectrum

and Signless Laplacian spectrum of ΓR contain only integers. The notion of super integral
ring was introduced in [19]. It can be seen that all the rings considered in Section 2 are
super integral.

A finite graph G is called hyperenergetic and borderenergetic if E(G) > E(K|v(G)|)
and E(G) = E(K|v(G)|) respectively. Similarly, G is called L-hyperenergetic and
L-borderenergetic if LE(G) > LE(K|v(G)|) and LE(G) = LE(K|v(G)|) respectively; G is
called Q-hyperenergetic and Q-borderenergetic if LE+(G) > LE+(K|v(G)|) and LE+(G) =
LE+(K|v(G)|) respectively. The study of hyperenergetic graph was initiated by Walikar et
al. [24] and Gutman [15] in 1999. The concepts of borderenergetic and L-borderenergetic
graphs were introduced by Gong et al. [14] and Tura [21] in the years 2015 and 2017
respectively.

A finite graph G is called super hyperenergetic if it is hyperenergetic, L-hyperenergetic
and Q-hyperenergetic. Similarly, we define super borderenergetic graph. In this section,
we show that the commuting graphs of the rings considered in Section 3 are neither super
hyperenergetic nor super borderenergetic.

Theorem 4.1. If R
Z(R)

∼= Zp × Zp then ΓR is neither super hyperenergetic nor super
borderenergetic.

Proof. We have |v(ΓR)| = |Z(R)|(p2−1), since |R| = p2|Z(R)| and |v(ΓR)| = |R|−|Z(R)|.
Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(|Z(R)|(p2 − 1) − 1).

Since 2(|Z(R)|(p2 − 1)) − (p + 1) < 2(|Z(R)|(p2 − 1) − 1), by (3.1) the result follows. �
Corollary 4.2. ΓR is neither super hyperenergetic nor super borderenergetic if

(a) R is of order p2.
(b) R is of order p3 with unity.
(c) R is a 4-centralizer ring.
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(d) R is a 5-centralizer ring.
(e) R is a (p + 2)-centralizer p-ring.
(f) p is the smallest prime dividing |R| and Pr(R) = p2+p−1

p3 .
(g) Pr(R) = 5

8 .

Proof. In any of the above cases, the additive quotient group R
Z(R) is isomorphic to Zp×Zp

for some prime p. Hence, the result follows from Theorem 4.1. �
Theorem 4.3. If R is a non-commutative ring with unity of order p4 then ΓR is neither
super hyperenergetic nor super borderenergetic.

Proof. If |Z(G)| = p then |v(ΓR)| = p4 − p. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(p4 − p − 1)
= 2((p2 + p + 1)(p2 − p) − 1).

We have 2(p2 + p + 1)(p2 − p − 1) < 2(p4 − p − 1). Also

2l1(p2 − p − 1) + 2l2(p3 − p − 1) < 2((p2 + p + 1)(p2 − p) − 1)
if l1, l2 are positive integers such that l1 + l2(p + 1) = p2 + p + 1. Hence, the result follows
Theorem 3.9.

If |Z(G)| = p2 then |v(ΓR)| = p4 − p2. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(p4 − p2 − 1).
We have

2(p + 1)(p3 − p2 − 1) < 2(p4 − p2 − 1).
Hence, the result follows Theorem 3.9. �
Theorem 4.4. If R is a non-commutative ring with unity of order p5 such that Z(R) is
not a field then ΓR is neither super hyperenergetic nor super borderenergetic.

Proof. If |Z(R)| = p2 then |v(ΓR)| = p5 − p2. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(p5 − p2 − 1)
= 2((p3 − p2)(p2 + p + 1) − 1).

We have 2(p2 + p + 1)(p3 − p2 − 1) < 2(p5 − p2 − 1). Also

2l1(p3 − p2 − 1) + 2l2(p3 − p − 1) < 2((p3 − p2)(p2 + p + 1) − 1)
if l1, l2 are positive integers such that l1 + l2(p + 1) = p2 + p + 1. Hence, the result follows
from Theorem 3.10.

If |Z(R)| = p3 then |v(ΓR)| = p5 − p3. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(p5 − p3 − 1).

We have 2(p + 1)(p4 − p3 − 1) < 2(p5 − p3 − 1). Hence, the result follows from Theorem
3.10. �
Theorem 4.5. Let R be a non-commutative ring of order pq such that Z(R) = {0}. Then
ΓR is neither super hyperenergetic nor super borderenergetic.

Proof. We have |v(ΓR)| = pq − 1. Therefore
E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(pq − 2).

If t ∈ {p, q} and (t−1) | (pq−1) then 2(pq−1)(t−2)
t−1 < 2(pq−2). Also 2l1(p−2)+2l2(q−2) <

2(pq − 2) if l1, l2 are positive integers and l1(p − 1) + l2(q − 1) = pq − 1. Hence, the result
follows from Theorem 3.11. �
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Theorem 4.6. Let R be a non-commutative ring of order p2q such that Z(R) = {0}.
Then ΓR is neither super hyperenergetic nor super borderenergetic.

Proof. We have |v(ΓR)| = p2q − 1. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(p2q − 2).

If t ∈ {p, q, p2, pq} and (t − 1) | (p2q − 1) then we have 2(p2q−1)(t−2)
t−1 < 2(p2q − 2). Also,

2
(
p2q − 1 − (l1 + l2 + l3 + l4

)
< 2(p2q − 2) if l1, l2 are positive integers such that l1(p −

1) + l2(q − 1) + l3(p2 − 1) + l4(pq − 1) = p2q − 1. Hence, the result follows from Theorem
3.12. �

Theorem 4.7. Let R be a non-commutative ring with unity having order p3q. If |Z(R)|
is not a prime then ΓR is neither super hyperenergetic nor super borderenergetic.

Proof. If |Z(R)| = pq then |v(ΓR)| = p3q − pq. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(p3q − pq − 1).

We have 2(p + 1)(p2q − pq − 1) < 2(p3q − pq − 1). Hence, the result follows from Theorem
3.13.

If |Z(R)| = p2 then |v(ΓR)| = p3q − p2. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(p3q − p2 − 1).

We have 2(pq−1)(p3−p2−1)
p−1 < 2(p3q −p2 −1), 2(pq−1)(p2q−p2−1)

q−1 < 2(p3q −p2 −1) and 2l1(p3 −
p2 − 1) + 2l2(p2q − p2 − 1) < 2(p3q − p2 − 1) if (p − 1) | (pq − 1), (q − 1) | (pq − 1) and
l1(p−1)+ l2(q −1) = pq −1 respectively. Hence, the result follows from Theorem 3.14. �

We conclude this paper with the following general result.

Theorem 4.8. If R is finite CC-ring then ΓR is neither super hyperenergetic nor super
borderenergetic.

Proof. We have |v(ΓR)| = |R| − |Z(R)|. Therefore

E(K|v(ΓR)|) = LE(K|v(ΓR)|) = LE+(K|v(ΓR)|) = 2(|R| − |Z(R)| − 1).

Also, 2(|R|−|Z(R)|−n) < 2(|R|−|Z(R)|−1), where n is the number of distinct centralizers
of non-central elements of R. Hence, the results follows from Theorem 3.15. �
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