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Abstract
The Channel Assignment Problem (CAP) is the problem of assigning channels (non-
negative integers) to the transmitters in an optimal way such that interference is avoided.
The problem, often modeled as a labeling problem on the graph where vertices represent
transmitters and edges indicate closeness of the transmitters. A radio k-labeling of graphs
is a variation of CAP. For a simple connected graph G = (V (G), E(G)) and a positive inte-
ger k with 1 ≤ k ≤ diam(G), a radio k-labeling of G is a mapping f : V (G) → {0, 1, 2, . . .}
such that |f(u) − f(v)| ≥ k + 1 − d(u, v) for each pair of distinct vertices u and v of G,
where diam(G) is the diameter of G and d(u, v) is the distance between u and v in G. The
span of a radio k-labeling f is the largest integer assigned to a vertex of G. The radio
k-chromatic number of G, denoted by rck(G), is the minimum of spans of all possible
radio k-labelings of G. This article presents the exact value of rck(Pn) for even integer
k ∈

{⌈
2(n−2)

5

⌉
, . . . , n − 2

}
and odd integer k ∈

{⌈
2n+1

7

⌉
, . . . , n − 1

}
, i.e., at least 65%

cases the radio k-chromatic number of the path Pn are obtain for fixed but arbitrary values
of n. Also an improvement of existing lower bound of rck(Pn) has been presented for all
values of k.
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1. Introduction
The Channel Assignment Problem (CAP) is the problem of assigning channels (non-

negative integers) to the stations in an optimal way such that interference is avoided. CAP
plays an important role in wireless network and a well-studied interesting problem. Many
researchers have modeled CAP as an optimization problem as follows: Given a collection
of transmitters to be assigned operating frequencies and a set of interference constraints
on transmitter pairs, find an assignment that satisfies all the interference constraints and
minimizes the value of a given objective function. In 1980, Hale [11] has modeled FAP as
a Graph labeling problem (in particular as a generalized graph labeling problem) and is
an active area of research now. Griggs and Yeh [10] concentrated on the fundamental case
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of L(2, 1)-labelings. The L(p, q)-labeling problem (p, q > 0) and its variants have been
studied extensively (see e.g. [1, 2, 7–12,14,20,29–32,34,35]).

Motivated by FM channel assignments, a new model, namely the radio k-labeling prob-
lem was introduced in [4, 15] and studied further in [22, 25, 33]. For a simple connected
graph G = (V (G), E(G)) and a positive integer k with 1 ≤ k ≤ diam(G), a radio k-labeling
of G is a mapping f : V (G) → {0, 1, 2, . . .} such that

|f(u) − f(v)| ≥ k + 1 − d(u, v) (1.1)
for each pair of distinct vertices u and v of G, where diam(G) is the diameter of G and
d(u, v) is the shortest distance between u and v in G. The span of a radio k-labeling
f , denoted by spanf (G), is the largest integer assigned to a vertex of G. The radio k-
chromatic number of G, denoted by rck(G), is the minimum of spans of all possible radio
k-labelings of G. A radio k-labeling f of G is called minimal if spanf (G) = rn(G). Without
loss of generality, for a minimal radio labeling f we assume that min

v∈V (G)
f(v) = 0, otherwise

the span of f can be reduced further by subtracting the positive integer min
v∈V (G)

f(v) from

all the labels of the vertices of the graph. For some specific values of k there are specific
names for radio k-labelings as well as the radio k-chromatic number in the literature,
which are given in Table 1:

Table 1. Special names of radio k-labelings and radio k-chromatic number.

k Name of labeling rck(G)
1 Vertex coloring Chromatic number, χ(G)

diam(G) Radio Radio number, rn(G)
diam(G) − 1 Antipodal Antipodal number, ac(G)

The radio k-labeling problem can be viewed as an instance of the L(p1, . . . , pm)-labeling
problem (see e.g. [10, 36]), where m, p1, p2, . . . , pm ≥ 1 are given integers, which aims at
minimizing the span of a labeling f : V (G) → {0, 1, 2, . . .} subject to |f(u) − f(v)| ≥ pi

whenever d(u, v) = i, 1 ≤ i ≤ m. In the special case where m = k and pi = max{k +
1 − i, 0} for each i, the minimum span of such a labeling is exactly the radio k-chromatic
number of G.

Determining the radio k-chromatic number of a graph is an interesting yet difficult
combinatorial problem with potential applications to CAP. So far it has been explored for
a few basic families of graphs and values of k near to diameter. The radio number of any
hypercube was determined in [16] by using generalized binary Gray codes. Ortiz et al.
[27] have studied the radio number of generalized prism graphs and have computed the
exact value of radio number for some specific types of generalized prism graphs. For two
positive integers m ≥ 3 and n ≥ 3, the Toroidal grids Tm, n are the cartesian product of
cycle Cm with cycle Cn. Morris et al. [26] have determined the radio number of Tn, n and
Saha et al. [30] have given exact value for radio number of Tm, n when mn ≡ 0 (mod 2).
The radio numbers of the square of paths and cycles were studied in [23, 24]. For a cycle
Cn, the radio number was determined by Liu and Zhu [25], and the antipodal number is
known only for n = 1, 2, 3 (mod 4) (see [3, 13]).

Surprisingly, even for paths finding the radio number was a challenging task. It is
envisaged that in general determining the radio number would be difficult even for trees,
despite a general lower bound for trees given in [22]. Till now, the radio number is known
for very limited of families of trees. For path Pn, complete m-ary trees the exact values
of radio number were determined in [21,25]. The results for path were generalized [25] to
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spiders, leading to the exact value of the radio number in certain special cases. In [28],
Reddy et al. gave an upper bound for the radio number of some special type of trees. For
an n-vertex path Pn, the exact value of rck(Pn) is known only for k = n − 1 [25], n − 2
[16], n − 3 [18], and n − 4 (n odd) [19].

In literature, the exact value of rck(G) are known only when k ∈
{
diam(G), diam(G)−1,

diam(G) − 2
}

and G belong to some specific class of graphs. For path Pn, the radio k-
chromatic numbers (rck(Pn)) are known for relatively more values of k, namely, k =
n − 1, n − 2, n − 3 and k = n − 4 (odd n). This article presents the exact value of rck(Pn)
for even integer k ∈

{⌈
2(n−2)

5

⌉
, . . . , n − 2

}
and odd integer k ∈

{⌈
2n+1

7

⌉
, . . . , n − 1

}
, i.e.,

at least 65% cases the radio k-chromatic of the path Pn are obtain for fixed but arbitrary
values of n. Also an improvement of existing lower bound of rck(Pn) has been presented for
all values of k. In Table 2, we summarize the existing results and our results on rck(Pn).

Table 2. Existing Results and Our Result on radio k-chromatic number of Pn.
Here LB and UB denotes the lower and upper bounds for rck(Pn).

Author Values of k rck(Pn)
Liu and Zhu [25] n − 1 Exact value

Khennoufa and Togni [17] n − 2 Exact value
Kola and Panigrahi [18] n − 3 Exact value
Kola and Panigrahi [19] n − 4 (odd) Exact value

Chartrand et al. [5] ≤ n − 3 LB and UB
Current article 65% cases Exact value
Current article other cases Improve LB

2. Preliminaries
Let V (Pn) = {0, 1, . . . , n−1} be the vertex set of an n-vertex path Pn. The path Pn has

length n − 1. For a fixed vertex w ∈ V (Pn), level function is defined by Lw(u) = d(w, u)
for any u ∈ V (Pn) and the weight of Pn at w is defined by WPn(w) =

∑
u∈V (Pn)

Lw(u).

The weight ω(Pn) of Pn is the smallest weight among all vertices of Pn, i.e., ω(Pn) =
min {WPn(w) : w ∈ V (Pn)}. A vertex C is said to be weight center of Pn if WPn(C) =
ω(Pn).

Notation 2.1. We shall always fix a weight center C for the path Pn. Then Pn \ C
consists of two branches (components), called the left and right branches of Pn \ C. The
left branch and right branch of Pn with respect to C are denoted by L(Pn) and R(Pn),
respectively. From here to onwards by L(u) we mean d(C, u) and called it the level of the
vertex u with respect to the weight center C. We denote the length of the common part
of the paths from C to u and C to v by ϕ(u, v). Clearly, ϕ(u , v) = 0 if and only if u and
v are in opposite sides of C.

Definition 2.2. For an n-vertex path Pn, by highest level vertex of Pn we mean a vertex
whose distance is maximum from a specified weight center C.

Observation 2.3. For an n-vertex path Pn the following hold :
(1) If C is the weight center of Pn, then L(Pn) and R(Pn) have maximum ⌊n

2 ⌋ number
of vertices.

(2) If n is odd, then Pn has exactly one weight center.
(3) If n is even, then Pn has two weight centers.
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Lemma 2.4. Let Pn be a path of n vertices with weight center at C. Then for distinct
u, v ∈ V (Pn) the following hold :

(1) d(u, v) = L(u) + L(v) − 2ϕ(u, v).
(2) ϕ(u, v) = 0 if and only if C ∈ {u, v} or u, v are in different branch.

(3) ω(Pn) =


n2

4 if n is even,

n2−1
4 if n is odd.

In this article one target is to determine the radio k-chromatic number of path Pn. For
this we need to determine the minimum span of a radio labeling of path Pn in terms of
some parameters like number of vertices, distances of minimum and maximum labeled
(colored) vertices from the centroid. In Section 3, we discuss about the span of a radio
labeling in terms of these parameters.

3. Radio labeling of path
Let f be any radio labeling of Pn. So f is injective and f induces a linear order

u0, u1, u2, . . . , un−1 (3.1)

of the vertices of Pn with f(u0) < f(u1) < f(u2) < · · · < f(un−1). Clearly span of f is
f(un−1). Now from the radio conditions we have the following for 0 ≤ i ≤ n − 2,

f(ui+1) − f(ui) ≥ n − d(ui, ui+1). (3.2)

To make it an equality, we add a positive quantity Jf (ui, ui+1), called jump of f from ui

to ui+1, in right side of the inequality (3.2). Therefore,

f(ui+1) − f(ui) = n − d(ui, ui+1) + Jf (ui, ui+1).

Summing up these n − 1 equations, we get

f(un−1) =
n−2∑
i=0

[f(ui+1) − f(ui)] + f(u0)

=
n−2∑
i=0

[n − d(ui, ui+1) + Jf (ui, ui+1)] + f(u0)

≥ n(n − 1) − 2
n−1∑
i=0

L(ui) + L(u0) + L(un−1) +
n−2∑
i=0

[Jf (ui, ui+1) + 2ϕ(ui, ui+1)]

+f(u0) (3.3)

= n(n − 1) − 2ω(Pn) + f(u0) + L(u0) + L(un−1) + σ(f) (3.4)

where σ(f) =
n−2∑
i=0

σf (ui, ui+1) and σf (ui, ui+1) = Jf (ui, ui+1) + 2ϕ(ui, ui+1). Here total

jump J(f) =
n−2∑
i=0

Jf (ui, ui+1). So the relationship between σ(f) and J(f) is σ(f) =

J(f)+2
n−2∑
i=0

ϕ(ui, ui+1). If ut, ut+1 are in same branch then it is clear that σf (ut, ut+1) ≥ 2.

Now we calculate the jumps from ui to ui+1 and ui+1 to ui+2 under the following
assumption:

Assumption 3.1. Vertices ui and ui+2 are in the same branch of Pn and vertex ui+1 is
in a different branch.
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Lemma 3.2. Let ui and ui+2 be in the same branch of Pn and let ui+1 be in a different
branch of Pn. Then

Jf (ui, ui+1) + Jf (ui+1, ui+2) ≥ max{2L(ui+1) + 2ϕ(ui, ui+2) − n, 0}.

Proof. We have f(ui+1) − f(ui) = n − d(ui, ui+1) + Jf (ui, ui+1) = n − L(ui) − L(ui+1) +
2ϕ(ui, ui+1) + Jf (ui, ui+1) and f(ui+2) − f(ui+1) = n − d(ui+1, ui+2) + Jf (ui+1, ui+2) =
n − L(ui+1) − L(ui+2) + 2ϕ(ui+1, ui+2) + Jf (ui+1, ui+2). Summing up we get

f(ui+2) − f(ui) = 2n − L(ui) − L(ui+2) − 2L(ui+1) + Jf (ui, ui+1) + Jf (ui+1, ui+2)
where Jf (ut, ut+1) = Jf (ut, ut+1) + 2ϕ(ut, ut+1) for t = i, i + 1. On the other hand, since
f is a radio labeling, we have

f(ui+2) − f(ui) ≥ n − d(ui, ui+2) = n − L(ui) − L(ui+2) + 2ϕ(ui, ui+2).
Combining the two expressions above, we get

Jf (ui, ui+1) + Jf (ui+1, ui+2) ≥ 2L(ui+1) + 2ϕ(ui, ui+2) − n.

Since the value Jf (ut, ut+1) ≥ 0 for t = i, i + 1, the result follows immediately. �
Definition 3.3. For a radio k-labeling f of Pn and a linear ordering u0, u1, . . . , un−1 as
in (3.1), two vertices ui and ui+1 are called consecutive colored vertices under f and their
labels f(ui), f(ui+1) are called consecutive radio k-coloring numbers. A radio labeling
f is said to be an alternating radio k-labeling if two consecutive colored vertices are in
different branches.

Observation 3.4. From the above discussion, we may observe the following points under
the Assumption 3.1:

(1) For an alternating labeling f , σ(f) = J(f). Also if f is not an alternating radio
labeling, then σ(f) ≥ 2 because in this case there exist at least one pair ut, ut+1
of vertices which are in same branch, i.e., ϕ(ut, ut+1) ≥ 1.

(2) If n is even and the vertex ui+1 is in highest level, then Jf (ui, ui+1)+Jf (ui+1, ui+2) ≥
2 when C ̸∈ {ui, ui+2} and i ̸= n − 2 (by Lemma 3.2 using L(ui+1) = n

2 ).
(3) If n is odd and the vertex ui+1 is in highest level, then Jf (ui, ui+1)+Jf (ui+1, ui+2) ≥

1 when C ̸∈ {ui, ui+2} (by Lemma 3.2 using L(ui+1) = n−1
2 ).

(4) For odd integer n, if C ∈ {u0, un−1} and {u0, un−1} \ C is not in highest level then
σ(f) ≥ 1 because in this case there exist at least one highest level vertex ut in the
segment u2, u3, . . . , un−2 such that Jf (ut−1, ut) + Jf (ut, ui+2) ≥ 1.

(5) If C ̸∈ {u0, un−1}, then L(u0) + L(un−1) ≥ 2.

Theorem 3.5. Let Pn be a path of odd number of vertices n and let f be any radio labeling
of Pn with first and last colored vertices are u0 and um, respectively. Then

spanf (Pn) ≥ (n − 1)2

2
+ f(u0) + L(u0) + L(um) + σ(f).

Proof. From Equation (3.3), the result follows immediately. �
Corollary 3.6. Let Pn be a path of odd number of vertices n and let f be any radio labeling
of Pn with first and last colored vertices are u and v, respectively. If u and v are in same
branch of Pn and none of them are neither weight center nor highest level vertices, then

spanf (Pn) ≥ (n − 1)2

2
+ f(u) + L(u) + L(v) + 1.

Proof. Let the radio labeling f induces the vertices of Pn as u = u0, u1, . . . , un−1 = v.
Without loss of generality, we take u, v ∈ L(Pn). As n is odd, |L(Pn)| = |R(Pn)|. Let
C be the weight center of Pn. Here C ̸∈ {u0, un−1}. Thus we consider C = ur for some
r ∈ {1, 2, . . . , n − 2}. Let D1 = {u0, u1, . . . , ur−1} and D2 = {ur+1, ur+2, . . . , un−1}. If
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one of D1 or D2 contains two consecutive colored vertices ui, ui+1 from same branch,
then ϕ(ui, ui+1) > 1. So σ(f) > 2. Now we consider the case when both D1 and D2 are
alternating sequence of vertices. In this case as u0, un−1 ∈ L(Pn) and |L(Pn)| = |R(Pn)|,
so ur−1, ur+1 ∈ R(Pn). If none of u0 or un−1 is the highest level n−1

2 , then the n−1
2 -level

vertex in left branch, say, up ∈ D1 ∪ D2 \ {u1, ur−1, ur+1, un−2}. So applying Lemma 3.2,
we have Jf (up−1, up) + Jf (up, up+1) > 1. Thus σ(f) > 1. �
Theorem 3.7. Let Pn be a path of even number of vertices n and let f be any radio
labeling of Pn with first and last colored vertices u0 and um, respectively. Then

spanf (Pn) ≥ (n − 1)2 − 1
2

+ f(u0) + L(u0) + L(um) + σ(f).

Proof. From Equation (3.3), the result follows immediately. �
Remark 3.8. Liu and Zhu [25] have determined the exact value of radio number of path
Pn (n ≥ 4) as n2

2 − n + 1 if n is even and n2+1
2 − n + 2 if n is odd. Thus the lower bound

given in Theorems 3.5 and 3.7 coincide with the radio number of Pn.

Definition 3.9. Let f : E → F be a mapping from a set E to a set F . For a set A ⊂ E,
we call the mapping f |A : A → F as the restriction of f on A.

Lemma 3.10. Let f be any radio k-labeling of an n-vertex path Pn with n ≥ k + 1. Then
for any sub-path Pk+1 of Pn, spanf (Pn) ≥ spanf (Pk+1).

Proof. Let f be a radio k-labeling of Pn. Since Pk+1 is a subpath of Pn, V (Pk+1) ⊂ V (Pn).
Let g = f |V (Pk+1) be the restriction of f on V (Pk+1). Then spanf (Pn) > spang(Pk+1) and
this is true for any radio k-labeling of Pn and its restriction g = f |V (Pk+1). �

4. Lower bound of rck(Pn)

Theorem 4.1. Let Pn be a path of order n. If n ≤ ⌊3k+1
2 ⌋, then rck(Pn) ≥ ⌊k2

2 ⌋ + n − k.

Proof. The main key for the proof of this theorem is to search a sub-path P ∗
k+1 of length

k whose radio number is at least ⌊k2

2 ⌋ + n − k. Let f be a radio-k-labeling of an n-vertex
path Pn : 0, 1, 2, . . . , n − 1. As 1 ≤ k ≤ n − 2, it is always possible to find a sub-path
Pk+1 of length k. Now we consider a sub-path P 0

k+1 : 0, 1, 2, . . . , k of length k as in Fig.
1. Rest of path Pn is of length ℓ, say. Then n − 1 = k + ℓ. We also construct a sub-path
P ℓ

k+1 : ℓ, ℓ + 1, ℓ + 2, . . . , ℓ + k (= n − 1) as in Fig. 1. If k is even, then every sub-path
of length k has exactly one position of weight center. Otherwise there are two position of
weight center. When k is even, the weight centers C0 and Cℓ of sub-paths P 0

k+1 and P ℓ
k+1

are at the vertices k
2 and k

2 + ℓ of path Pn, respectively (see Fig. 1 for an illustration).
When k is odd, position of C0 is at the vertex k−1

2 or k+1
2 and position of Cℓ is at the

vertex k−1
2 + ℓ or k+1

2 + ℓ of path Pn (see Fig. 3 for an illustration).

0
C

0 k

1

l
kP +

0

1k
P

+

l
2

k

2
lk

+ lk +

Cl

Figure 1. Sub-path construction of Pn when k is even.
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Since n − 1 = k + ℓ and n ≤ ⌊3k+1
2 ⌋, thus ℓ ≤ ⌊k−1

2 ⌋ and hence the weight center
C0 of sub-path P 0

k+1 belongs to the sub-path P ℓ
k+1. For radio-k-labeling f of the path

Pn, let u be the initial colored vertex and v be the maximum colored vertex. Then
f(u) = 0 and spanf (Pn) = f(v). Now we consider the positions of u and v on the path
Pn : 0, 1, 2, . . . , n − 1.
Case I: u or v ∈ {0, 1, 2, . . . , ℓ}. If u ∈ {0, 1, 2, . . . , ℓ}, then we can construct a sub-path
P u

k+1 : u, u+1, u+2, . . . , u+k of length k as in Fig. 2. As u ≤ ℓ, so u+k ≤ k +ℓ = n−1.
Hence sub-path P u

k+1 always exist in this case.
Subcase (a): k is even. Here weight center, say, Cu of P u

k+1 is u + k
2 . So d(Cu, u) =

k
2 = L(u) and L(v) = d(Cu, v) ≥ 0. Applying Theorem 3.5 to path P u

k+1, we have
spanf (P u

k+1) ≥ k2

2 + k
2 ≥ k2

2 + n − k as n ≤ 3k
2 = ⌊3k+1

2 ⌋. If v ∈ {0, 1, 2, . . . , ℓ}, then for

0
C u

C

0

2

ku k

1

u

k
P

+

1

1

u

k
P

+

+

2

k
u +

1u +

1u
C

+

u k+ 1n −

Figure 2. The sub-paths P u
k+1 and P u+1

k+1 of Pn.

the sub-path P v
k+1 : v, v + 1, v + 2, . . . , v + k of length k, by the same argument, one can

easily prove that spanf (P v
k+1) ≥ k2

2 + k
2 ≥ k2

2 + n − k.
Subcase (b): k is odd. Here weight centers of P u

k+1 are u + k−1
2 and u + k+1

2 . Let us
denote the weight center of P u

k+1 by Cu. First we assume that Cu = u + k−1
2 . If Cu = v

(the maximum colored vertex by f), then d(Cu, u) + d(Cu, v) = k−1
2 . As the left branch

L(P u
k+1) of P u

k+1 has less number of vertices than the right branch R(P u
k+1) and first color

vertex is in left branch, so f can not be alternating radio labeling for the path P u
k+1. Thus

from Observation 3.4 (1), σ(f) ≥ 2 and hence spanf (P u
k+1) ≥ k2−1

2 + k−1
2 +2 > ⌊k2

2 ⌋+n−k.
Otherwise, Cu ̸= v. Then d(Cu, v) ≥ 1 and from Theorem 3.7 we obtain, spanf (P u

k+1) ≥
k2−1

2 + k+1
2 ≥ ⌊k2

2 ⌋ + n − k.
Next we assume that Cu = u + k+1

2 . Then d(Cu, u) + d(Cu, v) ≥ k+1
2 . By applying

Theorem 3.7 to the path P u
k+1, we have spanf (P u

k+1) ≥ k2−1
2 + k+1

2 ≥ ⌊k2

2 ⌋ + n − k.
If v ∈ {0, 1, 2, . . . , ℓ}, then by the argument above for the sub-path P v

k+1 : v, v + 1, v +
2, . . . , v + k; we can easily prove that spanf (P v

k+1) ≥ k2−1
2 + k+1

2 ≥ ⌊k2

2 ⌋ + n − k.

l0 1

2

k− 1

2
lk−

+ k

0

1k
P

+

lk +

0
C Cl

1

l
kP +

1

2
lk+

+1

2

k+

Figure 3. Sub-paths P 0
k+1 and P ℓ

k+1 of Pn.
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Case II: u or v ∈ {ℓ + 1, ℓ + 2, . . . , ⌊k
2 ⌋}. If u ∈ {ℓ + 1, ℓ + 2, . . . , ⌊k

2 ⌋}, then we can
construct a sub-path P ℓ

k+1 : ℓ, ℓ + 1, ℓ + 2, . . . , ℓ + k of length k.

Subcase (a): k is even. Here weight center Cℓ of path P ℓ
k+1 is ℓ + k

2 . So d(Cℓ, u) =
k
2 +ℓ−u = L(u). Thus applying Theorem 3.5 to path P ℓ

k+1, we have spanf (P ℓ
k+1) ≥ k2

2 + k
2 +

ℓ−u+L(v)+σ(f). Since ℓ = n−k−1 and u ≤ k
2 , spanf (P ℓ

k+1) ≥ k2

2 +n−k−1+L(v)+σ(f).
If L(v) = d(Cℓ, v) ≥ 1, then spanf (P ℓ

k+1) ≥ k2

2 + n − k + σ(f) ≥ ⌊k2

2 ⌋ + n − k. Otherwise,
d(Cℓ, v) = 0. Thus we have v = k

2 + ℓ. Therefore the maximum colored vertex v is the
weight center of path P ℓ

k+1 and the minimum colored vertex u is not the highest level.
Thus from Observation 3.4 (4), we have σ(f) ≥ 1 for sub-path P ℓ

k+1. Therefore for the
sub-path P ℓ

k+1, we have spanf (P ℓ
k+1) ≥ ⌊k2

2 ⌋ + n − k.

If v ∈ {ℓ + 1, ℓ + 2, . . . , k
2 }, then for the sub-path P ℓ

k+1, by the same argument, one can
easily prove that spanf (P ℓ

k+1) ≥ ⌊k2

2 ⌋ + n − k.

Subcase (b): k is odd. In this subcase weight center Cℓ of P ℓ
k+1 is ℓ + k−1

2 or ℓ + k+1
2 .

First we assume that weight center Cℓ = ℓ + k−1
2 . Then the left branch L(P ℓ

k+1) has less
number of vertices than the right branch R(P ℓ

k+1) of P ℓ
k+1. Now, d(Cℓ, u) + d(Cℓ, v) =

k−1
2 +ℓ−u+d(Cℓ, v). By Theorem 3.7, we have spanf (P ℓ

k+1) ≥ k2−1
2 + k−1

2 +ℓ−u+d(Cℓ, v).
If d(Cℓ, v) ≥ 1, then we get spanf (P ℓ

k+1) ≥ k2−1
2 + ℓ + 1 = ⌊k2

2 ⌋ + n − k as u ≤ k−1
2 .

Otherwise, d(Cℓ, v) = 0, i.e., Cℓ = v. Then d(Cℓ, u) + d(Cℓ, v) = k−1
2 + ℓ − u. Since

the first colored vertex u is in the left branch L(P ℓ
k+1) of P ℓ

k+1 and the maximum colored
vertex v is the centroid, so f can not be an alternating radio labeling of P ℓ

k+1 due to the
same fact as described in Case I. By applying Theorem 3.7 to P ℓ

k+1 with σ(f) ≥ 2, we
have spanf (P ℓ

k+1) ≥ k2−1
2 + k−1

2 +ℓ−u+2. As u ≤ k−1
2 , thus spanf (P ℓ

k+1) ≥ k2−1
2 +ℓ+2 >

⌊k2

2 ⌋ + n − k.

Next we assume that weight center Cℓ of P ℓ
k+1 is ℓ + k+1

2 . Then d(Cℓ, u) + d(Cℓ, v) ≥
k+1

2 + ℓ − u. As u ≤ k−1
2 , hence spanf (P ℓ

k+1) ≥ k2−1
2 + ℓ + 1 = ⌊k2

2 ⌋ + n − k.

If v ∈ {ℓ + 1, ℓ + 2, . . . , k−1
2 }, then for the sub-path P ℓ

k+1, by the same argument we can
easily prove that spanf (P ℓ

k+1) ≥ ⌊k2

2 ⌋ + n − k.

Case III: Both u and v lie in {⌊k
2 ⌋ + 1, ⌊k

2 ⌋ + 2, . . . , ⌊k
2 ⌋ + ℓ}. In this case both u and

v are in P 0
k+1 as well as P ℓ

k+1.

Subcase (a): k is even. We have L(u) = d(C0, u) = u − k
2 and L(v) = d(C0, v) = v − k

2 .
As both first and last colored vertices are in same side (right side) of P 0

k+1 and none of
them are neither the weight center nor the highest level vertices, so by Corollary 3.6, we
have

spanf (P 0
k+1) ≥ k2

2
+ u + v − k + 1.

Again for the sub-path P ℓ
k+1, the weight center Cℓ is the vertex k

2 + ℓ. So L(u) =
d(Cℓ, u) = k

2 + ℓ − u and L(v) = d(Cℓ, v) = k
2 + ℓ − v. First we assume that v ̸= k

2 + ℓ.
Since both first and last colored vertices are in the same side (left side) of path P ℓ

k+1 and
none of them are neither the weight center nor the highest level vertices, so by Corollary
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3.6, we have

spanf (P ℓ
k+1) ≥ k2

2
+ k + 2ℓ − (u + v) + 1.

Next we assume that v = k
2 +ℓ of path P ℓ

k+1. Then by the similar argument as in Case II,
we can show that σ(f) ≥ 1. By applying Theorem 3.5 to path P ℓ

k+1, we have

spanf (P ℓ
k+1) ≥ k2

2
+ 1 + k + 2ℓ − (u + v).

By simple calculations one can easily prove that max
{

u + v − k, k + 2ℓ − (u + v)
}

≥ ℓ =
n − k − 1. Thus we have

spanf (Pn) ≥ max
{

spanf (P 0
k+1), spanf (P ℓ

k+1)
}

≥ k2

2
+ 1 + max

{
u + v − k, k + 2ℓ − (u + v)

}
≥

⌊
k2

2

⌋
+ n − k.

Subcase (b): k is odd. If the weight center C0 is k−1
2 of the path P 0

k+1, then d(C0, u) +
d(C0, v) = u + v − k + 1. Then by Theorem 3.7, we have

spanf (P 0
k+1) ≥ k2 − 1

2
+ u + v − k + 1.

Otherwise, the weight center C0 is k+1
2 . Then the right branch R(P 0

k+1) has less number
of vertices than the left branch L(P 0

k+1) of P 0
k+1 and d(C0, u) + d(C0, v) = u + v − k − 1.

As both u and v are in R(P 0
k+1), so σf (P 0

k+1) ≥ 2 (since f can not be alternating radio
labeling for the path P 0

k+1 as described in Case II of this theorem). By Theorem 3.7, we
have

spanf (P 0
k+1) ≥ k2 − 1

2
+ u + v − k + 1.

By the similar argument to the path P ℓ
k+1 with the weight centers k−1

2 + ℓ and k+1
2 + ℓ,

we obtain

spanf (P ℓ
k+1) ≥ k2 − 1

2
+ k + 1 + 2ℓ − u − v.

It is easy to prove that max{u + v − k + 1, k − 1 + 2ℓ − (u + v)} ≥ ℓ + 1 = n − k. Thus
we have

spanf (Pn) ≥ max
{

spanf (P 0
k+1), spanf (P ℓ

k+1)
}

≥ k2 − 1
2

+ 1 + max
{

u + v − k, k + 2ℓ − (u + v)
}

≥
⌊

k2

2

⌋
+ n − k.
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Case IV: u or v ∈ {⌊k
2 ⌋ + ℓ + 1, ⌊k

2 ⌋ + ℓ + 2, . . . , k}. This case is similar to Case II. For
the sub-path P 0

k+1, by the same argument as used in Case II, one can easily prove that
spanf (P 0

k+1) ≥ ⌊k2

2 ⌋ + n − k.

Case V: u or v ∈ {k + 1, k + 2, . . . , n − 1}. For the sub-path P u−k
k+1 : u − k, u − k + 1, u −

k+2, . . . , u; by the same argument as used in Case I, we have spanf (P u−k
k+1 ) ≥ ⌊k2

2 ⌋+n−k.

Finally we conclude that for any radio-k-labeling f of path Pn, spanf (Pn) ≥ ⌊k2

2 ⌋ + n − k

and hence rck(Pn) ≥ ⌊k2

2 ⌋ + n − k. �

Corollary 4.2. For an n-vertex path Pn with even integer k,

rck(Pn) ≥ k2

2
+ min

{
n − k,

k

2

}
.

Proof. The value of min
{

n − k, k
2

}
is n − k or k

2 according as n ≤ 3k
2 and n ≥ 3k

2 . Since
rck(Pn) ≥ rck(Pm) for n ≥ m, the result is follows from Theorem 4.1. �

Corollary 4.3. For an n-vertex path Pn and odd integer k, rck(Pn) ≥ k2−1
2 +min

{
n − k, k+1

2

}
.

Proof. The value of min
{

n − k, k+1
2

}
is n−k or k+1

2 according as n ≤ 3k+1
2 and n ≥ 3k+1

2 .
Since rck(Pn) ≥ rck(Pm) for n ≥ m, the result follows from Theorem 4.1. �

Theorem 4.4. Let Pn be a path of order n with even integer k. If n ≥ 3k
2 + 2, then

rck(Pn) ≥ k2

2 + k
2 + 1.

Proof. We have rck(Pn) ≥ rck(Pm) for n ≥ m. Thus we prove this theorem for n = 3k
2 +2.

Let f be an optimal radio k-labeling of path Pn, where n = 3k
2 + 2. Also let the minimum

color and the maximum color (say, m and M , respectively) assigned by f for the path
Pn : 0, 1, 2, . . . , n − 1 are attained at vertices u and v of the path Pn, respectively. Now
we consider the following cases depending on the positions of u and v in the path Pn.

Case I: u or v ∈ {0, 1, 2, . . . , k
2 }. If u ∈ {0, 1, . . . , k

2 }, then we can construct a sub-path
P u

k+1 : u, u+1, u+2, . . . , u+k of length k as in Fig. 2. Since u ≤ k
2 , we have u+k ≤ n−2.

Hence the sub-path P u
k+1 always exist in this case. Let Cu (= u+ k

2 ) be the weight center of
path P u

k+1. So d(Cu, u) = k
2 and d(Cu, v) ≥ 0. If d(Cu, v) ≥ 1, then applying Theorem 3.5

to path P u
k+1, we have spanf (P u

k+1) ≥ k2

2 + k
2 + 1 and hence the result follows. Otherwise,

d(Cu, v) = 0. Therefore the maximum color M attains at Cu, weight center of path P u
k+1.

Now we construct an another sub-path P u+1
k+1 : u + 1, u + 2, u + 3, . . . , u + k + 1 of length

k with starting vertex u + 1 of path Pn (see Fig. 2). For this sub-path the weight center,
denoted by Cu+1, is the vertex u + k

2 + 1 and the maximum color attains at the vertex
u + k

2 = v. Since the minimum colored vertex u of path Pn is not in the sub-path P u+1
k+1 ,

so let m′ be the minimum color assigned by f for the sub-path P u+1
k+1 and m′ attains at

the vertex u′ ∈ V (P u+1
k+1 ), say. Here obviously m′ ≥ m. We now consider the following two

subcases:

Subcase (a): u′ is in right half of Cu+1. Let u′ = u + k
2 + 1 + t with 0 ≤ t ≤ k

2 . Then
d(u, u′) = t + k

2 + 1 and d(Cu+1, u′) = t. The color difference of the vertices u and u′ is
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m′ − m. From the radio k-labeling condition m′ − m ≥ k
2 − t. Thus applying Theorem 3.5

to path P u+1
k+1 , we have spanf (P u+1

k+1 ) ≥ k2

2 + d(Cu+1, u′) + d(Cu+1, v) + m′ ≥ k2

2 + k
2 + 1.

Subcase (b): u′ is in left half of Cu+1. Let u′ = u + k
2 + 1 − t with 2 ≤ t ≤ k

2 . Then
d(u, u′) = k

2 + 1 − t and d(Cu+1, u′) = t. The color difference between u and u′ is m′ − m.
From the radio k-labeling condition m′ − m ≥ k

2 + t. Thus applying Theorem 3.5 to path
P u+1

k+1 , we have spanf (P u+1
k+1 ) ≥ k2

2 + d(Cu+1, u′) + d(Cu+1, v) + m′ ≥ k2

2 + k
2 + 2t + 1.

Thus if u ∈ {0, 1, 2, . . . , k
2 }, there always exist a sub-path P of length k with spanf (P ) ≥

k2

2 + k
2 + 1.

If v ∈ {0, 1, 2, . . . , k
2 }, then for the sub-path P v

k+1 : v, v + 1, v + 2, . . . , v + k, by the same
argument, one can easily prove the required result.

Case II: Both u, v ∈ {k
2 + 1, k

2 + 2, . . . , k}. Construct two sub-paths P 0
k+1 : 0, 1, . . . , k

and P
k
2 +1

k+1 : k
2 + 1, k

2 + 2, . . . , 3k
2 + 1. Here the weight centers of P 0

k+1 and P
k
2 +1

k+1 are at

0
C 1

2

k
C

0

2

k
1

2

k k

0

1k
P

1
2

1

k

k
P

3

2

k1k 3
1

2

k

Figure 4. The sub-paths P 0
k+1 and P

k
2 +1

k+1 .

the vertices k
2 and k + 1 of Pn, respectively. Let us denote these weight centers by C0

and C k
2 +1, respectively. In this case both u and v are in P 0

k+1 as well as P
k
2 +1

k+1 . Here
d(C0, u) = d(k

2 , u) = u− k
2 ; d(C0, v) = d(k

2 , v) = v − k
2 ; d(C k

2 +1, u) = d(k +1, u) = k +1−u

and d(C k
2 +1, v) = d(k + 1, v) = k + 1 − v. Then applying Theorem 3.5 to the paths P 0

k+1

and P
k
2 +1

k+1 each of length k, we have

spanf (P 0
k+1) ≥ k2

2
+ u + v − k and spanf

(
P

k
2 +1

k+1

)
≥ k2

2
+ 2(k + 1) − u − v.

By simple calculations, one can easily prove that max{u+v −k, 2(k +1)−u−v} ≥ k
2 +1.

Since spanf (Pn) ≥ max
{

spanf (P 0
k+1), spanf (P

k
2 +1

k+1 )
}

, therefore

spanf (Pn) ≥ k2

2
+ max{u + v − k, 2(k + 1) − u − v} ≥ k2

2
+ k

2
+ 1.

Case III: u or v ∈ {k + 1, k + 2, . . . , 3k
2 + 1}. This case is similar to Case I if we reverse

the vertex labeling of path Pn by the operation j = 3k
2 + 1 − i, 0 ≤ i ≤ 3k

2 + 1. This
completes the proof of the theorem. �
Theorem 4.5. Let Pn be a path of order n with odd integer k. If n ≥ 5k+1

2 , then rck(Pn) ≥
k2+k

2 + 1.
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Proof. This theorem can be prove by similar argument as given in Theorem 4.4. �

Remark 4.6. The existing lower bound of rck(Pn) is k2+4
2 for even integer k and k2+1

2
for odd integer k (see, [14]). But the results presented in Section 4 gives an improved
lower bound of rck(Pn) for even integer k as k2

2 + min{n − k, k
2 } or k2

2 + k
2 + 1 according

as n ≤ 3k
2 and n ≥ 3k

2 + 2. For odd integer k, improved lower bound presented here as
k2−1

2 + min{n − k, k+1
2 } or k2+k

2 + 1 according as n ≤ 5k−1
2 and n ≥ 5k+1

2 .

5. Radio k-chromatic number of Pn when k is even and n ≤ 5k
2 + 2

In this section, we give the exact value of rck(Pn) when k is even and n ≤ 5k
2 + 2.

Theorem 5.1. For an n-vertex path Pn and an even integer k,

rck(Pn) =


k2

2 + n − k if n ≤ 3k
2 ,

k2

2 + k
2 if n = 3k

2 + 1,

k2

2 + k
2 + 1 if 3k

2 + 2 ≤ n ≤ 5k
2 + 2.

Proof. Let V (Pn) = {0, 1, 2, . . . , n − 1} be the vertex set of an n-vertex path Pn. By
Theorems 4.1 and 4.4 with Corollary 4.2, we have

rck(Pn) ≥


k2

2 + n − k if n ≤ 3k
2 ,

k2

2 + k
2 if n = 3k

2 + 1,

k2

2 + k
2 + 1 if 3k

2 + 2 ≤ n ≤ 5k
2 + 2.

(5.1)

To prove the equality we have to give an optimal k-labeling with this required span. To
define optimal k-labelings we consider the following three cases depending on the values
of n as stated in this theorem.

Case I: n ≤ 3k
2 . Let k = 2p and ℓ be a positive integer such that k + ℓ = n − 1 with

0 < ℓ < p. Define a mapping f : V (Pn) → {0, 1, 2, . . .} as follows:

f(i) = p + 1 + i(2p + 1), 0 ≤ i ≤ ℓ − 2;

f(ℓ − 1) = 2p2 − p + ℓ + 1;

f(ℓ + j) = p + 2 + (ℓ + j − 1)(2p + 1), 0 ≤ j ≤ p − ℓ − 1;

f(p + m) = m(2p + 1), 0 ≤ m ≤ ℓ − 1;

f(p + ℓ) = 2p2 + ℓ + 1;

f(p + ℓ + 1 + t) = (ℓ + t)(2p + 1) + 1, 0 ≤ t ≤ p − ℓ − 1;

f(2p + 1 + r) = p + r(2p + 1), 0 ≤ r ≤ ℓ − 1.

One can easily show that f satisfies the radio k-labeling condition. Thus we have spanf (Pn) =
2p2 + ℓ + 1 = k2

2 + n − k.

Case II: n = 3k
2 +1. In this case we define a mapping f : V (Pn) → {0, 1, 2, . . .} as follows:



1938 L. Saha, S. Das, K.C. Das, K. Tiwary

f(i) = k

2
+ 1 + i(k + 1), 0 ≤ i ≤ k

2
− 1;

f

(
k

2
+ j

)
= j(k + 1), 0 ≤ j ≤ k

2
;

f(k + ℓ + 1) = k

2
+ ℓ(k + 1), 0 ≤ ℓ ≤ k

2
− 1.

It is easy to show that f satisfies the radio-k-labeling condition. Here clearly spanf (Pn) =
k2

2 + k
2 .

Case III: 3k
2 + 2 ≤ n ≤ 5k

2 + 2. Define a mapping f : V (Pn) → {0, 1, 2, . . .} as follows:

f(i) = k

2
+ 2 + i(k + 1), 0 ≤ i ≤ k

2
− 1;

f

(
k

2
+ j

)
= j(k + 1) + 1, 0 ≤ j ≤ k

2
;

f(k + ℓ + 1) = f(ℓ) − 1, 0 ≤ ℓ ≤ k

2
− 1;

f

(3k

2
+ m

)
= f

(
k

2
+ m − 1

)
− 1, 1 ≤ m ≤ n − 1 − 3k

2
.

It is easy to show that f satisfies the radio-k-labeling condition. Thus we have spanf (Pn) =
k2

2 + k
2 + 1. This completes the proof of the theorem. �

Example 5.2. An optimal radio 8-labeling of P20 and radio 14-labeling of P19 have given
in Fig. 5 and Fig. 6, respectively.

8 23 38 53 82 69 0 15 30

45608976722375267

4

17

3210 5 6 7 8

14 913 12 11 1016 15

Figure 5. A radio 8-labeling of P20 with span 37.

8 23 38 96 54 69 84 0 15 30

451036176917213752

15

40 1 2 3 5 6 7 8 9

101112131418 17 16

Figure 6. A radio 14-labeling of P19 with span 103.
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6. Radio k-chromatic number of Pn when k is odd and k + 2 ≤ n ≤ 7k−1
2

In this section, we give the exact value of rck(Pn) when k is odd and k + 2 ≤ n ≤ 7k−1
2 .

Theorem 6.1. For an n-vertex path Pn and an odd integer k,

rck(Pn) =


k2−1

2 + n − k if k + 2 ≤ n ≤ 3k−1
2 ,

k2+k
2 if 3k+1

2 ≤ n ≤ 5k−1
2 ,

k2+k
2 + 1 if 5k+1

2 ≤ n ≤ 7k−1
2 .

Proof. From Corollary 4.3 and Theorem 4.5, we have the following:

rck(Pn) ≥


k2−1

2 + n − k if k + 2 ≤ n ≤ 3k−1
2 ,

k2+k
2 if 3k+1

2 ≤ n ≤ 5k−1
2 ,

k2+k
2 + 1 if n ≥ 5k+1

2 .

(6.1)

To prove equality in (6.1), we have to define a radio k-labeling with the span as specified in
this theorem. For the cases 3k+1

2 ≤ n ≤ 5k−1
2 and 5k+1

2 ≤ n ≤ 7k−1
2 , it is sufficient to show

that there exist radio k-labelings f and g for the paths P 5k−1
2

and P 7k−1
2

with spans k2+k
2

and k2+k
2 + 1, respectively (because these are the lower bounds and rck(Pn) ≥ rck(Pm) for

n ≥ m).

Let the vertex set of an n-vertex path Pn be V (Pn) = {0, 1, . . . , n−1}. Also let k = 2p+1
and ℓ be a positive integer such that k + ℓ = n − 1. We consider the following three cases:

Case I: k +2 ≤ n ≤ 3k−1
2 . Since n ≤ 3k−1

2 , we have ℓ < p. Define a mapping f : V (Pn) →
{0, 1, 2, . . .} as follows:

f(i) = p + 2 + i(2p + 3), 0 ≤ i ≤ ℓ − 1;

f(ℓ) = 2p2 + p + ℓ;

f(ℓ + 1 + j) = p + 3 + (ℓ + j)(2p + 3), 0 ≤ j ≤ p − ℓ − 2;

f(p + m) = m(2p + 3), 0 ≤ m ≤ ℓ;

f(p + ℓ + 1) = 2p2 + 2p + ℓ + 1;

f(p + ℓ + 2 + t) = (ℓ + t + 1)(2p + 3) + 1, 0 ≤ t ≤ p − ℓ − 2;

f(2p + 1 + r) = p + 1 + r(2p + 3), 0 ≤ r ≤ ℓ.
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One can easily check that f satisfies the radio k-labeling condition. Thus we have
spanf (Pn) = 2p2 + 2p + ℓ + 1 = k2−1

2 + n − k as k = 2p + 1.

Case II: 3k+1
2 ≤ n ≤ 5k−1

2 . As discuss above it is sufficient to define a radio k-labeling of
Pn only for n = 5k−1

2 . We construct a radio k-labeling f of P 5k−1
2

as follows:

f(i) = k + 5
2

+ i(k + 2), 0 ≤ i ≤ k − 3
2

;

f

(
k − 1

2
+ j

)
= j(k + 2) + 1, 0 ≤ j ≤ k − 1

2
;

f(k + ℓ) = k + 3
2

+ ℓ(k + 2), 0 ≤ ℓ ≤ k − 3
2

;

f

(3k − 1
2

+ m

)
= m(k + 2), 0 ≤ m ≤ k − 1

2
;

f(2k + p) = k + 1
2

+ p(k + 2), 0 ≤ p ≤ k − 3
2

.

It is easy to see that f satisfy the radio-k-labeling condition. Here clearly spanf (Pn) =
f(k − 1) = k2+k

2 . It is also noted that this radio k-labeling scheme will work for any path
Pn with 3k+1

2 ≤ n ≤ 5k−1
2 .

Case III: 5k+1
2 ≤ n ≤ 7k−1

2 . As discuss above it is sufficient to define a radio k-labeling
of Pn only for n = 7k−1

2 . We construct a radio k-labeling f of P 7k−1
2

as follows:

f(i) = k + 7
2

+ i(k + 2), 0 ≤ i ≤ k − 3
2

;

f

(
k − 1

2
+ j

)
= j(k + 2) + 2, 0 ≤ j ≤ k − 1

2
;

f(k + ℓ) = k + 5
2

+ ℓ(k + 2), 0 ≤ ℓ ≤ k − 3
2

;

f

(3k − 1
2

+ m

)
= m(k + 2) + 1, 0 ≤ m ≤ k − 1

2
;

f(2k + p) = k + 3
2

+ p(k + 2), 0 ≤ p ≤ k − 3
2

;

f

(5k − 1
2

+ q

)
= q(k + 2), 0 ≤ q ≤ k − 1

2
;

f(3k + r) = k + 1
2

+ r(k + 2), 0 ≤ r ≤ k − 3
2

.

Here clearly spanf (Pn) = f(k − 1) = k2+k
2 + 1. It is easy to show that f satisfy the

radio-k-labeling condition. As maximum color attained at (k − 1)th vertex, so this radio
k-labeling scheme will work for any path Pn with 5k+1

2 ≤ n ≤ 7k−1
2 . �

Example 6.2. An optimal radio 13-labeling of P18 and radio 9-labeling of P20 has been
given in Fig. 7 and Fig. 8, respectively.
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8 23 38 53 82 69 0 15 30

45608976722375267

4

17

3210 5 6 7 8

14 913 12 11 1016 15

Figure 7. A radio 13-labeling of P18 with span 89.

7 18 29 40 0 12 23 34 45 6

172839011223344516

17

43210 5 6 7 8 9

101112131419 18 1516

Figure 8. A radio 9-labeling of P20 with span 45.

7. Concluding Remark
Consequences of Theorem 5.1 and Theorem 6.1 include the radio k-chromatic number

of Pn for k ∈ {n − 4, n − 3, n − 2, n − 1} (which were settled in [5, 17–19, 25] by different
approaches). Not only that these theorem determines the radio k-chromatic number of
Pn for even integer k ∈

{⌈
2(n−2)

5

⌉
, . . . , n − 1

}
and odd integer k ∈

{⌈
2n+1

7

⌉
, . . . , n − 1

}
that is at least 65% cases the radio k-chromatic of the path Pn are obtained for fixed but
arbitrary values of n. For example, if we take n = 1000, then this article determines the
exact value of rck(P1000) for even k ∈ {400, 402, . . . , 998} and odd k ∈ {287, 289, . . . , 999}
where as the existing results are only for k ∈ {997, 998, 999}.
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