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Abstract
Let Tn be the (full) transformation semigroup, and let OCTn and ORCTn be its sub-
semigroups of isotone contractions and of monotone contractions on a finite chain Xn =
{1, . . . , n} under its natural order, respectively. In this study, we obtain the ranks of the
ideals OCTn,r = {α ∈ OCTn : |im (α)| ≤ r} and ORCTn,r = {α ∈ ORCTn : |im (α)| ≤ r}
for 1 ≤ r ≤ n − 1.
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1. Introduction
For n ∈ Z+ let Xn = {1, . . . , n} be a finite chain, under its natural order, and let Tn

be the (full) transformation semigroup, the semigroup of all (full) transformations on Xn

with usual composition. It is well known that every finite semigroup is embeddable in
a transformation semigroup Tn for any appropriate n, which is correspond to Cayley’s
theorem for finite symmetric group Sn, the group of all permutations on Xn. Hence,
the studies on transformation semigroups and their subsemigroups have certain important
roles for semigroup theory like as the studies on symmetric groups for group theory.

An element α ∈ Tn is said to be isotone or order-preserving (antitone or order-reversing
) if x ≤ y ⇒ xα ≤ yα (x ≤ y ⇒ xα ≥ yα) for all x, y ∈ Xn, and said to be monotone if α
is isotone or antitone. Notice that if |im (α)| = 1 then α is both isotone and antitone, and
so monotone. It is easy to see that the product of two isotone transformations and also
the product of two antitone transformations is isotone; and the product of any isotone
transformation with any antitone transformation (in each order) is antitone. Then, as
known, the subsets

On = {α ∈ Tn : α is an isotone transformation on Xn} and
ORn = {α ∈ Tn : α is a monotone transformation on Xn}

are subsemigroups of Tn. An other notable element in Tn is contraction. An element
α ∈ Tn is called a contraction if |xα − yα| ≤ |x − y| for all x, y ∈ Xn, and also the subset

CTn = {α ∈ Tn : α is a contraction on Xn}
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is a subsemigroup of Tn. Furthermore, let OCTn and ORCTn be the subsemigroups of
Xn, consists of all isotone contractions and of all monotone contractions, respectively, that
is

OCTn = On ∩ CTn and ORCTn = ORn ∩ CTn

for 1 ≤ r ≤ n, let

OCTn,r = {α ∈ OCTn : |im (α)| ≤ r} and
ORCTn,r = {α ∈ ORCTn : |im (α)| ≤ r}

which are clearly subsemigroups, even ideals, of OCTn and of ORCTn, respectively. Also,
we have OCTn,r ≤ ORCTn,r for 1 ≤ r ≤ n.

For any non-empty subset U of any semigroup S, the subsemigroup generated by U is
defined as the smallest subsemigroup of S containing U and denoted by ⟨U⟩. Moreover,
if S = ⟨U⟩ then U is said to be a generating set of S, and S is said to be the semigroup
generated by U . Also, the rank of a finitely generated semigroup S, a semigroup generated
by some finite subsets, is defined by

rank (S) = min{ |U | : ⟨U⟩ = S},

and any generating set of S with cardinality rank (S) is called a minimal generating set
of S.

As stated in [7], although the notion "contraction" first appeared in [10], algebraic
and combinatorial properties of the semigroups CTn and OCTn were investigated first by
Adeshola in [1]. Then Adeshola and Umar investigated the cardinalities of some equiva-
lences on OCTn and ORCTn in [2]; and Garba, Ibrahim and Imam presented characteri-
zations of Green’s relations on CTn and starred Green’s relations on both CTn and OCTn

in [7]. Ibrahim, Imam, Adeshola and Bakare investigate the local and global U -depth for
any generating set U of OCTn as well as the status of OCTn in [14]. An other interest-
ing lack for these semigroups is their ranks. To find the rank of an arbitrary semigroup
is an important problem in semigroup theory, similar to find the dimension of an arbi-
trary group in group theory. Howie, with various co-authors, wrote a lot of studies on
ranks of semigroups, see [8, 9, 11, 13] for examples. Then, this problem has gained impor-
tance for other researchers working in this field and then many more papers on ranks of
semigroups have been written, see [3, 5, 6, 17] for examples. Recently, Toker showed that
rank (OCTn,n−1) = n − 1, and rank (OCTn) = n for n ≥ 3, and that

rank (ORCTn) =
{

n+1
2 if n is an odd number

n+2
2 if n is an even number

for n ≥ 1 in [15]. Now, we examine the ideals OCTn,r and ORCTn,r for 1 ≤ r ≤ n − 1.
Although the part of the motivation of this paper is to state a useful method for finding
minimal generating sets of the implied ideals, the main motivation of this paper is to
calculate their ranks. Finally, we show that

rank (OCTn,r) = rank (ORCTn,r) =
{

n for r = 1(n−1
r−1
)

for 2 ≤ r ≤ n − 1

in this study.

2. Preliminaries
For any α ∈ Tn the height and the kernel of α are defined by

h (α) = |im (α)| and
ker(α) = {(x, y) : x, y ∈ Xn and xα = yα},
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respectively. It is well known that ker(α) is an equivalence relation on Xn, and that the
set of the equivalence classes obtained by ker(α), say

Xn/ ker(α) = {yα−1 : y ∈ im (α)},

is a partition of Xn, called the kernel partition of α and denoted by kp (α). For α, β ∈ Tn

it is clear that
kp (α) = kp (β) ⇔ ker(α) = ker(β).

Let P = {I1, . . . , Ip} be a partition of Xn for any 1 ≤ p ≤ n. Then we write Ii < Ij

if x < y for all x ∈ Ii and for all y ∈ Ij for 1 ≤ i, j ≤ p. Without loss of generality, if
P = {I1 < · · · < Ip} then P is called an ordered partition. Moreover, a subset {a1, . . . , ap}
of Xn is called a representative set (or a transversal or a cross-section) of P if |{a1, . . . , ap}∩
Ii| = 1 for each 1 ≤ i ≤ p. Also, a subset ∅ ̸= C ⊆ Xn is called a convex subset if

x, y ∈ C and x ≤ z ≤ y ⇒ z ∈ C.

Now let α ∈ ORCTn = ORn ∩ CTn with h (α) = p (1 ≤ p ≤ n). Since α ∈ ORn, it
is well known that the kernel classes of α are convex ordered subsets of Xn (see [6, p187]
for example), that is there exist x1, . . . , xp−1 ∈ Xn such that the kernel classes of α are
Ii = {xi−1 + 1, . . . , xi} for 1 ≤ i ≤ p where x0 = 0 and xp = n, and so the kernel partition
of α ∈ ORn is kp (α) = P = {I1 < · · · < Ip}. Moreover, since α ∈ CTn it is also well
known that im (α) is a convex subset of Xn (see [2, Lemma 1.2] for example), that is there
exist a ∈ Xn such that im (α) = A = {a, a + 1, . . . , a + p − 1}. Then α has the following
tabular form:

α =
(

I1 I2 · · · Ip

a a + 1 · · · a + p − 1

)
, or shortly α =

(
P
A

)
if α is isotone, and

α =
(

I1 I2 · · · Ip

a + p − 1 a + p − 2 · · · a

)
or shortly α =

(
P

AR

)
if α is antitone. For any 1 ≤ p ≤ n, there exist

(n−1
p−1
)

many convex ordered partition of
Xn into p subsets, and n − p + 1 many convex subset of Xn with p elements. Therefore,
it is easy to see that |OCTn,1| = |ORCTn,1| = n and that

|OCTn,r| =
r∑

p=1

(
n − 1
p − 1

)
(n − p + 1) and

|ORCTn,r| = n + 2
r∑

p=2

(
n − 1
p − 1

)
(n − p + 1)

for 2 ≤ r ≤ n − 1.
As usual, an element x in any semigroup S is called an idempotent if x2 = x, and the

set of all idempotents in any subset ∅ ̸= U ⊆ S denoted by E(U). Then it is well known
that

α ∈ E(Tn) ⇔ im (α) = fix (α) = {x ∈ Xn : xα = x}.

In particular,
α ∈ E(OCTn) ⇔ im (α) is a representative set of kp (α),

and clearly for any α ∈ OCTn, im (α) = {a, a + 1, . . . , a + p − 1} (1 ≤ p ≤ n) is a
representative set of kp (α) if and only if

kp (α) = {{1, . . . , a}, {a + 1}, . . . , {a + p − 2}, {a + p − 1, . . . , n}}.

Notice that, for each convex subset ∅ ̸= A ⊆ Xn there exists a unique convex ordered
partition P of Xn such that A is a representative set of P , and so there exists a unique
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idempotent in OCTn such that im (α) = A. Thus, since there exist n − p + 1 many convex
subsets of Xn with cardinality p and since each idempotent have to be isotone, it follows
that

|E(OCTn,r)| = |E(ORCTn,r)| =
r∑

p=1
(n − p + 1),

and so

|E(OCTn)| = |E(ORCTn)| =
n∑

p=1
(n − p + 1) = n(n + 1)

2

which is first appeared in [2, Corollary 2.14].
After stating some combinatorial results in OCTn,r and ORCTn,r, now we give some

properties about their algebraic structures. In general, one of the most common interest
on algebraic structure of any semigroup S is to examine the characterization of the Green’s
equivalences L,R, J,D,H on S, especially if a semigroup S is regular (for the definitions
and certain properties of Green’s equivalences and for the other undefined terms in semi-
group theory see [4, 12] for examples). For non-regular semigroups, it is more common
to examine the characterization of the starred Green’s equivalences L∗,R∗, J∗,H∗,D∗, the
generalization of Green’s equivalences. On any semigroup S, the starred Green’s equiv-
alence L∗ (R∗) is defined for a, b ∈ S by the rule that aL∗b (aR∗b) if and only if aLb
(aRb) on some over-semigroup of S (a semigroup containing S as a subsemigroup). These
equivalences also have the following characterizations:

aL∗b ⇔ ax = ay if and only if bx = by for all x, y ∈ S1

aR∗b ⇔ xa = ya if and only if xb = yb for all x, y ∈ S1

for a, b ∈ S where S1 is the monoid obtained from S by adjoining an identity if necessary.
Moreover, the equivalences H∗ and D∗ are defined as the intersection and the join of the
equivalences L∗ and R∗, respectively, say H∗ = L∗ ∩ R∗ and D∗ = L∗ ∨ R∗, and it is well
known that D∗ = L∗ ◦ R∗.

Let S ∈ {OCTn,r, ORCTn,r} for 1 ≤ r ≤ n − 1 unless otherwise stated. For α, β ∈ S, it
is a routine matter to prove, as in [7, Theorem 4.1], that

(i) αL∗β ⇔ im (α) = im (β),
(ii) αR∗β ⇔ ker(α) = ker(β),

(iii) αH∗β ⇔ ker(α) = ker(β) and im (α) = im (β), and
(iv) αD∗β ⇔ |im (α)| = |im (β)|,

and also D∗ = J∗. Then, for 1 ≤ p ≤ r ≤ n − 1, we denote the starred Green’s D∗-class of
all elements in S of height p by D∗

p, that is

D∗
p = {α ∈ S : |im (α)| = p}.

It is clear that there exist r many D∗-classes, namely D∗
1, . . . , D∗

r , and S is the disjoint
union of D∗

1, . . . , D∗
r . Moreover, there exist n − p + 1 many L∗-classes and

(n−1
p−1
)

many
R∗-classes in D∗

p for each 1 ≤ p ≤ r. As also shown in [15] that, it is a routine matter to
show that D∗

p ⊆ ⟨D∗
p+1⟩, more explicitly, for any α ∈ D∗

p there exist β, γ ∈ D∗
p+1 such that

α = βγ, for any 1 ≤ p ≤ n − 2. Therefore, for any subset ∅ ̸= U ⊆ S,

S = ⟨U⟩ ⇔ D∗
r ⊆ ⟨U⟩.

Also, it is clear that D∗
r can be generated only by its own elements. Hence, it is enough

to examine only the non-empty subsets of D∗
r to find a (minimal) generating set of S.

Next we give a lemma which is useful for this manuscript.
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Lemma 2.1. For 1 ≤ p ≤ n − 1 and 2 ≤ k let α1, . . . , αk ∈ D∗
p in S where S ∈

{OCTn,r, ORCTn,r} for 1 ≤ r ≤ n − 1. Then

α1 · · · αk ∈ D∗
p ⇔ αiαi+1 ∈ D∗

p for each 1 ≤ i ≤ k − 1
⇔ im (αi) is a representative set of kp (αi+1) for each 1 ≤ i ≤ k − 1.

Proof. The proof is similar to the proof of [3, Lemma 2]. �
Now we give some definitions about digraphs. A digraph (directed graph) is an ordered

pair Π = (V, E) where V is a set whose elements are called vertices and E ⊆ V × V is a
set of ordered pairs whose elements are called arrows or directed edges. For some elements
u1, . . . , uk ∈ V (k ≥ 2) that do not need to be different if (u1, u2), (u2, u3), . . . , (uk−1, uk) ∈
E, then u1 → u2 → · · · → uk is called a walk from u1 to uk. In particular, for distinct
vertices u1, . . . , uk ∈ V where k ≥ 1, the closed walk u1 → · · · → uk → u1 is called a
cycle. For any walk u1 → · · · → uk (2 ≤ k), the ordered product u1u2 · · · uk is called a
consecutive product. (For unexplained terms about digraphs, see [16] for example.)

Finally, we define a new digraph DU for any ∅ ̸= U ⊆ D∗
r which will be used in the

main theorem of this manuscript. Let ∅ ̸= U ⊆ D∗
r in S where S ∈ {OCTn,r, ORCTn,r}

for 1 ≤ r ≤ n − 1. Then the digraph DU = (U, E) is defined by

E = {(α, β) : αβ ∈ D∗
r}

= {(α, β) : im (α) is a representative set of kp (β)}.

Notice that, for any α ∈ ORCTn,r, im (α) = {a, a + 1, . . . , a + r − 1} is a representative set
of kp (β) if and only if kp (β) = {{1, . . . , a}, {a + 1}, . . . , {a + r − 2}, {a + r − 1, . . . , n}}.

3. Rank of OCTn,r

Theorem 3.1. Let 1 ≤ r ≤ n − 1 and let ∅ ̸= U ⊆ D∗
r . Then U is a generating set of

OCTn,r if and only if, for each convex ordered partition P of Xn into r subsets and for
each convex subset A of Xn with cardinality r, there exist α, β ∈ U such that

(i) kp (α) = P ,
(ii) im (β) = A and

(iii) α = β or there exists a walk from α to β in the digraph DU .

Proof. (⇒) For any convex ordered partition P of Xn into r subsets and any convex
subset A of Xn with cardinality r (1 ≤ r ≤ n − 1), consider the unique isotone contraction
γ ∈ D∗

r with kernel partition P and image set A. If γ ∈ U , then the result is clear. Now let
γ ∈ D∗

r \U . Since ∅ ̸= U ⊆ D∗
r is a generating set of OCTn,r, then there exist α1, . . . , αm ∈

U such that α1 · · · αm = γ for m ≥ 2. Then we have ker(α1) ⊆ ker(γ), im (γ) ⊆ im (αm)
and α1, . . . , αm, γ ∈ D∗

r , and so kp (α1) = kp (γ) = P and im (αm) = im (γ) = A. Thus
the first two conditions are satisfied. From Lemma 2.1, also we have αiαi+1 ∈ D∗

r for each
1 ≤ i ≤ m − 1 , and so α1 → · · · → αm is a walk from α1 to αm in DU .

(⇐) Let γ ∈ D∗
r and let kp (γ) = P and im (γ) = A. From the assumptions, there

exist α, β ∈ U such that kp (α) = P = kp (γ), im (β) = A = im (γ), and α = β or
there exists a walk from α to β in DU . If α = β clearly α = β = γ ∈ U , otherwise, let
α = α1 → · · · → αm = β (m ≥ 2) be a walk from α to β in DU , and let ξ be the consecutive
product of all elements on this walk, say ξ = α1 · · · αm. Similarly, we have ker(α) ⊆ ker(ξ)
and im (ξ) ⊆ im (β). Moreover, it follows from the definition of the digraph DU and
Lemma 2.1 that ξ ∈ D∗

r , and so kp (ξ) = kp (α) = kp (γ) and im (ξ) = im (β) = im (γ).
Hence, γ = ξ ∈ ⟨U⟩, and so D∗

r ⊆ ⟨U⟩, as required. �
In conclusion, if OCTn,r = ⟨U⟩ for any ∅ ̸= U ⊆ D∗

r , then for each α ∈ D∗
r there exists at

least one element in U which is L∗-equivalent to α and there exists at least one element in
U which is R∗-equivalent to α. Thus U must cover the L∗-classes and also the R∗-classes
in D∗

r . Hence rank (OCTn,1) ≥ n and rank (OCTn,r) ≥
(n−1

r−1
)

for 2 ≤ r ≤ n − 1.
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Corollary 3.2. OCTn,1 = {
(

Xn

{1}

)
, . . . ,

(
Xn

{n}

)
} and there is no proper generating set

of OCTn,1.

Lemma 3.3. For 2 ≤ r ≤ n − 1, let m = n − r + 1 and let I1, . . . , Im be all of the convex
subsets of Xn with cardinality r. Then there exist m different convex ordered partitions
P1, . . . , Pm of Xn into r subsets such that Ii is a representative set of Pi for each 1 ≤ i ≤ m.

Proof. For each 1 ≤ i ≤ m, let Ii = {i, i + 1, . . . , i + r − 1} and let Pi = {{1, . . . , i}, {i +
1}, . . . , {i + r − 2}, {i + r − 1, . . . , n}}. Then the result is clear. �

Lemma 3.4. For 2 ≤ r ≤ n − 1, let m = n − r + 1, and let I1, . . . , Im be all of the convex
subsets of Xn with cardinality r. Then there exist α1, . . . , αm ∈ D∗

r in OCTn,r such that
(i) kp (αi) ̸= kp (αj) if 1 ≤ i ̸= j ≤ m and
(ii) im (αi) = Ii is a representative set of kp (αi+1), for each 1 ≤ i ≤ m where αm+1 =

α1.

Proof. Let m = n − r + 1, and let I1, . . . , Im be all of the convex subsets of Xn with
cardinality r for 2 ≤ r ≤ n−1. Then it follows from Lemma 3.3 that there exist m different
convex ordered partitions P1, . . . , Pm of Xn into r subsets such that Ii is a representative
set of Pi for each 1 ≤ i ≤ m. Without loss of generality, let αi ∈ D∗

r be the unique isotone
contraction represented by kp (αi) = Pi−1 and im (αi) = Ii for each 1 < i ≤ m where
P0 = Pm. Then the result is clear. �

For 2 ≤ r ≤ n − 1, let I1, . . . , Im be all of the convex subsets of Xn with cardinality r,
and let R∗

1, . . . , R∗
t be all of the starred Green’s R∗-classes in D∗

r where m = n − r + 1 and
t =

(n−1
r−1
)
. It follows from Lemma 3.4 that there exist α1, . . . , αm ∈ D∗

r in OCTn,r such
that

(i) kp (αi) ̸= kp (αj) if 1 ≤ i ̸= j ≤ m and
(ii) im (αi) = Ii is a representative set of kp (αi+1), for each 1 ≤ i ≤ m where αm+1 =

α1.
Without loss of generality, we may assume that αi ∈ R∗

i for 1 ≤ i ≤ m, and take an
arbitrary contraction αm+j from R∗

m+j for each 1 ≤ j ≤ t − m. Then consider the set
U = {α1, . . . , αm, αm+1, . . . , αt} which satisfies the first two conditions of Theorem 3.1.
Also, it is easy to see that,

α1 → · · · → αm → α1
is a cycle in DU and, for each 1 ≤ j ≤ t − m, there exists 1 ≤ i ≤ m such that αm+j → αi

is a walk in DU . Therefore, for any γ ∈ D∗
r \ U , there exist αk, αl ∈ U such that kp (αk) =

kp (γ), im (αl) = im (γ), and that there exists a walk from αk to αl in DU . Indeed to
generate γ ∈ D∗

r \ U , we can use the consecutive product of all isotone contractions on a
suitable walk from the vertex αk to the vertex αl. Then it follows from Theorem 3.1 that
U is a generating set of OCTn,r, and so we have the following theorem.

Theorem 3.5.
rank (OCTn,r) =

{
n for r = 1(n−1
r−1
)

for 2 ≤ r ≤ n − 1 .

Proof. The result follows from Corollary 3.2 and the fact rank (OCTn,r) ≥
(n−1

r−1
)

for
2 ≤ r ≤ n − 1. �
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4. Rank of ORCTn,r

Notice that OCTn,1 = ORCTn,1. Therefore, unless otherwise stated, in this section we
consider the case 2 ≤ r ≤ n − 1. Also, recall that for any subset ∅ ̸= U ⊆ ORCTn,r, U is
a generating set of ORCTn,r if and only if D∗

r ⊆ ⟨U⟩.

Lemma 4.1. ORCTn,r = ⟨R(D∗
r)⟩ where R(D∗

r) = {α ∈ D∗
r : α is antitone}.

Proof. Let α ∈ D∗
r be a isotone contraction with the following tabular form:

α =
(

A1 A2 · · · Ar

a a + 1 · · · a + r − 1

)
.

Then clearly we have α = βγ where

β =
(

A1 A2 · · · Ar

a + r − 1 a + r − 2 · · · a

)
∈ R(D∗

r) and

γ =
(

{1, . . . , a} {a + 1} · · · {a + r − 2} {a + r − 1, . . . , n}
a + r − 1 a + r − 2 · · · a + 1 a

)
∈ R(D∗

r).

Thus, D∗
r ⊆ ⟨R(D∗

r)⟩, and so ORCTn,r = ⟨R(D∗
r)⟩. �

As a result, ∅ ̸= U ⊆ D∗
r is a generating set of ORCTn,r if and only if R(D∗

r) ⊆ ⟨U⟩.

Theorem 4.2. For 2 ≤ r ≤ n−1, ∅ ̸= U ⊆ D∗
r is a generating set of ORCTn,r if and only

if, for each convex ordered partition P of Xn into r subsets and for each convex subset A
of Xn with cardinality r, there exist α, β ∈ U such that

(i) kp (α) = P ,
(ii) im (β) = A, and

(iii) α = β ∈ R(D∗
r) or there exists a walk from α to β in the digraph DU such that the

number of vertex on the walk which is antitone is an odd number.

Proof. (⇒) For any convex ordered partition P of Xn into r subsets and any convex
subset A of Xn with cardinality r (2 ≤ r ≤ n−1), consider the unique antitone contraction
γ ∈ R(D∗

r) with kernel partition P and image set A. If γ ∈ U , then the result is clear. Now
let γ ∈ R(D∗

r) \ U . Since ∅ ̸= U ⊆ D∗
r is a generating set of ORCTn,r, then R(D∗

r) ⊆ ⟨U⟩,
and so there exist α1, . . . , αm ∈ U such that α1 · · · αm = γ for m ≥ 2. Then we have
ker(α1) ⊆ ker(γ), im (γ) ⊆ im (αm) and α1, . . . , αm, γ ∈ D∗

r , and so kp (α1) = kp (γ) = P
and im (αm) = im (γ) = A. Thus the first two conditions are satisfied. Moreover, we have
αiαi+1 ∈ D∗

r for each 1 ≤ i ≤ m − 1 from Lemma 2.1, and so α1 → · · · → αm is a walk in
the digraph DU . Moreover, since γ ∈ R(D∗

r), it is easy to see that the number of vertex
on the walk which is antitone has to be an odd number.

(⇐) Let γ ∈ R(D∗
r) and let kp (γ) = P and im (γ) = A. Then from the assumptions,

there exist α, β ∈ U such that kp (α) = P = kp (γ), im (β) = A = im (γ), and α = β ∈
R(D∗

r) or there exists a walk from α to β in the digraph DU such that the number of vertex
on the walk which is antitone is an odd number. If α = β ∈ R(D∗

r) clearly α = β = γ ∈ U ,
otherwise, let ξ be the consecutive product of all elements on the walk. Then, as in the
proof of Theorem 3.1, kp (ξ) = kp (α) = kp (γ) and im (ξ) = im (β) = im (γ). Moreover,
since the number of vertex on the walk which is antitone is an odd number, we have
ξ ∈ R(D∗

r). Thus, γ = ξ ∈ ⟨U⟩, and so R(D∗
r) ⊆ ⟨U⟩, as required. �

Lemma 4.3. For 2 ≤ r ≤ n − 1 let m = n − r + 1 and let I1, . . . , Im be all of the convex
subsets of Xn with cardinality r. Then there exist α1, . . . , αm ∈ D∗

r in ORCTn,r such that
(i) kp (αi) ̸= kp (αj) if 1 ≤ i ̸= j ≤ m and

(ii) im (αi) = Ii is a representative set of kp (αi+1), for each 1 ≤ i ≤ m where αm+1 =
α1.
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Proof. It can be proved as in Lemma 3.4. �
Let I1, . . . , Im be all of the convex subsets of Xn with cardinality r, and let R∗

1, . . . , R∗
t

be all of the starred Green’s R∗-classes in D∗
r where m = n − r + 1 and t =

(n−1
r−1
)
. It

follows from Lemma 4.3 that there exist α1, . . . , αm ∈ D∗
r in ORCTn,r such that

(i) kp (αi) ̸= kp (αj) if 1 ≤ i ̸= j ≤ m and
(ii) im (αi) = Ii is a representative set of kp (αi+1), for each 1 ≤ i ≤ m where αm+1 =

α1.
Without loss of generality, we can take α1 as an antitone contraction and αi as an isotone
contraction for each 2 ≤ i ≤ m. Also, we may assume that αi ∈ R∗

i for each 1 ≤ i ≤ m,
and take an arbitrary isotone contraction αm+j from R∗

m+j for each 1 ≤ j ≤ t − m. Then
consider the set U = {α1, . . . , αm, αm+1, . . . , αt}. It is easy to see that

α1 → · · · → αm → α1

is a cycle in the digraph DU . Moreover, for each 1 ≤ j ≤ t − m, there exists 1 ≤ dj ≤ m
such that im (αm+j) = im (αdj

). If 1 ≤ dj ≤ m − 1 then clearly αm+j → αdj+1 is a
walk in DU , and if dj = m then clearly αm+j → α1 is a walk in DU . Hence, for any
convex ordered partition P of Xn into r subsets and for any convex subset A of Xn with
cardinality r, there exists a unique αk ∈ U such that kp (αk) = P and there exist unique
αl ∈ {α1, . . . , αm} such that im (αl) = A. Therefore, first two conditions of Theorem 4.2
are satisfied. Now we examine the last condition of Theorem 4.2. There exist three cases.

Case 1: When αk = αl = α1, the result is clear since α1 ∈ R(D∗
r).

Case 2: When αk = αl ̸= α1, consider the walk

αl → αl+1 → · · · → αm → α1 → · · · → αl−1 → αl,

which contains only one antitone map. Hence, the third condition of Theorem 4.2 is
satisfied.

Case 3: When αk ̸= αl, there exist p (p ≥ 0) distinct elements β1, . . . , βp ∈ U \ {αk, αl}
such that the shortest walk from αk to αl is

αk → β1 → · · · → βp → αl.

If α1 ∈ {αk, β1, . . . , βp, αl}, then the third condition of Theorem 4.2 is satisfied. If α1 /∈
{αk, β1, . . . , βp, αl} then consider the walk

αk → β1 → · · · → βp → αl → αl+1 → · · · → αm → α1 → α2 → · · · → αl−1 → αl,

which satisfies the third condition of Theorem 4.2.
Therefore, from Theorem 4.2, U is a generating set of ORCTn,r, and so we have the

following theorem.

Theorem 4.4. rank (ORCTn,r) =
{

n for r = 1(n−1
r−1
)

for 2 ≤ r ≤ n − 1 .

Proof. The result follows from Corollary 3.2 and the facts ORCTn,1 = OCTn,1 and
rank (ORCTn,r) ≥

(n−1
r−1
)

for 2 ≤ r ≤ n − 1. �
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