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 Networked cyber-physical systems (NCPSs) can be found in various fields such as 
industrial process, robotics, smart buildings, energy, healthcare systems, transportation, 
and surveillance. Recently accomplished real-time attacks indicate security vulnerabilities 
that weaken the reliability of NCPSs. Research areas on the security of NCPSs can be 
categorized into two groups: from the perspective of information security, from the 
perspective of control theory. In this paper, first possible attack locations on the control 
scheme of a NCPS which can be divided into three different groups namely sensor side, 
actuator side, and state estimator side are discussed and then a brief survey containing 
some recent studies on security strategies for NCPSs from the perspective of control theory 
is presented. After that attack detection strategies for a NCPS are briefly introduced and a 
general architecture utilized for attack detection on a NCPS is presented. In addition, some 
of recent studies on attack detection strategies for NCPSs from the perspective of control 
theory are discussed. 

 
 
 
 
 

1. INTRODUCTION  
 

Networked cyber-physical systems (NCPSs) 
compose of cyber (computation units and 
communication units) and physical (sensors and 
actuators) components interacting in a framework 
(Cárdenas et al. 2008) as shown in Fig. 1. Large-scale and 
distributed monitoring and control applications have led 
to increased interest on NCPSs in recent years. NCPSs can 
be found in various fields such as industrial process 
control (Wang et al. 2008), robotics (Meng et al. 2011), 
smart buildings (Kleissl and Agarwal 2010), energy 
(Barthels et al. 2011), healthcare systems (Lee and 
Sokolsky 2010), transportation (Lau et al. 2011), and 
surveillance (Chen et al. 2012). Although the integration 
of cyber and physical components in NCPSs increases 
system efficiency, it also exposes security vulnerabilities 
that weaken the reliability of critical NCPSs (Sandberg et 
al. 2015). Recently accomplished real-time attacks such 
as the Maroochy water breach (Slay and Miller 2007), 
multiple power blackouts in Brazil (Conti 2010), the 
StuxNet worm attack to Siemens' supervisory control 
and data acquisition (SCADA) systems (Karnouskos 

2011), the SQL Slammer worm attack on the Davis-Besse 
nuclear plant (Kuvshinkova 2003) prove the mentioned 
security vulnerabilities in NCPSs. These successful 
attacks signify that information security mechanisms of 
NCPSs are insufficient to assure their healthy operation 
and NCPSs are prone to malfunction under attacks. 
Therefore, specifically designed control systems are 
required to complete the security mechanism 
(Pasqualetti et al. 2015).  

Security of NCPSs is an up-to-date and challenging 
issue on which researchers have paid intensive attention 
to remedy the vulnerabilities. Basically, the research 
areas on the security of NCPSs can be categorized into 
two groups. In the first group, the researchers consider 
the issue from the perspective of information security, 
while the other group take into account the issue from 
the perspective of control theory. 

In this paper, first, a brief survey on attack design 
strategies for NCPSs from the perspective of control 
theory is presented. Then, general architecture utilized 
for attack detection on a NCPSs is introduced. After that, 
some of recent papers on attack detection strategies for 
NCPSs from the perspective of control theory are 
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discussed. In Section 2, the papers related to attack 
design for NCPSs are discussed. Section 3 introduces an 
architecture employed for attack detection on NCPSs and 
presents a brief literature review on attack detection 
strategies for NCPSs. Should be noted that the studies 
which is taken into account in this paper do not cover the 
all literature. 
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Figure 1. Holistic view of NCPSs 
 

2. ATTACK DESIGN STRATEGIES FOR A NCPS 
 

Possible attack locations on the control scheme of a 
NCPS can be categorized into three different groups: 
sensor side, actuator side, and state estimator side. 
Sensor side attacks are performed by spoofing measured 
sensor signals, i.e. the real time sensor data are modified 
by the attacker. Similarly, in the actuator side attacks, the 
attacker spoof the produced control signals required for 
actuators. State estimator side attacks can be either at the 
output or input of the estimator, i.e. attacker can modify 
either estimated state values or control signals provided 
as input to the estimator. These mentioned attacks are 
actually performed at the input-output of the main blocks 
such as controller, system and estimator in a closed loop 
system. Note that this paper does not cover attacks 
performed on cyber-side to change parameters of the 
controller.  

Assume that physical plant is modelled in 
continuous-time state-space form given in Eq. (1) and a 
controller based observer has the form presented in Eq. 
(2). 
 

( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 

   
(1) 

  

 
(2) 

 

where r(t) is reference input signal, (A,C) is observable, 
(A,B) is controllable, ˆ( )x t  represents state vector of the 

observer, u(t) is the produced control signal, G is a 
prefilter matrix determined considering steady-state 
error, L and K matrices are chosen such that ( )A LC and

( )A BK  are Hurwitz. 

The block diagram of the physical plant model and 
controller based observer given in Eqs. (1 and 2) is 
shown in Fig. 2. 

B C

A

D

G
r

+
+

+
+

+
1
s

C

A

K

B
+

+
+

-
1
s+

+

L

-

y

u

x

x̂
.

x̂

x
.

 
Figure 2. The block diagram of the physical plant model 
and controller based observer 
 

2.1. Sensor Side Attacks 
 

A sensor side attack can be represented by a time 
varying ( )y t signal which is added to measured sensor 

data by the attacker (Djouadi et al. 2014). By spoofing 
sensor data, the output of the system represented by y(t) 
is modified and general state-space model is written as in 
Eq. (3).  
 

( ) ( ) ( )

( ) ( ) ( ) ( )a

x t Ax t Bu t

y t Cx t Du t y t

 

   
 (3) 

 

where ( )ay t  corresponds system output under attack.  

 

2.2. Actuator Side Attacks 
 

Actuator side attacks are employed to spoof control 
signals directly utilized in state-space models. Assume 

that a time varying ( )u t signal is added to the produced 
control signal. Then, the state-space model of the plant is 
written as in Eq. (4) (Ayas and Djouadi 2016).  
 

( ) ( ) ( ( ))

( ) ( ) ( ( ))

a

a

x t Ax t B u t

y t Cx t D u t

 

 
 

(4) 

 

where ( ) ( ) ( )au t u t u t   represent modified control 

signal. 
 

2.3. State Estimator Side Attacks 
 

In this case, the attacker is able to spoof either the 
input of the estimator, i.e. control signals provided as 
input to the estimator, or the output of the estimator, i.e. 
estimated state vector. If the attacker modify only the 
input control signal of the estimator then controller 
based observer has the following form in Eq. (5). 

On the other hand, the attacker can directly modify 
the output of the estimator by adding a ˆ( )x t  signal to the 
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estimated state vector. In this case, the model of the 
controller based observer is written as in Eq. (6). 

A general closed loop system containing state 
estimator for a NCPS is demonstrated in Fig. 3. In the 

figure, possible attack locations for the mentioned three 
category are emphasized with red icons.  

 

ˆ ˆ ˆ( ) ( ) ( ( ) ( )) ( ( ) ( ) ( ( ) ( )))

ˆ( ) ( ) ( )

a o o

a
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u t Kx t Gr t

        

  
 (5) 

  

ˆ ˆ ˆ ˆ ˆ( ) ( ( ) ( )) ( ) ( ( ) ( ( ) ( )) ( ))

ˆ ˆ( ) ( ( ) ( )) ( )

a ax t A x t x t Bu t L y t C x t x t Du t

u t K x t x t Gr t

        

    
 (6) 

where ˆ ( )ax t  represent the attacked state vector. 

 

ΔyΔu

x
.
= uBxA + a

y = uDxC + a

ua

x̂ = uBxA + ao

.
^

+ y - xC -L( ^
a uD ao

)
x̂aK

Δx

Δuo

^

u yax̂x̂a

Controller Observer

Plant

y

 
Figure 3. Possible actuator, sensor, and state attacks on 
a general closed loop system 

 

Unlike traditional IT systems, where security is 
based on the advocacy of data-related features and 
services, cyber attacks on NCPS can affect physical 
processes due to their feedback structure. Hence, NCPS 
security should take into account threats on both the 
cyber and physical layers. Within this scope three 
dimensional attack-scenario space seen in Fig. 4. was 
presented in (Teixeira et al. 2015) by considering control 
systems perspective. Commonly used specific attack 
types such as replay attack, denial-of-service (DoS) 
attack, bias-injection attack, zero dynamics attack, 
eavesdropping attack and covert attack are positioned in 
the attack space considering axes which are system 
knowledge, disruption resources and disclosure 
resources. For example, DoS and eavesdropping attacks 
require only disruption and disclosure resources, 
respectively, whereas replay attack utilizes both of the 
resources. On the other hand, for a covert attack model 
knowledge is necessary in addition to disruption and 
disclosure resources. 

The general approach in attack design for a NCPS 
has been to focus on the effect of specific attacks against 
the NCPS. (Amin et al. 2009) have studied the effect of 
deception and DoS attacks on discrete-time linear 
dynamical systems. Deception attacks aim to 
compromise the trustworthiness of some data of sensors 
and actuators by changing their values. On the other 
hand, DoS attacks compromise availability of sensor and 
actuator data by jamming the communication channel. As 
a result legitimate users are unable to get a respond to 

their requests, i.e. a lack of accessibility of sensor and 
actuator components occurs.  
 

 
Figure 4. Three dimensional attack-scenario space 
(Teixeira et al. 2015)   
 

(Mo et al. 2010) presented specific deception attacks 
named false data injection attacks against state estimator 
used in a discrete-time linear time-invariant Gaussian 
system. A Kalman filter was used as state estimator in the 
study. The false data injection attack scenario designed 
as a constrained control problem and the solution of this 
problem is provided using ellipsoidal approximation 
approach to show the solution space of the control 
problem. 

(Liu et al. 2011) studied the effect of false data 
injection attacks against state estimators in electric 
power systems. The researchers successfully launched 
the false data injection attacks to state estimator and 
injected arbitrary errors into the certain state variables 
without being detected. The study indicates that design 
of undetectable false data injection attacks is possible 
even the adversary has limited resources.  

(Teixeira et al. 2010) introduced stealthy deception 
attacks against state estimators in SCADA system 
operating in power grids. The researchers indicated that 
widely used bad data detection hypothesis tests, i.e. the 
performance index test and the largest normalized 
residual test, do not guarantee detection of cyber-attacks.  

(Djouadi et al. 2014) studied on sensor signal 
attacks on observer-based controlled systems and 
formulate optimal sensor attack for both finite and 
infinite horizon linear quadratic (LQ) control. Then, the 
researchers considered actuator signal attack case and 
introduce optimal actuator attack for both finite and 
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infinite horizon LQ control on observer-based controlled 
systems (Djouadi et al. 2015).  

(Ayas and Djouadi 2016) focused on theoretical 
analysis of undetectable sensor and actuator attacks on 
observer-based controlled systems. The researchers 
formulated explicit equations of both undetectable 
sensor and actuator signal attacks. Furthermore, they 
showed that the actuator signal attack is optimal in the 
sense of minimal energy attack signal. 

(Hao et al. 2015) introduced stealthy attack design 
strategies for state estimators in power grid. The 
researchers indicated that the proposed random attack 
construction algorithm is able to launch exceptionally 
sparse attack vectors and these attacks successfully 
compromise certain state variables. 

(Feng et al. 2017) presented a deep learning-based 
framework to launch stealthy attacks on industrial 
control systems with minimal a-priori knowledge of 
system. The researchers also showed that the proposed 
framework contains an adversarial learning method 
providing bypass the employed anomaly detector. In 
addition, the framework determined the optimal amount 
of bias injection at each time step. 

(Wu et al. 2018) studied on the effect of optimal data 
injection attack which is characterized considering 
optimal control theory. Two different design problem 
were considered by the researchers who emphasized 
that the proposed optimal attack strategies have a high 
possibility to be launched. The impressive side of this 
study is that the adversaries can analyze the worst case 
impact of the applied attack according to the attack 
location.  

(Lu and Yang 2020) examined the effects of false 
data injection attacks on power networks under sensor 
failures. A bad data detector and a state estimator were 
used in the power networks. They design a class of sparse 
undetectable attack (SUA) to decrease state estimation 
performance without being detected. The effectiveness 
of the proposed SUA design was demonstrated using 
IEEE 5, 9, and 30-bus systems. The proposed SUA disrupt 
the state estimator and as a result, the bad data detector 
fails to detect both sensor failures and the designed 
attacks. 

(Song et al. 2019) studied on problem of state 
estimation problem for multi-sensor systems subjected 
to undetectable attacks. First, a sufficient condition was 
derived for the undetectable attack. Then, an 
undetectable attack design method was presented. The 
researchers showed the performance of the proposed 
attack scheme and estimator under by carrying out a 
simulation example.  
 

3. ATTACK DETECTION STRATEGIES for a NCPS  
 

Attack detection strategies for a NCPS should take 
both cyber and physical layers of the NCPS into 
consideration. In addition to traditional IT systems 
considering network traffic and try to keep data safe, 
physical plant should also be taken into account to detect 
attacks. Therefore, a model of the physical plant is 
required to predict behavior of the plant to a known 
control input signal. Assume that the control signal ( )au t  

seen in Fig. 3 is a regular control signal produced by the 

controller, i.e. ( )au t  is not under attack, and ( )au t  can be 

monitored meaning that it is known. Then, using the 
model of the physical plant, expected output signal, i.e. 
ˆ( )y t  can be estimated. The estimated output signal is 

simply compared to measured sensor output signal ( )y t  

to potentially detect any sensor side attack mentioned in 
the previous section. If the attacker has spoofed the 
sensor data, an alarm is triggered at that time. The same 
scenario can be modified to detect actuator side attacks 
and state estimator side attacks. Note that there might be 
false alarm depending of the estimation accuracy of the 
considered signals, i.e. ˆ( )y t , ˆ ( )au t , and ˆ ( )ax t . As a result, in 

order to detect attacks on a physical plant, the model of 
the plant and a detector, i.e. anomaly detection algorithm, 
are required. Fig. 5. shows a general architecture utilized 
for attack detection on a NCPS. Should be noted that the 
detector part of the framework is actually the main part 
that the researchers focus on to detect subjected attacks 
summarized in Fig. 4. For instance, (Mo et al. 2014) 
proposed 2 failure detector to detect replay attack, 

while (Hu et al. 2019). proposed a residual based 
detection approach by using skewness analysis of the 
residual signal. In the architecture given in Fig. 5., alarm 
is triggered by considering both produced control signals 
and measured output sensor signals. In the scenario 
given in the figure, attackers spoof both actuator A2 and 
sensor S2 and so alarm is triggered. 
 

Actuators Sensors

Plant

Controller

Communication 

Network

Detector

Alarm
 

Figure 5. A general architecture utilized for attack 
detection 
 

The aforementioned attack detection architecture 
actually based on monitoring regular behavior of the 
physical plant. By considering this manner, researchers 
have performed studies on attack detection strategies for 
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NCPSs from the perspective of control theory. Some of 
recent ones are discussed below.  

(Pasqualetti et al. 2013) designed both distributed 
and centralized attack detection and identification 
monitors by considering monitoring limitations of CPSs 
subject to exogenous attacks. The IEEE 118 bus system 
and the IEEE RTS96 power network subjected to false 
data injection attack were utilized to show the 
effectiveness of the designed monitors even under noises 
and uncertainties. (Pasqualetti et al. 2013) showed that 
dynamic monitors have superiority over static monitors.  

(Manandhar et al. 2014) studied detection of false 
data injection attacks on smart grids. They presented a 

robust security framework based on the
2  detector and 

Euclidean detector, which was also proposed in the 
study. Kalman filter which fed these detectors was used 
as the estimator. The proposed framework was tested on 

IEEE 9-bus power systems both using 
2  detector and 

Euclidean detector. The obtained results show that 
Euclidean detector is capable of detecting statistically 
derived false data injection attacks while 2  detector is 

not capable of detecting them. 
(Liu et al. 2014) introduced a false data detection 

framework for power grids. They defined detection of 
false data injection attacks as a matrix separation 
problem. Low rank matrix factorization and nuclear 
norm minimization were used to solve this problem. 
IEEE 57 and 118-bus systems were utilized in numerical 
experiments to illustrate the performance of the 
proposed detection framework. The results indicate that 
malicious attacks in the power grids are detected by the 
framework.   

(Mo et al. 2014) presented a problem containing 
Kalman estimator, LQG optimal controller, and 2 failure 

detector for an LTI system. They showed that replay 
attack is feasible and proposed countermeasures against 
replay attack. A zero-mean Gaussian noise signal was 
utilized as authentication signal. The authentication 
signal was added as a marking to optimal control signal 
produced by the LQG controller. Although this marking 
process improved detectability of the replay attack, the 
control performance of the system was decreased. 
Therefore, the relationship between control 
performance and detection rate was characterized in the 
study by considering maximum control performance and 
detection rate.  

(Rawat et al. 2015) introduced the 2  detector and 

cosine similarity matching approaches in order to detect 
false data injection attacks on smart grids. Kalman filter 
was utilized to estimate expected measurement values 
and a comparison was performed between the estimated 
and measured real values for attack detection. Numerical 
experiments were carried out and the results indicate 
that cosine similarity matching approach is capable of 
detecting both false data injection attacks and random 

attacks whereas 
2  detector is competent of detecting 

only random attacks.  
(Deng et al. 2017) proposed a defense framework 

against false data injection attacks on power systems. 
They designed a least-budget defense framework to 
enhance immunity against this kind of attacks by 

considering the relationship of a rational attacker and 
defender. In addition, (Deng et al. 2017) presented 
solution to meter selection problem, which was 
considered as a mixed integer nonlinear programming 
problem and solved thanks to Bender’s decomposition. 
Numerical experiments were carried out by using IEEE 9, 
14, 30, 118, and 300-bus systems to verify the proposed 
defense framework. 

(Hu et al. 2019) focused on detection of stealthy 
attacks on CPSs. They proposed a residual based 
detection approach by using skewness analysis of the 
residual signal. Hu et al. showed that a residual signal has 
a skewed distribution if an adversary perform a specific 
attack. Therefore, stealthy attacks on CPSs can be 
detected by considering residual skewness coefficients 
obtained from regular case, i.e. attack-free case, and 
under attack case of the CPSs. On two different 
experiments, effectiveness of the skewness analysis 
based approach was verified. The researchers indicated 
that the proposed approach has the disadvantage of 
parameter selection which depends on human 
experience. It was emphasized that the proposed 
approach is suitable for real-time implementation. 

(Li et al. 2019) presented a cyberattack detection 
framework based on online learning algorithms for 
industrial control system. The researchers proposed 
adaptive regularized cost-sensitive multiclass online 
learning scheme to detect cyberattack in the industrial 
control system. They utilized power system and gas 
pipeline to demonstrate the performance of the 
proposed cyberattack detection framework. The results 
show that the proposed online learning scheme is 
effective for cyberattack detection in industrial control 
systems. 

(Luo et al. 2019) proposed a framework for smart 
grids to detect bias injection attacks and isolate them. 
They introduced nonlinear observer-based distributed 
detection method, which was demonstrated to be robust 
against external disturbances. In addition, the 
researchers also presented an interval residual-based 
detection standard to emphasize the restrictions of the 
predefined threshold. 
 

4. CONCLUSION 
 

Some of the studies in the literature about attack 
design and detection strategies for NCPSs from the 
perspective of control theory are briefly presented in this 
paper. In most of the studies, researchers assume that all 
state variables are either accurately measurable or 
determined utilizing some kind of estimators. 
Furthermore, some of them formulate the attack strategy 
for either single-input and single-output (SISO) systems 
or multiple-input and multiple-output (MIMO) systems. 
However, uncertainties of system parameters and 
process noises should be considered. In addition, attack 
design strategies should be characterized for both SISO 
and MIMO systems. One more opinion is to focus on 
optimal attack strategies to inject worst case attack to 
NCPs instead of specific attacks based on many 
assumptions.  

In a general manner, attack design and detection 
strategies for NCPSs is a difficult issue and requires 
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approaches from different areas such as robust control, 
fault-tolerant control, systems, networked control 
systems and big data analysis.   
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