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 Advancement in communication technologies has fostered alternative transport modes, such 
as ride-sharing. Ride-sharing aims to increase vehicle occupancy rates by matching riders with 
the drivers, who have empty seats on their vehicles and have similar routes and time 
schedules. Regarding to the success of a ride-sharing system, many researchers have been 
interested in efficient ride-matching algorithms. Ride-matching optimization problem is 
considered as NP-Hard Problem. In most of the ride-matching algorithms in the literature, to 
be able find matches at short notice some parameters were omitted. Hence, social 
characteristics and choices of participants, such as gender, age, employment status and 
willingness to socialize, were not included in many ride-matching algorithms. In this paper, 
the effects of including such factors in a ride-matching algorithm on the performance and the 
quality of the matches are investigated. Several ride-matching algorithms in the literature are 
simulated with randomly generated data. The simulation results show that when social factors 
are included the computation times and the quality of the matches increase significantly. 

 
 

 
 

1. INTRODUCTION  
 

Traffic congestion is one of the most important 
problems of modern cities. A significant shift from public 
transport towards private vehicles has been observed 
despite of increasing oil prices, parking problem and 
traffic congestion (European Environment Agency, 
2005). On the other hand, while most private vehicles can 
transport 4 passengers, occupancy rates in private 
vehicles are very low. Occupancy rates in private vehicles 
were found to be 1.45 in European Countries in 2015, 
where this ratio is 1.42 in Germany, 1.3 in Netherlands 
and 1.58 in the UK (European Environment Agency, 
2015). Many alternative transport modes have been 
studied such as ride-sharing to decrease traffic 
congestion by increasing occupancy rates.  

Ride-sharing can be defined as matching riders who 
have no vehicle, with the drivers who have empty seats 
in their vehicles and have similar itineraries and time 
schedules. The history of ride-sharing can be traced back 
to the 1940s. At the time it was applied to conserve 
resources during World War II (Chan and Shaheen, 
2012). Rapid growth in smartphone technologies and 
software packages made building an advanced ride-
sharing system possible. Technological changes, such as 

app-based shared transportation, growth of cloud 
computing, advanced navigation services and data 
sharing, contribute the growth of innovative shared 
transportation services (Shaheen et al. 2018). In recent 
years, many leading ride-sourcing companies, such as 
Uber and Lyft, have increasingly focused on ride-sharing 
and they have launched smartphone applications (e.g., 
UberPOOL, ExpressPOOL, Lyft Line) to allow potential 
users finding matches and lowering their travel costs 
from 25% to 60% (Shaheen and Cohen 2018). These 
applications also enable dynamic route changes. 

Building an automated ride-sharing system requires 
ride-matching algorithms, which can optimize matches 
between drivers and riders at short notice. Automated 
ride-matching, which optimally matches riders and 
drivers in real-time, plays a key role in ride-sharing 
(Agatz et al. 2012). 

Dynamic ride-matching algorithms are very 
complicated systems and require a lot of attention of the 
researchers to overcome challenges. Ride-matching 
optimization problem has been considered as non-
deterministic polynomial-time hard (NP-hard) problem 
(Gu et al. 2018; Qian et al., 2017; Herbawi and Weber, 
2012). To be able to offer feasible solution approaches, 
some parameters such as social characteristics and 
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choices of the participants and/or some transportation 
modes, such as multiple rider or multi-hop, are omitted 
in these problems. There are some algorithms in the 
literature, which considers these parameters and modes, 
but most of these studies did not consider computation 
times. 

To maximize system benefits in ride-matching 
algorithms, a previous study has proposed a novel 
approach to solve the ride-matching problem by 
modeling it using a traditional maximum-weight 
bipartite matching algorithm (Agatz et al. 2011). This 
algorithm is based on a single rider-single driver match. 
It is demonstrated that the weighted bipartite matching 
algorithm can be used for ride-matching; however, this 
algorithm requires long processing times because it 
calculates distance savings for each rider-driver pair to 
determine distance savings. The algorithm also omits 
multiple riders-single driver matches and ignores 
individual preferences to simplify the problem. This 
algorithm aims to increase the number of matches. This 
approach would not encourage people to be included in 
ride-sharing systems; even should users specify a 
deadline for their travel request, they do not like to wait 
long (Nielsen et al. 2015). This study is extended by 
adding social parameters as constraints, but solution 
approach for this problem is not offered (Ghoseiri et al. 
2011). 

A novel biosequence based ride-matching algorithm 
is created to optimize matches when considering 
participants' gender, age, employment status and social 
tendencies (Aydin 2019). This algorithm aims to 
maximize social compatibility between drivers and 
riders. A biosequence matching algorithm, namely 
Needleman-Wunsch algorithm, is used to check the 
similarity of routes of drivers and riders. First comes first 
served approach is utilized in this algorithm to solve the 
problem at short notice.  

In this paper, several dynamic ride-matching 
algorithms in the literature are modelled with different 
settings, such as including social parameters, using 
different driver capacities and allowing multiple riders. 
To evaluate effects of including social parameters, these 
algorithms are simulated using the same data and 
performance of the algorithms and quality of matches are 
evaluated.  

The remainder of the paper is structured as follows. 
In Section 2, the ride-matching algorithms are presented. 
Section 3 describes the details of the simulation process. 
In Section 4 and 5, performance of the ride-matching 
algorithms and quality of matches are analyzed. In 
Section 6, the findings of the study are summarized and 
directions for the future studies are discussed. 

 

2. RIDE-MATCHING ALGORITHMS  
 

2.1. Biosequence Based Ride-Matching Algorithm 
 

The biosequence based ride-matching algorithm 
utilizes social parameters, namely gender, age, 
employment status and willingness to socialize. The 
objective function of this algorithm is to maximize social 
compatibility between drivers and riders (Aydin 2019).  

To score social compatibility, a parameter, Joint 
Socialness Score (JSS), is defined. The JSS is calculated as 
follows: 
 

 (1) 
 

In Eq. (1), weights of the social parameters of the 
rider (r) and feasible driver (d) are multiplied to 
calculate the JSS, rd, The social parameters are gender 
weight g, age weight a, employment status weight w 
and willingness to socialize weight . The variable x 
equals to positive one if the social characteristics are the 
same and negative one if they are different. Table 1 
shows a sample calculation of the JSS. 
 

Table 1. An illustrative example of the computation of 
JSS 
 Driver d1 Rider r2     
 Char. Factor Char. Factor x Scores 

Gender male 1 female 5 -1 -5 
Age 18-25 3 25-40 4 -1 -12 
Employment TAU 4 TAU 4 1 16 
Socialness Yes 5 Yes 3 1 15 
Total score      14 

 

In Table 1, driver d1 represents a male driver with 
an age of between 18-25 who works at the TAU. Driver 
d1 claims that the weights of a rider's gender, age range 
and working place are one, three and four out of five, 
respectively. Driver d1 also claims that he wants to meet 
a new person on a ride with a weight factor of five. On the 
other hand, rider r1 represents a female rider with an age 
of between 25-40 who also works at TAU. Her weight 
factor for willingness to meet a new person on a ride is 
three. As mentioned previously, the variable xrd equals to 
positive one if social characteristics of a driver and a 
rider are the same and negative one otherwise. In the 
example given in Table 1, xrd is found to be negative one 
for gender and age because the driver and the rider's 
gender and age range are not the same. xrd is found to be 
positive one for employment and socialness because they 
are working at the same location and they both want to 
meet with new people on a ride. In this situation, the 
score for gender becomes 1x5x(-1) = (5). When the 
scores for the other characteristics are calculated the 
same way, the JSS is calculated by simply adding the 
scores of each characteristic. 

This algorithm assumes that routes of drivers are 
determined before the beginning of a ride and drivers do 
not change their routes to pick up a rider. This algorithm 
utilizes first comes first served approach, so that the 
matches found by the algorithm may not give the optimal 
result when the overall system benefit is considered. On 
the other hand, due to first comes first served approach, 
the algorithm shows good computation time 
performance. The social parameters are not utilized as 
constraints. A match is considered as feasible if the 
routes and time schedules of the participants are 
compatible and capacity of the vehicle is adequate. 

There are some limitations of this algorithm. First of 
all, this algorithm utilizes greedy-heuristic approach that 
does not guarantee the optimal matches or maximum 
number of matches. This would cause decrease in quality 
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of matches, when the objective function is set to 
maximizing JSSs. Secondly, there are no constraint for 
social factors. This assumes that all participants will 
accept their matches, even if their JSSs are low. This case 
may not be valid in real-life, so the performance of the 
algorithm may decrease. 

The JSSs are calculated separately for each rider. 
First, the objection function of the rider with the earliest 
trip announcement time is calculated. After this rider is 
matched using the objective function, the next rider is 
selected, and the process is repeated. The pseudo codes 
and flowchart of the biosequence based ride-matching 
algorithm are depicted in Fig. 1 and 2. 
 

 
Figure 1. Pseudo code of the biosequence based ride-
matching algorithm (Aydin 2019) 
 

 
Figure 2. Flowchart of the biosequence based ride-
matching algorithm (Aydin 2019) 

2.2. Weighted Bipartite Ride-Matching Algorithm 
 

The weighted bipartite matching algorithm can be 
constructed using several different objective functions, 
such as maximizing total distance savings, number of 
matches or fuel savings. In this paper, one of most 
preferred objective function, maximizing system-wide 
distance savings, are selected. This algorithm allows only 
single rider-single driver matches, because drivers 
change their routes to pick up riders. It also ignores the 
choices of participants. This study is extended by adding 
social parameters as constraints (Ghoseiri et al. 2011). 

The algorithm builds arcs between each rider and 
each driver. These arcs are considered feasible if they 
create positive distance savings. Distance savings are 
calculated using the following equation (Agatz et al. 
2011): 
 

 
(2) 

 

In Eq. (2), distance savings are calculated for the 
scenario in which driver i picks up rider j from point k 
and drops him or her off at point l. To maximize system-
wide distance savings, the calculations of distance 
savings are performed for all possible matches before 
any match is finalized. The matches are then finalized, 
starting with the match that offers the highest distance 
savings. Since all participants in the system must wait for 
the algorithm to make calculations for all possible 
matches, it takes a relatively long time to find a match for 
a participant.  

There are some limitations of this algorithm. This 
algorithm utilizes heuristics that may not offer the 
optimal solutions. Furthermore, number of matches 
decreases dramatically when social factors are included 
as constraints; because, many feasible matches are 
eliminated, even if only one of the social characteristics 
is not compatible. 

The pseudo code and flowchart of the weighted 
bipartite algorithm including social factors are presented 
in Fig. 3 and 4. 
 

3. SIMULATION PROCESS 
 

All matching algorithms were modeled in Python 
2.7. Their performances were measured on a computer 
with an i5 2.7 GHz processor and 8 GB of RAM. All ride-
matching algorithms were simulated using the same data 
and the same computer. To conduct a computational 
study, 1000 drivers and 1000 riders were randomly 
generated including their routes, origin/destination 
locations and social parameters. Drivers and riders are 
selected randomly from the generated data pool. 

The algorithms were tested using different 
scenarios that are created with different number of 
riders, drivers, capacities of drivers and JSS limits. To 
measure the effects of including social parameters in an 
algorithm the biosequence based algorithm and 
weighted bipartite matching algorithm are simulated. 
Each case is simulated five times to eliminate the effects 
of stochastic behavior. 
 



Turkish Journal of Engineering – 2021; 5(1); 41-47 

 

  44  

 

4. PERFORMANCE OF THE RIDE-MATCHING 
ALGORITHMS 

 

Computation times of the matching algorithms with 
different combinations of independent variables are 
examined using multiple regression analysis. 
Independent variables are number of riders, number of 
drivers, capacity of each driver and JSS limits. Model 
summary and regression analysis for biosequence 
including social factors model results are given in Table 
2 and 3, respectively. 
 

 
Figure 3. Pseudo code of the weighted bipartite 
matching algorithm (Aydin 2019) 
 

R2 values of 0.88 shown in Table 2 states that the 
regression model explains 88% of the relationship 
between coefficients and computation times. 
 
 

Table 2. Model summary of the regression for 
computation times 

Model R 
R 

Square 
Adjusted 
R Square 

Std. Err. 
of the 

Estimate 
Biosequence incl. 

social factors 
0.938 0.880 0.879 2.3916 

Biosequence excl. 
social factors 

0.938 0.879 0.878 1.6465 

Bipartite incl. social 
factors 

0.999 0.999 0.999 0.7372 

Bipartite excl. social 
factors 

0.998 0.996 0.996 0.9086 

 

 
Figure 4. Flowchart of the weighted bipartite matching 
algorithm (Aydin 2019) 
 

Table 3. Coefficients of the regression for computation 
times 

Model: Bioseq. 
Incl. Social 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 

Error Beta 
1 (Constant) -22.33 0.919 

 
-24.52 0.00 

Number_of 
_riders 

0.188 0.005 0.757 38.15 0.00 

Number_of 
_drivers 

0.216 0.005 0.873 43.96 0.00 

Capacity 0.668 0.146 0.082 4.58 0.00 
JSS_Limit -0.009 0.004 -0.050 -2.62 0.01 

 

Table 3 shows that number of riders and drivers, 
capacities and JSS limits are significantly important for 
the computation times. Computation times increase as 
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the problem sizes and/or JSS limits increase. The 
relationship between number of riders and computation 
times are depicted in Fig. 5. 

Figure 5 shows that including social parameters 
increases computation times of the weighted bipartite 
algorithm and biosequence based algorithm. The 
descriptive analysis for each algorithm is given in Table 
4. 
 

 
Figure 5. Computation times versus number of riders for 
the algorithms 
 

Mean computation times given in Table 4 states that 
including social factors causes 71% increase in 
computation times for biosequence based algorithm and 
%220 increase for weighted bipartite algorithm. Average 
computation times of biosequence based algorithm are 
significantly lower than weighted bipartite algorithm 
because biosequence based algorithm utilizes first comes 
first served approach. 
 

Table 4. Descriptive analysis of computation times for 
each algorithm 
 N Mean Std. Deviation Std. Error 

Biosequence inc. 
social 

412 13.9022 6.8767 0.3388 

Biosequence exc. 
social 

413 8.1387 4.7104 0.2318 

Bipartite inc. 
social 

413 68.5130 31.9897 1.5741 

Bipartite exc. 
social 

430 31.1825 14.6050 0.7043 

 

5. QUALITY OF MATCHES 
 

The importance of social parameters for matching 
riders and drivers in a ride-sharing system has been 
discussed in the literature. To achieve critical mass in 
ride-sharing, considering social parameters can be seen 
as one of the key factors (Agatz et al. 2012; Shaheen et al. 
2018). In this paper, the quality of matches found by the 
algorithms are measured by analyzing the similarity 
between their choices and the matches. The similarities 

are scored by calculating the average JSSs of the matches 
found by the algorithms.  

The simulation results of the biosequence algorithm 
and weighted bipartite algorithm including or excluding 
social parameters are shown in Fig. 6. In this Figure, the 
average of JSS scores of the matches found by the 
algorithms under different JSS limits are depicted.  
 

 
Figure 6. Average JSSs versus JSS limit for the algorithms  
 

Figure 6 shows that including social parameters in 
the algorithms show better JSSs, even should there is no 
limit for JSS. This is because, the objective function of the 
biosequence matches riders and drivers, who have the 
highest JSS. Similarly, social parameters constraints used 
by the weighted bipartite algorithm eliminate the 
matches when there are one or more social parameters 
that are not compatible for drivers and riders. When 
there are no JSS limit, the average JSSs found by the 
algorithms are 26.43, -0.18, 23.65 and 1.32 for the 
biosequence algorithm including social parameters, 
biosequence based with excluding social parameters, 
weighted bipartite algorithm including social parameters 
and weighted bipartite algorithm excluding social 
parameters, respectively. 

When a JSS limit is set, average JSSs of the matches 
found by the algorithm increases because the matches 
having lower JSSs than the JSS limit are eliminated. 
Therefore, the number of matches decreases with 
increasing JSSs. The relationship between the number of 
the matched riders and JSS limit is shown in Fig. 7. 
 

 
Figure 7. Number of matched riders versus JSS limit 
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Figure 7 shows that number of the matched riders 
significantly drops, when a JSS limit is set that is higher 
than the average JSSs found by the algorithms where no 
limit is set. The relationship between the average JSSs of 
the matches found the algorithms and number of 
matched riders are examined using regression analysis. 
Model summary and regression analysis results are given 
in Table 5 and 6, respectively. 
 

Table 5. Model summary of the regression for average 
JSSs 

Model R R Square 
Adjusted R 
Square 

Std. Error of 
the Estimate 

1 ,800 0.640 0.639 10.91 

 

Table 6. Coefficients of the regression for average JSSs 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 52.18 1.314   39.71 0.00 

Number_of_ 
matched_rid
ers 

-0.419 0.018 -0.800 -23.56 0.00 

 

R2 value of 0.640 shown in Table 5 states that the 
regression model explains 64% of the relationship 
between average JSSs and number of matched riders. 
Table 6 shows that number of matched riders are 
statistically significant to describe average JSSs. The 
regression results explain that when JSS limit is 
increased by one, number of matched riders decreases by 
0.419. Consequently, it can be concluded that higher 
quality of the matches can be achieved but it costs 
reduction of number of matches. 
 

6. CONCLUSION and DISCUSSION 
 

Advancement in technology, especially 
smartphones, brings important advantages for ride-
sharing. Dynamic ride-sharing system requires 
automated ride-matching. Ride-matching algorithms are 
at the center of ride-sharing systems that optimize 
matches between people with similar routes and 
schedules at short notice. Yet, computation times of these 
algorithms and the quality of the found matches are still 
studied by many researchers. In this paper, several ride-
matching algorithms in the literature are modeled, 
simulation study is conducted and the results of the 
simulation study are analyzed. It is aimed (1) to present 
the effects of including social parameters and/or 
allowing different options, such as multiple rider-single 
driver match, on the performance of an algorithm and (2) 
to analyze the quality of the matches found by the 
algorithms. 

The computation time of an algorithm is directly 
proportional to the number of computation. Therefore, 
including social parameters causes decrease in 
performance of the algorithms for biosequence based 
algorithm and weighted bipartite matching algorithm. 
Furthermore, first comes first served approach causes 
the most significant decrease in computation times but 
this approach does not promise to find the best possible 

matches in the system. As a result, it can be concluded 
that including social parameters has negative effect on 
the performance, whereas utilizing first comes first 
served approach positive effect. Consequently, while 
creating an algorithm, a trade-off analysis should be done 
to decide which variables to include or exclude.  

Achieving critical mass in ride-sharing has been 
widely discussed in the literature, yet it is not achieved in 
real world. To achieve critical mass in ride-sharing, social 
characteristics and choices of participants should be 
analyzed. Most ride-matching algorithms omitted 
choices of participants that may lead participants to 
reject the matches found by the algorithms. Thus, in this 
paper, the quality of the matches is measured by scoring 
the similarity between social characteristics and choices 
of the matched participants. The results show that 
including social parameters in the algorithms has 
significant effect on the quality of matches. When 
objective function of the algorithm is to maximize social 
compatibility of riders and drivers, the quality of matches 
significantly increases while the number of found 
matches did not change. Similarly, when the social 
parameters are used as constraints in the weighted 
bipartite algorithm, the quality of matches are found to 
be significantly higher than the same algorithm excluding 
social parameters. On the other hand, number of matches 
decreases, because if one of the characteristics and 
choices of the participants are not compatible, the match 
is eliminated. Thus, many matches having low quality 
score were eliminated and average quality of the matches 
increased. As a result, including social parameters in a 
ride-matching algorithm and/or setting a limit for social 
compatibility score are very important for the quality of 
the matches but number of found matches may decrease. 
In the future, case studies should be conducted to 
measure the necessity of setting a limit for social 
compatibility so that number of matches can be 
maximized while satisfying enough social compatibility 
quality for potential participants. 

As a conclusion, the performance of a ride-matching 
algorithm and quality of the matches found by an 
algorithm depends on the variables used in the 
algorithms. Including social parameters increase the 
quality of matches significantly while decreasing 
computation time performance. Furthermore, first 
comes first served approach cause significant decrease in 
computation times. In the future, it would be intriguing 
to analyze trade-off costs of such variables on the 
performance and quality of the various matching 
algorithms. The importance of social parameters and 
travel choices of potential participants in real-life should 
be investigated by conducting surveys. Thus, better 
understanding of participants' travel behavior can be 
achieved.  
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