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Abstract
Two main issues regarding a regression analysis are estimation and variable selection in
presence of outliers. Popular robust regression estimation methods are combined with
variable selection methods to simultaneously achieve robust estimation and variable se-
lection. However, recent works showed that the robust estimation methods used in those
estimation and variable selection procedures are only resistant to the casewise (rowwise)
outliers in the data. Therefore, since these robust variable selection methods may not
be able to cope with cellwise outliers in the data, some extra care should be taken when
cellwise outliers are present along with the casewise outliers. In this study, we proposed a
robust estimation and variable selection method to deal with both cellwise and casewise
outliers in the data. The proposed method has three steps. In the first step, cellwise
outliers were identified, deleted and marked with NA sign in each explanatory variable. In
the second step, the cells with NA signs were imputed using a robust imputation method.
In the last step, robust regression estimation methods were combined with the variable
selection method LASSO (Least Angle Solution and Selection Operator) to estimate the
regression parameters and to select remarkable explanatory variables. The simulation re-
sults and real data example revealed that the proposed estimation and variable selection
procedure perform well in the presence of cellwise and casewise outliers.
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1. Introduction
One of the challenging problems in a regression analysis is to obtain estimators for the

regression parameters that are robust against outliers in data sets. Until recently, outliers
are defined as the observations that are not follow the model of the majority of the data.
In a regression analysis, there are two types of outliers. One type is the outliers that may
occur in the response variable and the other type of outliers occur in exploratory variables,
which are usually called leverage points. Compared to the outliers in response variable,
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outliers in exploratory variables have a much greater influence on classical estimation
procedures. If Xn×p is the data matrix formed by using the observations on the explanatory
variables (rows as cases and columns as variables) the outliers in explanatory variables are
used to be considered as the entire cases that correspond to the entire rows of Xn×p. These
outliers are called as casewise or rowwise outliers. Most of the robust regression methods,
which are proposed against Huber-Tukey contaminated model, proceed by downweighting
the entire rows that are considered as outliers (in response and/or casewise). Note that,
in practice, the Huber-Tukey contaminated model corresponds to the casewise outliers
[2]. However, in recent years, it has been realized that the observations considered as
casewise outliers may not be completely contaminated. These observations may only
have few contaminated cells and the rest of the cells may contain important information.
These type of outliers are called as cellwise outliers [20]. That is, the cellwise outlier
is a cell-deviated observation, so only outlier in one observation and one variable at the
same time. The cellwise outliers may be the result of an independent contaminated model
(ICM) [2]. In the presence of cellwise outliers, using ordinary robust regression estimation
methods (for example using high breakdown point regression estimation methods) may
be caused some loss of information since those methods try to downweight the entire row
without considering non-contaminated cells in the outlying observations. Therefore, in
recent papers new robust regression estimation methods have been proposed to take some
extra care if cellwise and casewise outliers are present [1,6,17]. Debruyne et al. [7] argued
that these outliers identification tools can be a thrilling topics. In order to compare outlier
detection methods in the presence of cellwise and casewise outliers, Unwin [25] plotted the
O3 graph, new visualization technique which is coded in a new R package called "cellWise"
[19].

Another challenging problem in a regression analysis is to select a group of remarkable
explanatory variables. To this extend, many variable selection methods have been pro-
posed [11,24,31]. However, the popular ones are the methods that combine estimation and
selection procedures together. These combined methods are also very effective for the high
dimensional data sets. In particular, these methods are used for the regression problems
involving data sets that have number of dimensions greater than the number of observes.
The LASSO proposed by [24] is the first method in this direction. After the definition of
LASSO, many other methods such as SCAD and bridge have been proposed to carry on
simultaneous estimation and variable selection in a regression problem. Since LASSO and
the other variable selection methods are based on the classical methods the researchers
have been developed robust versions of these methods by using robust regression methods
instead of the classical ones [3,4,8,15,28]. Since, the popular robust methods are designed
to deal with the casewise outliers the combined robust estimation and variable selection
methods, such as robust LASSO and robust SCAD, can only deal with the casewise out-
liers. However, recent works [1, 9] show that the popular robust estimation methods may
not be very successful when cellwise outliers are present. Especially, if we have high di-
mensional data and if the number of observations is rather small relative to the dimension
of the data downweighting entire rows as casewise outliers may cause loss of information.
Instead of doing so, monitoring those outliers and taking care only the outlying cells may
reduce loss of information and improve estimation procedure.

Therefore, in recent papers, researchers have started concerning cellwise outliers and
have proposed robust methods to deal with the cellwise outliers along with the casewise
outliers. Some of these works are as follows. Raymaekers and Rousseeuw [18] proposed new
identification technique which is based on LASSO regression with a stepwise application of
constructed cutoff values for cellwise outliers. Leung et al. [12] proposed robust regression
estimation methods under cellwise and casewise outliers contamination. However, there
are few proposals for the robust estimation and variable selection in the presence of cellwise
and casewise outliers [14]. In this paper, we will consider the robust estimation and the
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variable selection in linear regression models when cellwise and casewise outliers are present
in the data. Our proposal will have three steps. In the first step, we will try to identify
the cellwise outliers in each explanatory variable. This will be done by independently
monitoring each explanatory variable using outlier detection methods. After identifying
cellwise outliers in each explanatory variable these outliers will be removed from the data
and those cells will be marked by NA sign as it is done in [1, 13]. Then, in the second
step, these cells will be regarded as missing observations and will be imputed by using the
robust imputation method proposed by [5]. These two steps will make our explanatory
data matrix as cellwise outliers free, but we may still have casewise outliers in the data.
Finally, in the third step, we will combine robust regression estimation methods with
LASSO, the variable selection method, to estimate the regression parameters and to select
the remarkable explanatory variables without suffering from the casewise outliers. Our
simulation results and real data example showed that the proposed estimation and selection
method work well when casewise and cellwise outliers are possible in the data sets.

The rest of the paper is organized as follows. In Section 2 we will provide the details
of the proposed method. In Section 3 the simulation and the real data examples will be
given. The paper will be finalized with a conclusion section.

2. Three step robust regression estimation and variable selection in the
presence of cellwise outliers

Consider the linear regression model

yi = α + xT
i β + εi, i = 1, 2, 3, ..., n (2.1)

where yi ∈ R is the response variable; xi = (xi1, xi2, ..., xip)T is the p−dimensional vector
of the explanatory variables; β = (β1, β2, ..., βp)T is the vector of regression parameters in
Rp; and εi’s are the iid random errors with zero mean, σ2 variance and the distribution
function F . Note that, distribution function F is symmetric distributions. Without loss
of generality, we assume that α = 0 and consider the model

yi = xT
i β + εi, i = 1, 2, 3, ..., n (2.2)

The regression equation given in Equation (2.2) can also be written in matrix notation as

Y = Xβ + ε (2.3)

where Xn×p is the design matrix, Y is the response vector, and ε is the vector of εi.
Throughout this study, β0 = (β01, β02, ..., β0p)T denotes the true parameter vector and
Ω ⊂ Rp will denote the parameter space.

In this paper, our main aim is to estimate the regression parameters and select the
important regressors under cellwise and casewise contaminations. As we have already
mentioned, the casewise outliers can be identified using robust methods [16, 21] and are
easily dealt with using robust variable selection methods if the variable selection is a
concern. All of these can be done using combined robust estimation and variable selection
methods. However, extra care should be taken to detect the cellwise outliers since they
are not identified by examining the whole data matrix X. Each explanatory variable, that
is; each column of X should be monitored to detect the cellwise outliers. Thus, before
preforming estimation and variable selection each variable should be scanned in terms of
cellwise outliers. As it is proposed by [1] and [13] after detecting the cellwise outlier, those
cells should be imputed using robust imputation methods. Then, robust methods related
to the problem of interests can be used to handle the casewise outliers. In the following
subsections, starting from the identification of the cellwise outliers, we will describe the
three steps of the proposed robust estimation and variable selection method when cellwise
and casewise outliers are present.
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2.1. Identifying cellwise outlier
Cellwise outlier (introduced in [2]) is not a big problem when the proportion of outliers

compared to the sample size is not high. However, Alqallaf et al. [2] observed that even if
there is a very small percent of outliers in every variables, but if the dimension of the data is
large, popular robust estimators with high breakdown point will easily reach their possible
breakdown point. In recent years, researchers have become aware of cellwise outliers and
they have proposed several methods to deal with this problem. Most of the proposed
methods first identifies the cellwise outliers and regard them as missing observations by
changing them with NA sign [1, 9, 13]. That is, the outlier problem is transferred to a
missing data problem. In order to obtain cellwise outliers, there is a new methodology
which combines LASSO regression with a stepwise application of constructed cutoff values
[18]. In this paper, following the same strategy, we will try to identify the cellwise outliers
by using the outlier detection method described in [20]. First, we have to obtain robust
estimates for the location and scale of each column. In this paper, we will use the sample
median for location and MAD for scale. These estimates will be used as initial robust
estimates to obtained the one-step M estimates for location and scale computed as

µ̂M =
∑

wixi∑
wi

σ̂2
M = 1

n

∑
wi (xi − µ̂M )2

(2.4)

where weights w (t) = ρ′(t)
t are computed using Tukey biweight ρ function. Note that, wi

is weights for ith observation and W is a diagonal weight matrix. After robust location
and scale estimates are computed, each column will be standardized using these robust
estimates. Let zi denote these standardized columns. Then, the observations xi will be
considered as outliers if

|zi| ≥
√

χ2
1,q (2.5)

where q is q − th quantile of the chi-squared distribution. After screening all the columns
and identifying all the cellwise outliers those cells will be replaced by NA signs, and hence
the cellwise outlier problem will be transfered into the missing observation problem. This
will be the first step of our proposed robust variable selection method. In next subsection
we will describe the robust imputation algorithm to impute the observations that are
flagged as NA.

2.2. Bypassing cellwise outlier: Robust imputation
After identifying cellwise outliers and replace them with NA, we have created a missing

value problem. Thus, these missing values have to be imputed using some imputation
methods. There are several procedures to deal with missing observations in the data.
These procedures are classified according to the missingness patterns in the data. Cell-
wise outliers are considered as randomly occurred outliers. Therefore, deleting the cellwise
outliers in the data causes the missingness case called as missing completely at random
(MCAR). This type of missing data can be easily imputed using mean or median impu-
tation method. In this paper we will use the robust imputation (ROBimpute) method
proposed by [5]. Actually, the robust imputation method is a robust alternative to the
sequential imputation (SEQimpute) method proposed by [26] and it can be summarized
as follows. Let Xc be the completely observed part and Xm be the missing part of our
explanatory data matrix X which contains missing observations. x∗ be a row in Xm de-
fined as x∗ =

[
(x∗

m)T (x∗
o)T

]T
, where x∗

m and x∗
o are the missing and observed part of that
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row, respectively. As described in [26], let the matrix C defined as in Equation (2.6) be
the inverse of the covariance matrix of Xc and let X∗ be

[
XT

c , x∗
]T

. Further, let x̄c be
the rowwise sample mean of the complete data. Now minimizing the equation given in
Equation (2.7), which can be also written as in Equation (2.8), will be an estimate for x∗.
After finding x∗

m in X∗, it will be used instead of x∗ in X∗ to form new completed data.
Then we have to take care the next missing observations. This procedure should be con-
tinued after all the missingness are imputed. The detailed information about SEQimpute
can be found in [26].

C =
[

Cm,m Cm,o

CT
m,o Cm,m

]
(2.6)

D (x∗) = (x∗ − x̄c)T (cov (Xc))−1 (x∗ − x̄c) (2.7)
x∗

m = (x̄c)m − (Cm,m)−1Cm,o (x∗
o − (x̄c)o) (2.8)

However, since this SEQimpute algorithm is based on sample mean and sample covari-
ance, it is not robust against the outliers in the whole dataset. Therefore, even a single
outlier can badly ruin the algorithm and the imputed value for the missing observations
will be far from the expected value. For this reason, robust alternative to the SEQimpute
has been proposed in [5]. They use robust covariance estimator and the robust location
estimator instead of sample mean and the sample covariance matrix. In particular, they
use minimum covariance determinant (MCD) estimator as the covariance estimator and
the sample median for the mean estimator. The rest of the imputation will be same as
in the classical one described above. This imputation is called ROBimpute and the detail
of the algorithm is found in [5]. In this paper we will use the ROBimpute to impute the
missing cells that are created deleting the cellwise outliers.

2.3. Variable selection with robust LASSO
In this section, we will describe the third step of our proposal. Namely, we will explore

the variable selection for the regression model using refined data. Variable selection meth-
ods are one of the most important part of modeling aspect. In particular, in regression
methods, we are interested in the most important variables and the subsets of full model.
Robust variable selection, such as LASSO, is the robust versions of the classical ones in
the presence of outliers. In this paper, we used LASSO to carry on our variable selection.
LASSO is a well known method which minimizes OLS loss function (y − Xβ)T (y − Xβ)
under the restriction

p∑
j=1

|βj | ≤ t. Hence, this minimization problem with respect to β can

be carried on using lagrange multiplier method. That is we have to minimize the following
objective function,

QN = (y − Xβ)T (y − Xβ) + λ
∑p

j=1
|βj | (2.9)

where λ is regularization parameter.
Using LASSO, parameter estimation and variable selection can be simultaneously ob-

tained. Since the classical LASSO is based on OLS criterion, the resulting estimators will
be sensitive to the outliers, the robust version of LASSO have been proposed in literature
[3, 27]. In robust versions, OLS loss functions have been replaced with robust version of
loss functions such as Huber or Tukey ρ functions.

Several algorithms have been proposed to obtain LASSO estimators. One of these
algorithms to solve the robust LASSO problem is proposed by [28] and it is called using
semi-smooth Newton coordinate descent (SNCD) algorithm. In this paper, we will use
this algorithm to obtain robust LASSO estimates when we have outlier in y direction or
we have heavy-tailed error distribution. The algorithm is provided in the same paper and
it is available as R packages named "hqreg".
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By using robust LASSO, we will get estimators that are resistant to the outliers in y
direction. However, if we have casewise outliers in x direction, the robust LASSO obtained
using Huber or Tukey ρ functions will be badly affected from the casewise outliers in x
direction. Therefore, we have to modified the robust LASSO method to deal with the
casewise outliers.

Concerning the casewise outliers, we will use the MM regression estimation method
proposed by [29]. The MM estimation method will be used as follows. We will first obtain
the MM estimators for the regression parameters. Then, using these MM estimators,
we will compute the weights wi for i = 1, 2, ..., n for each observations using the weight
function obtained from the Tukey ρ function (see e.g. [16], page 30). Then, we will form
W = diag(w1, ..., wn) matrix and transform our X and Y using W matrix as X∗ = W 1/2X

and Y ∗ = W 1/2Y , respectively. Now we can apply classical LASSO to transform data to
do variable selection.

Finally, these three steps can be combined to obtain robust parameter estimation and
variable selection in the presence of cellwise and casewise outlier. The following algorithm
will be used to carry on all of these procedures. In our simulation and real-data exam-
ple, this algorithm will be implemented to demonstrate the performance of the proposed
method. If it is followed from the algorithm, it will see that robust methods with robust
imputation are preferred when there are both cellwise and casewise outliers. If there are
only casewise outliers robust LASSO methods are preferred. If there are no outliers in
dataset, classical LASSO method is preferred.

Algorithm 1: Variable Selection in the presence of cellwise and casewise outliers
Starting of Algorithm.
Data Obtain data (Generating data in simulation or use data from real world example)
If you suspect any Cellwise outliers, then Run
STEP 1: Identification of Cellwise Outliers

Loop 1. i = 1, 2, · · · , p (For each regressors)
Identify cellwise outliers using the procedure described in Section 2.1 and change

them with NA
End Loop 1
STEP 2: Robust Imputation of NA

Loop 2. m = 1, 2, · · · , M (For each NA)
Impute the NA’s by using robust imputation methods described in Section 2.2

End Loop 2
ElseIf Any Casewise Outlier

STEP 3: Robust Estimation and Variable Selection
Apply Robust LASSO described in Section 2.3
ElseIf No Outlier

Apply LASSO
End If
End of Algorithm.

3. Numerical studies
In the application part, we considered simulation study in R to compare the perfor-

mance of variable selection methods in the presence of cellwise outliers. We considered
the regression model given in Section 2. The explanatory variables were independently
generated from the normal distribution N (m, 1) with m coming from discrete uniform
distribution randomly between zero and five. In the simulation study, the dimension of
the parameter vector was taken as 7,15 and 30 and the sample sizes were taken as 50, 100
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and 250. For the regression model, we took the regression parameters as [1, 0, 1, 0, 1, 1, 0]′
for dimension 7. For the dimensions 15, we formed β as follows: first five entries were
taken as one and the others are zero. Similarly, for the dimension 30, the first 10 entries of
β were one and the rest of the entries are as zero. In the regression model, we used three
different error distributions. We first took the standard normal distribution (N (0, 1)) to
explore the case without outliers in y-direction. The other two error distributions were
0.9N (0, 1) + 0.1N (3, 1) and t3. With these distributions we guaranteed the outliers in
y-direction. For the outliers in x direction, we generated randomly observations from
N (50, 1) and combined these observations with the major part of the data.

In this simulation study, cellwise outliers were generated as follows. We first generated
explanatory variables and form our X matrix. Using missingmat() function in ForIMP R
package (see [10]), we created missing observations which were completely at random and
replaced the missing observations with NA signs. Now, we would apply three different
imputation procedures to the X matrix. First, we used ROBimpute method to robustly
impute this missing observations. Second, we used SEQimpute method to impute the
missing observation in classical way (for the functions for imputation given in [5, 26] are
used). Finally, to have data with cellwise outliers, we imputed the NAs with the values
calculated by max(xi)+2σxi . In this ad-hoc method, we easily obtained cellwise outliers in
simulated data. To sum up, we had three different X matrices. One had cellwise outliers,
the other ones had missingness wich were imputed by robust and the classical imputation
methods. The proportion of cellwise outliers were 1%, 5% and 10%. Note that, when
cellwise outliers were constructed, the proportion was calculated using n × p, not just n.
After we designed our data, we applied three different combination of LASSO methods
using the glmnet [22] and hqregraw functions [28] in R. Note that, for the casewise outlier
in x-direction we used glmnet function for the modified dataset described in previous
section.

In the simulation results the methods were compared in three different ways. We ran-
domly divided data in two subsections. We used one part for estimation and variable
selection (training ; 80% of dataset) and the other part is testing (20 % of dataset). Af-
ter we did estimation and variable selection, we counted the number of true zero- beta
selection and we also calculated proportion of true model selection. Then, using the test-

ing part of data, we computed the prediction error 1
T

T∑
i=1

n∑
j=1

(yj − ŷj)2/n where n is the

number of observation and T is the number of iteration in testing data. We also provided
some boxplot illustrations for estimated betas.

The simulation results were summarized in Tables 1-5. Tables 1-3 contained predic-
tion errors. In Table 1, we displayed the results for the case normally distributed errors
with cellwise and casewise outliers for the sample size n = 50. If we only had cellwise
outlier, we observed the smallest prediction error for the case robust imputed data us-
ing classical LASSO (ROB-LASSO) and sequentially imputed data using classical LASSO
(SEQ-LASSO). Therefore, we could say that robust imputation gave a better estima-
tion for cellwise outliers. We also observed that when the number of cellwise outliers
increased, the prediction errors for LASSO and robust imputed LASSO also increased.
Overall, ROB-LASSO and SEQ-LASSO had superiority over the other methods for this
case. When casewise outliers were introduced to the data, we observed that robust im-
puted robust LASSO (ROB-RLASSO) seems better performance for most of the cases
compared to the other methods.

In Table 2, we gave the simulation results for the contaminated error distribution and we
observed similar behavior for ROB-RLASSO. That is, the results for the ROB-RLASSO
was superior to the other methods. In Table 3, simulation results for t3 distributed error
case were summarized. Concerning this case, without casewise outlier ROB-RLASSO gave
smaller prediction errors for almost all the cases. However, when the casewise outliers were
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introduced in the data, the performance of the ROB-RLASSO was getting worse compare
to the robust LASSO (RLASSO).

Table 1. Prediction error for n = 50 and ε ∼ N (0, 1)

pr-casew p pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0 7 0.01 5.902 5.154 1.793 1.898 1.799 1.900
0 7 0.05 18.289 19.410 2.160 2.273 2.153 2.249
0 7 0.10 21.716 25.832 2.427 2.521 2.409 2.519
0 15 0.01 3.808 3.345 1.013 1.085 1.017 1.079
0 15 0.05 11.166 10.145 1.438 1.510 1.449 1.491
0 15 0.10 12.549 12.068 5.937 6.017 3.951 3.712
0 30 0.01 4.146 3.808 1.002 1.087 1.004 1.098
0 30 0.05 14.497 11.570 1.062 1.152 1.046 1.162
0 30 0.10 14.333 11.610 1.289 1.434 1.311 1.440
0.05 7 0.01 813.074 541.661 2.987 3.059 2.717 2.817
0.05 7 0.05 5346.473 3577.792 8.556 8.174 8.979 9.233
0.05 7 0.10 3616.270 9062.238 27.115 17.156 14.483 15.828
0.05 15 0.01 469.709 356.820 2.054 3.333 2.275 6.391
0.05 15 0.05 4307.260 2233.865 17.964 23.400 6.736 11.948
0.05 15 0.10 4108.178 4861.238 218.290 217.778 431.289 297.443
0.05 30 0.01 493.541 982.032 2.069 9.900 1.271 10.643
0.05 30 0.05 5886.633 4772.21 7.783 19.457 6.780 23.559
0.05 30 0.10 10434.33 8941.705 98.562 123.690 128.721 221.843

p: Number of parameters; pr-cellw: Cellwise outlier proportion; pr-casew: x direction outlier proportion; LASSO:
Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Robust
imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Table 2. MSE of beta for n = 50 and ε ∼ N (0, 1) + N (3, 1)

pr-casew p pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0 7 0.01 7.022 5.963 3.050 3.115 3.072 3.113
0 7 0.05 20.945 20.988 3.579 3.586 3.582 3.595
0 7 0.10 25.313 30.345 4.063 4.052 4.056 4.059
0 15 0.01 4.397 4.244 1.716 1.766 1.700 1.777
0 15 0.05 12.502 10.808 2.088 2.139 2.073 2.105
0 15 0.10 12.339 11.738 7.121 6.931 4.446 4.483
0 30 0.01 4.733 4.435 1.517 1.596 1.517 1.597
0 30 0.05 15.298 12.179 1.632 1.671 1.706 1.666
0 30 0.10 14.507 12.227 1.850 1.972 1.876 1.956
0.05 7 0.01 38.653 661.211 3.318 3.841 3.513 5.331
0.05 7 0.05 6562.070 3857.103 3.816 5.648 3.672 5.011
0.05 7 0.10 3933.421 7910.298 77.336 37.420 18.466 28.275
0.05 15 0.01 450.921 367.050 1.660 2.110 1.662 3.253
0.05 15 0.05 3807.158 2180.618 23.511 23.329 3.181 8.353
0.05 15 0.10 3984.041 5059.752 260.543 257.044 83.259 384.752
0.05 30 0.01 606.122 841.965 9.369 41.843 11.931 64.211
0.05 30 0.05 7971.026 4716.980 32.025 50.330 46.235 103.099
0.05 30 0.10 9336.502 8642.231 87.116 141.860 141.060 235.443

p: Number of parameters; pr-cellw: Cellwise outlier proportion; pr-casew: x direction outlier proportion; LASSO:
Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Robust
imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.
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Table 3. MSE of beta for n = 50 and ε ∼ t3

pr-casew p pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0 7 0.01 9.058 8.095 4.960 4.736 4.954 4.746
0 7 0.05 19.349 19.948 4.663 4.515 4.667 4.494
0 7 0.10 24.775 30.729 5.549 5.301 5.537 5.279
0 15 0.01 5.228 4.868 2.843 2.701 2.818 2.709
0 15 0.05 11.125 9.156 2.599 2.512 2.589 2.542
0 15 0.10 13.388 12.450 7.489 7.695 5.626 5.877
0 30 0.01 5.056 4.747 2.061 1.999 2.064 1.987
0 30 0.05 18.032 12.510 2.175 2.086 2.152 2.099
0 30 0.10 15.820 12.237 2.181 2.206 2.247 2.203
0.05 7 0.01 898.064 523.740 6.539 7.146 6.532 8.383
0.05 7 0.05 7288.761 4026.641 7.124 8.047 6.625 7.848
0.05 7 0.10 4171.419 8775.199 18.291 29.342 10.470 17.674
0.05 15 0.01 428.620 342.041 4.010 4.376 3.979 4.375
0.05 15 0.05 4510.567 2382.344 16.507 18.087 6.570 10.137
0.05 15 0.10 3913.375 5047.254 254.423 267.726 116.708 145.420
0.05 30 0.01 634.455 866.216 2.777 32.245 2.731 40.746
0.05 30 0.05 6331.625 4951.489 39.471 105.542 47.720 114.237
0.05 30 0.10 8828.778 8993.255 97.325 179.917 136.942 251.600

p: Number of parameters; pr-cellw: Cellwise outlier proportion; pr-casew: x direction outlier proportion; LASSO:
Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Robust
imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Table 4. Percents of true model selection - I

cellwise pr True Choice Pr. LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
ε ∼ N (0, 1) 0.01 β2 = 0 57.2 70 69.6 79.6 63.2 65.2

β4 = 0 53.6 70 70 80.8 54.8 54.8
β7 = 0 58.4 69.6 70.8 84 60.4 61.2
True Model 16.4 36.4 38.4 51.2 24.8 27.2

ε ∼ N (0, 1) 0.05 β2 = 0 29.6 66.4 63.6 82.4 56.8 57.6
β4 = 0 31.6 62.8 65.2 80.8 55.6 54.8
β7 = 0 30 61.6 62.4 74.4 53.2 52.4
True Model 2.4 31.2 31.2 32.4 20.4 19.6

ε ∼ N (0, 1) 0.01 β2 = 0 51.6 65.6 65.2 81.6 58.8 60.4
+N (3, 1) β4 = 0 50.4 62.4 63.2 79.2 56.4 56.8

β7 = 0 50.8 62 61.6 76.8 53.2 56
True Model 13.2 26.8 27.6 49.2 20.8 22

ε ∼ N (0, 1) 0.05 β2 = 0 30.8 64 65.6 74.4 56.8 56.8
+N (3, 1) β4 = 0 30 65.2 63.2 78.8 53.2 53.6

β7 = 0 28.4 62 63.6 76.8 52.4 51.2
True Model 1.6 31.2 32 27.2 18.4 17.6

ε ∼ t3 0.01 β2 = 0 56.8 62 64 77.6 60 62
β4 = 0 57.6 57.6 62 76 59.2 58.4
β7 = 0 50.8 59.2 60.8 74.8 53.2 52
True Model 18 26.4 28 46.4 22.8 24

ε ∼ t3 0.05 β2 = 0 30.8 58 57.6 70 55.6 54.4
β4 = 0 31.2 60.8 63.2 77.2 57.2 58
β7 = 0 30.8 61.6 62.8 77.2 53.2 54.8
True Model 2 24.8 27.2 26.8 19.6 21.6

ε ∼ N (0, 1) 0.01 β2 = 0 65.2 82.8 82.4 90.0 80.0 81.2
+5% casewise β4 = 0 62.4 81.6 82.0 90.4 77.6 75.6

β7 = 0 66.4 83.2 84.0 88.4 83.2 82.0
True Model 2.7 21.4 21.8 28.0 20.6 20.5

ε ∼ N (0, 1) 0.05 β2 = 0 87.2 79.6 80 98.8 79.6 79.6
+ 5% casewise β4 = 0 86.8 77.6 78.8 96.4 79.6 80.8

β7 = 0 89.2 77.6 78.8 96.8 74.8 77.6
True Model 0 48 48 71.6 46.8 50.8

LASSO: Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Ro-
bust imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.



298 O. Toka, M. Çetin, O. Arslan

In Tables 4-5, we displayed the correctly selected number of zero betas and the correctly
selected true models for p = 7 and n = 50 (Table 4) and n = 250 (Table 5). We observed
that robust imputed robust LASSO performed the best correctly choosing zero betas and
the correctly choosing true model. Robust LASSO seemed the second best among the
others for identifying zero betas and the correct model. We observed that the other
methods were broke-down for correctly choosing zero betas and correct model in the
presence of cellwise and casewise outliers.

Table 5. Percents of true model selection - II

True Choice Pr. LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
ε ∼ N (0, 1) 0.01 β2 = 0 26 93.2 92.8 96.4 91.6 92

β4 = 0 32 90.8 90.8 95.6 90 89.6
β7 = 0 26.4 92 93.2 97.2 89.2 90
True Model 4.8 78 79.2 89.2 73.2 74.4

ε ∼ N (0, 1) 0.05 β2 = 0 2.4 87.6 88 90.8 86 87.2
β4 = 0 7.2 88.8 89.2 92.8 88.8 89.2
β7 = 0 4.4 90.4 90 92.8 90 89.6
True Model 0 71.6 71.6 77.2 68.4 69.2

ε ∼ N (0, 1) 0.01 β2 = 0 26.8 82 81.6 92.4 82 82.4
+N (3, 1) β4 = 0 28.4 79.2 76 89.6 83.2 82.8

β7 = 0 26.4 80.8 78.8 92 84.8 84.8
True Model 2 55.2 52.4 76 58.8 58

ε ∼ N (0, 1) 0.05 β2 = 0 5.6 79.2 78.4 84.4 85.6 86.4
+N (3, 1) β4 = 0 8 74.8 76 80.8 77.2 77.2

β7 = 0 5.2 80.8 80 85.6 84.4 84.4
True Model 0 50 48.4 58.4 55.6 56.4

ε ∼ t3 0.01 β2 = 0 30.8 81.2 81.6 93.2 87.2 87.6
β4 = 0 32.8 79.6 79.2 89.6 84.8 84.4
β7 = 0 29.6 79.2 79.6 89.2 85.6 86.4
True Model 3.2 54.8 56.4 76 63.2 64

ε ∼ t3 0.05 β2 = 0 6 74.8 72.4 79.6 86 84.8
β4 = 0 4.4 78.4 76.4 82.8 84 84.4
β7 = 0 6.4 74.8 74.4 80.8 83.2 83.2
True Model 0 48.4 45.2 53.2 59.6 59.2

ε ∼ N (0, 1) 0.01 β2 = 0 64 91.6 91.6 97.6 91.6 91.6
+5% casewise β4 = 0 65.2 93.6 93.6 98.8 92.8 92.8

β7 = 0 66.4 95.6 95.6 98.4 92.8 92.8
True Model 0.8 81.2 81.2 94.8 78.0 78.0

ε ∼ N (0, 1) 0.05 β2 = 0 1.6 94.8 94.8 100.0 93.6 92.4
+5% casewise β4 = 0 2.0 94.0 94.0 100.0 94.0 93.6

β7 = 0 2.8 93.2 93.2 100.0 91.2 91.6
True Model 0.0 82.8 82.8 98.8 79.2 78.8

LASSO: Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Ro-
bust imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Concerning the results given in Table 5, we observed exactly the similar performance
of the methods. Robust imputed Robust LASSO had the excellent behavior for correctly
choosing zero betas and for identifying the correct models. Comparing to the results given
in Table 4, we noticed that the performances were getting better. For example, when the
sample size was small for normally distributed error with 5% cellwise and 5% casewise
outliers (see the 8th case in Table 4 and Table 5), the ratio choosing the corrected model
is 71.6% . However, that ratio was 98.8% in Table 5. Therefore, increasing sample size
affected for choosing correct model and correct zero betas.

Further to illustrate performance of the methods for higher dimensional cases, we gave
boxplots of the some of the estimated zero betas (Mainly, we took last three zeros for
simplicity). These boxplots were given in Figures 1-3. In these figures, dimension of the
regression parameter is 15. We considered different outliers configurations in these figures.
In Figures 1 and 2, heavy-tailed error distribution with cellwise outliers. On the other
hand, in Figure 3, we had cellwise outlier and casewise outlier with normally distributed
errors. We observed that robust imputed robust LASSO superior to the other methods
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in terms of correctly choosing zero betas almost all the cases. Compare to the others,
variability seemed smaller.

Figure 1. Results for p = 15, n = 50, cellwise − pr = 0.05, and ε ∼ N (0, 1) + N (3, 1)

Figure 2. Results for p = 15, n = 50, cellwise − pr = 0.01 and ε ∼ t3

4. Real data example
To compare the methods in real data example, the most known model selection data, the

prostate cancer data in [23] was examined. There are 97 observations collected from men
who were about to receive a radical prostatectomy. The response variable was log(prostate
specific antigen) (lpsa). The explanatory variables were log (cancer volume) x1 : lcavol),
log(prostate weight) (x2 : lweight), age(x3 ), log(benign prostatic hyperplasia amount)
(x4 : lbph), seminal vesicle invasion (x5: svi), log(capsular penetration) (x6: lcp), Gleason
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Figure 3. Results for p = 15, n = 100, cellwise−pr = 0.05, casewise−pr = 0.05
and ε ∼ N(0, 1)

score (x7: gleason) and percentage Gleason scores 4 or 5 (x8 : pgg45). In literature,
this dataset has been extensively used to access the performance of the model selection
methods [24, 30]. In those papers, the variables x1, x4, x5 were found the most important
variables. In the applications of [24,30], explanatory variable x3 was also found significant.
In our paper, we compared the methods in terms of correctly selected non-significant betas
(zero betas) and true model selection. We also checked the prediction errors for testing
dataset which was randomly chosen 20% of the real dataset in each iteration. The results
were given in Table 6 and Figure 4. All of these results confirmed that robust imputed
robust LASSO was the best according to the criteria we were using. We also noticed that
sequential imputed Robust LASSO had the similar behavior to the robust imputed robust
LASSO.

5. Conclusion
After introducing cellwise outlier or independent contamination model, some problems

occured in estimation even robust ones. Especially in high dimension, breakdown points of
estimation will be exceeded even though there is very small proportion cellwise outliers. In
this paper, we considered cellwise and the casewise outlier problem in a regression analysis
when parameter estimation and variable selection is a concern. We used robust imputation
method to deal with the cellwise outlier and we combined the robust regression estimation
method with LASSO to deal with the variable selection in the presence of cellwise and
casewise outliers. We did this procedure in three steps. In the first step, we had identified
the cellwise outliers and in the second step, we had dealt with the cellwise outliers and use
robust imputation to get rid of the cellwise outliers. Finally, in the last step, we combined
robust estimation with LASSO to dealt with casewise outliers if they are in present. We
provided an extensive simulation study to illustrate the performance of proposed method
and observed that the proposed method has comparable results among the methods that
have similar proposal. We had also explored the real data example using prostate cancer
data which have been extensively used in literature to show the performance of the model
selection methods. The result of the real data example have also confirm the simulation
results in terms of the proposed method.
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Table 6. Real data examples: prostate cancer data results

MSE of Beta for Prostate Cancer Data
pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0.01 4.477 5.199 1.308 1.200 1.303 1.199
0.05 14.845 14.047 1.272 1.192 1.272 1.195
0.10 13.520 12.898 0.970 0.906 0.952 0.896

Zero Beta Selection for Prostate Cancer Data
pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO

100.00 100.00 100.00 100.00 100.00 100.00
33.60 87.60 85.60 90.00 38.80 38.00

0.01 63.60 94.40 93.20 99.60 80.40 81.20
98.00 96.80 97.60 100.00 100.00 100.00

100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
66.80 95.20 95.20 100.00 86.00 85.60

0.05 98.40 96.00 95.60 100.00 76.80 78.80
73.60 90.80 90.80 100.00 96.00 95.60

100.00 100.00 100.00 100.00 100.00 100.00
100.00 100.00 100.00 100.00 100.00 100.00
84.40 72.00 70.80 87.20 49.20 55.60

0.10 99.60 36.00 21.60 99.20 26.00 19.60
5.60 11.60 4.40 98.00 31.20 17.60

100.00 100.00 100.00 100.00 100.00 100.00
True Model Selection for Prostate Cancer Data

pr-cellw LASSO RLASSO ROB-LASSO ROB-RLASSO SEQ-LASSO SEQ-RLASSO
0.01 8.80 81.20 79.20 88.80 31.20 31.20
0.05 0.80 88.40 88.00 98.40 65.20 66.4
0.10 0.00 6.40 1.60 78.40 6.40 5.60

LASSO: Classical LASSO; RLASSO: Robust LASSO; ROB-LASSO: Robust imputed LASSO; ROB-RLASSO: Ro-
bust imputed Robust LASSO; SEQ-LASSO:Sequential imputed LASSO; SEQ-RLASSO: Sequential imputed Robust
LASSO.

Figure 4. Results for prostate cancer data
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