Hacettepe Journal of Hacet. J. Math. Stat.
Volume 49 (6) (2020), 1955 1964
Mathematics & Statistics DOI : 10.15672/hujms.573766

RESEARCH ARTICLE

Solvable graphs of finite groups

Parthajit Bhowal! @, Deiborlang Nongsiang® @, Rajat Kanti Nath*!

! Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India
2 Department of Mathematics, Union Christian College, Umiam-793122, Meghalaya, India

Abstract

Let G be a finite non-solvable group with solvable radical Sol(G). The solvable graph
I's(G) of G is a graph with vertex set G \ Sol(G) and two distinct vertices u and v are
adjacent if and only if (u,v) is solvable. We show that I's(G) is not a star graph, a tree, an
n-partite graph for any positive integer n > 2 and not a regular graph for any non-solvable
finite group G. We compute the girth of I'g(G) and derive a lower bound of the clique
number of I's(G). We prove the non-existence of finite non-solvable groups whose solvable
graphs are planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the
paper by obtaining a relation between I's(G) and the solvability degree of G.
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1. Introduction

Let G be a finite group and u € G. The solvabilizer of u, denoted by Solg(u), is the set
given by {v € G : (u, v) is solvable}. Note that the centralizer Cq(u) := {v € G : wv = vu}
is a subset of Solg(u) and hence the center Z(G) C Solg(u) for all w € G. By [21,
Proposition 2.13], |Cg(u)| divides | Solg(u)| for all u € G though Solg(u) is not a subgroup
of G in general. A group G is called a S-group if Solg(u) is a subgroup of G for all u € G.
A finite group G is a S-group if and only if it is solvable (see [21, Proposition 2.22]).
Many other properties of Solg(u) can be found in [21]. We write Sol(G) = {u € G :
(u,v) is solvable for all v € G}. It is easy to see that Sol(G) = uQG Solg(u). Also, Sol(G)

is the solvable radical of G (see [18]). The solvable graph of a finite non-solvable group
G is a simple undirected graph whose vertex set is G \ Sol(G), and two vertices u and
v are adjacent if (u,v) is a solvable. We write I's(G) to denote this graph. It is worth
mentioning that I's(G) is the complement of the non-solvable graph of G considered in
[4,21] and extension of commuting and nilpotent graphs of finite groups that are studied
extensively in [1-3,5,6,9-11, 13-16, 25, 26]. It is worth mentioning that the study of
commuting graphs of finite groups is originated from a question posed by Erdos [23].

In this paper, we show that I'g(G) is not a star graph, a tree, an n-partite graph for
any positive integer n > 2 and not a regular graph for any non-solvable finite group G.
In Section 2, we also show that the girth of I's(G) is 3 and the clique number of I's(G) is
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greater than or equal to 4. In Section 3, we first show that for a given non-negative integer
k, there are at the most finitely many finite non-solvable groups whose solvable graph have
genus k. We also show that there is no finite non-solvable group, whose solvable graph is
planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the paper by
obtaining a relation between I's(G) and Ps(G) in Section 4, where Ps(G) is the probability
that a randomly chosen pair of elements of G generate a solvable group (see [20]).

The reader may refer to [27] and [28] for various standard graph theoretic terminologies.
For any subset X of the vertex set of a graph I', we write I'[X] to denote the induced
subgraph of I' on X. The girth of I' is the minimum of the lengths of all cycles in I', and
is denoted by girth(I'). We write w(I") to denote the clique number of I' which is the least
upper bound of the sizes of all the cliques of I'. The smallest non-negative integer k is
called the genus of a graph I' if I' can be embedded on the surface obtained by attaching
k handles to a sphere. Let v(I') be the genus of I. Then, it is clear that v(I') > ~(T'y) for
any subgraph I'g of I'. Let K, be the complete graph on n vertices and mk, the disjoint
union of m copies of K,,. It was proved in [7, Corollary 1] that v(T") > v(Kp,) + v(K,) if
I" has two disjoint subgraphs isomorphic to K,, and K,. Also, by [28, Theorem 6-38] we
have

Y(Ky) = {(” 3i(2” ﬂ if n > 3. (1.1)
A graph T is called planar, toroidal, double-toroidal and triple-toroidal if v(I") = 0,1,2
and 3 respectively.

Let Nj be the connected sum of k projective planes. A simple graph which can be
embedded in N but not in Nj_1, is called a graph of crosscap k. The notation 7(I") stand
for the crosscap of a graph I'. It is easy to see that 4(I") > 4(T"g) for any subgraph T'g of
I'. It was shown in [8] that

in—-3)(n— it n and n
'Y(Kn):{u( 3)( 4)] fn>3andn#7,

1.2
3 ifn="1. (1.2)

A graph T is called a projective graph if 4(I') = 1. It is worth mentioning that 2K5 is not
projective graph (see [17]).

2. Graph realization
We begin with the following lemma.

Lemma 2.1. For every u € G\ Sol(G) we have
deg(u) = | Solg(u)| — | Sol(G)| — 1.

Proof. Note that deg(u) represents the number of vertices from G \ Sol(G) which are
adjacent to u. Since u € Solg(u), therefore | Solg(u)| — 1 represents the number of vertices
which are adjacent to u. Since we are excluding Sol(G) from the vertex set therefore
deg(u) = | Solg(u)| — | Sol(G)| — 1. O

Proposition 2.2. I'y(G) is not a star.

Proof. Suppose for a contradiction I's(G) is a star. Let |G| — | Sol(G)| = n. Then there
exists u € G\ Sol(G) such that deg(u) = n— 1. Therefore, by Lemma 2.1, | Solg(u)| = |G|.
This gives u € Sol(G), a contradiction. Hence, the result follows. O

Proposition 2.3. I's(G) is not complete bipartite.

Proof. Let I's(G) be complete bipartite. Suppose that A; and A are parts of the bi-
partition. Then, by Proposition 2.2, |A;| > 2 and |Ag| > 2. Let u € Aj,v € Ay. If
|{u,v) Sol(G) \ Sol(G)| > 2, then there exists y € (u,v) Sol(G) \ Sol(G) with u # y # v
such that (u,y) and (v, y) are both solvable. But then y ¢ A; and y ¢ Az, a contradiction.
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It follows that |(u,v)Sol(G) \ Sol(G)| = 2. In particular, Sol(G) = 1 and (u,v) is

cyclic of order 3 or |Sol(G)| = 2 and v = wz for z an involution in Sol(G). Now the
neighbours of u € A; is just u? € A or uz in the respective cases. Hence |As| = |A1| = 1,
a contradiction. Hence, the result follows. ]

Following similar arguments as in the proof of Proposition 2.3 we get the following
result.

Proposition 2.4. T's(G) is not complete n-partite.
Proposition 2.5. For any finite non-solvable group G, I's(G) has no isolated vertex.

Proof. Suppose z is an isolated vertex of I's(G). Then |Sol(G)| = 1; otherwise x is
adjacent to xz for any z € Sol(G) \ {1}. Thus it follows that o(xz) = 2; otherwise x is
adjacent to 2. Let y € G. Then (x,2Y) is dihedral and so x = x¥ as z is isolated. Hence
x € Z(G) and so x € Z(G) < Sol(G), a contradiction. Hence, I's(G) has no isolated
vertex. t

The following lemma is useful in proving the next two results as well as some results in
subsequent sections.

Lemma 2.6. Let G be a finite non-solvable group. Then there exist x € G such that
z, 2% ¢ Sol(Q).

Proof. Suppose that for all # € G, we have 2% € Sol(G). Therefore, G/ Sol(G) is elemen-
tary abelian and hence solvable. Also, Sol(G) is solvable. It follows that G is solvable, a
contradiction. Hence, the result follows. ]

Theorem 2.7. Let G be a finite non-solvable group. Then girth(I's(G)) = 3.

Proof. Suppose for a contradiction that I's(G) has no 3-cycle. Let z € G such that
z,72 ¢ Sol(G) (by Lemma 2.6). Suppose |Sol(G)| > 2. Let z € Sol(G),z # 1, then
z,2? and zz form a 3-cycle, which is a contradiction. Thus | Sol(G)| = 1. In this case,
every element of G has order 2 or 3; otherwise, {z, 22 23} forms a 3-cycle in I's(G) for
all x € G with o(z) > 3. Therefore, |G| = 2™3" for some non-negative integers m
and n. By Burnside’s Theorem, it follows that G is solvable; a contradiction. Hence,

girth(I's(G)) = 3. O
Theorem 2.8. Let G be a finite non-solvable group. Then w(I's(G)) > 4.

Proof. Suppose for a contradiction that G is a finite non-solvable group with w(I's(G)) <
3. Let z € G\ Sol(G) such that 22 ¢ Sol(G) according to Lemma 2.6. Suppose | Sol(G)| >
2. Let z € Sol(G), 2z # 1, then {z, 22 x2,2%2} is a clique which is a contradiction. Thus
|Sol(G)| = 1. In this case every element of G\ Sol(G) has order 2,3 or 4 otherwise
{x,2% 23 2%} is a clique with o(z) > 4, which is a contradiction. Therefore |G| = 2m3"
where m,n are non-negative integers. Again, by Burnside’s Theorem, it follows that G is
solvable; a contradiction. This completes the proof. O

As a consequence of Theorem 2.7 and Theorem 2.8 we have the following corollary.
Corollary 2.9. The solvable graph of a finite non-solvable group is not a tree.

We conclude this section with the following result.
Proposition 2.10. I's(G) is not regular.

Proof. Follows from [21, Corollary 3.17], noting the fact that a graph is regular if and
only if its complement is regular. O
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3. Genus and diameter
We begin this section with the following useful lemma.

Lemma 3.1. Let G be a finite group and H a solvable subgroup of G. Then (H,Sol(G))
s a solvable subgroup of G.

Proposition 3.2. Let G be a finite non-solvable group such that v(I's(G)) = m.
(a) If S is a nonempty subset of G\ Sol(G) such that (x,y) is solvable for all z,y € S,

then |S| < {”7 V12+48mJ.
(b) [Sol(G)| < ¢y [ZYHHE | where ¢ = max{o(z Sol(G)) | Sol(G) € G/ Sol(G)}.
(c) If H is a solvable subgroup of G, then |H| < {7*‘7 V12+48mJ + |H N Sol(G)].
Proof. We have I's(G)[S] = K|g and (K |g) = 7(I's(G)[S]) < 7(I's(G)). Therefore, if

m = 0 then v(K|g) = 0. This gives |S| < 4, otherwise K|g will have a subgraph K
having genus 1. If m > 0 then, by Heawood’s formula [27, Theorem 6.3.25], we have

S| = w(I's(G)[S]) < w(ls(@)) < x(Ts(@)) < {Wl;m

where x(I's(G)) is the chromatic number of I';(G). Hence part (a) follows.
t—1
Part (b) follows from Lemma 3.1 and part (a) considering S = |]y"Sol(G), where
i=1

y € G\ Sol(G) such that o(y Sol(G)) = t.
Part (c) follows from part (a) noting that H = (H \ Sol(G)) U (H N Sol(G)). O

Theorem 3.3. Let G be a finite non-solvable group. Then |G| is bounded above by a
function of v(T's(G)).

Proof. Let v(T's(G)) = mand h,, = [”7 V12+48mJ . By Lemma 3.1, we have I's(G)[z Sol(G)]

= K| sol(q)|s Where © € G \ Sol(G). Therefore by Proposition 3.2(a), [ Sol(G)| < Ay,

Let P be a Sylow p-subgroup of G for any prime p dividing |G| having order p" for
some positive integer n. Then P is a solvable. Therefore, by Proposition 3.2(c), we have
|P| < hm + | Sol(G)| < 2hy,. Hence, |G| < (2h,,)"™ noting that the number of primes less
than 2h,, is at most h,,. This completes the proof. ]

As an immediate consequence of Theorem 3.3 we have the following corollary.

Corollary 3.4. Let n be a non-negative integer. Then there are at the most finitely many
finite non-solvable groups G such that v(T's(G)) = n.

The following two lemmas are essential in proving the main results of this section.

Lemma 3.5. [24, Lemma 3.4] Let G be a finite group.
(a) If |G| = Tm and the Sylow T-subgroup is normal in G, then G has an abelian
subgroup of order at least 14 or |G| < 42.
(b) If |G| = 9m, where 3t m and the Sylow 3-subgroup is normal in G, then G has an
abelian subgroup of order at least 18 or |G| < 72.

Lemma 3.6. If G is a non-solvable group of order not exceeding 120 then I's(G) has a
subgraph isomorphic to K11 and v(I's(G)) > 5.

Proof. 1If G is a non-solvable group and |G| < 120 then G is isomorphic to As, As x Za, Ss
or SL(2,5). Note that | Sol(As)| = | Sol(S5)| = 1 and | Sol(As X Zs)| = | Sol(SL(2,5))| = 2.
Also, As has a solvable subgroup of order 12 and S5, As x Zg, SL(2,5) have solvable
subgroups of order 24. It follows that I's(G) has a subgraph isomorphic to K1;. Therefore,
by (1.1), 7(T4(G)) = 7(Ku1) = 5. O
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Theorem 3.7. The solvable graph of a finite non-solvable group is neither planar, toroidal,
double-toroidal nor triple-toroidal.

Proof. Let G be a finite non-solvable group. Note that it is enough to show v(I's(G)) > 4
to complete the proof. Suppose that 7(I's(G)) < 3. Let z € G\ Sol(G) such that
22 ¢ Sol(G). Such element exists by Lemma 2.6. Since any two elements of the set A =
7 Sol(G)Uz? Sol(G) generate a solvable group, by Proposition 3.2(a), we have 2| Sol(G)| =
|A] < {LWJ = 9. Thus | Sol(G)| < 4. Let p be a prime divisor of |G| and P is a Sylow
p-subgroup of G. Since P is solvable, by Proposition 3.2(c), we get |P| < 9+|PNSol(G)| <
13. If |P| = 11 or 13 then |P N Sol(G)| = 1. Therefore, I's(G)[P \ Sol(G)] = Ko
or Kio. Using (1.1), we get v(I's(G)[P \ Sol(G)]) = 4 or 6. Therefore, v(I's(G)) >
v(Ts(G)[P \ Sol(G)]) > 4, a contradiction. Thus |P| < 9 and hence p < 7. This shows
that |G| divides 23.32.5.7.

We consider the following cases.

Case 1. |Sol(G)| = 4.

If H is a Sylow p-subgroup of G where p = 5 or 7 then (H, Sol(G)) is solvable since H is
solvable (by Lemma 3.1). We have |H N Sol(G)| = 1 and |(H, Sol(G))| = 20, 28 according
as p = b, 7 respectively. Therefore I's(G)[(H, Sol(G)) \ Sol(G)] = K16 or Ka4. By (1.1) we
get v(Is(G)) > v(T's(G)[(H, Sol(G)) \ Sol(G)]) > 13, which is a contradiction.

Thus |G| is a divisor of 72. Therefore, by Lemma 3.6 we have (I's(G)) > 5, a contra-
diction.

Case 2. |Sol(G)| = 3.

If H is a Sylow p-subgroup of G where p = 5 or 7 then (H,Sol(G)) is solvable. We
have |H N Sol(G)| = 1 and |(H,Sol(G))| = 15,21 according as p = 5,7 respectively.
Therefore I's(G)[(H,Sol(G)) \ Sol(G)] = Ki2 or Kig. By (1.1) we get v(I's(G)) >
v(Ts(G)[(H,Sol(G)) \ Sol(G)]) > 6, which is a contradiction.

Thus |G| is a divisor of 72. Therefore, by Lemma 3.6 we have v(I's(G)) > 5, a contra-
diction.

Case 3. |Sol(G)| = 2.

If H is a Sylow 7-subgroup of G then (H, Sol(G)) is solvable. We have |H NSol(G)| =1
and [(H, Sol(G))| = 14. So, I's(G)[(H, Sol(G))\Sol(G)] = Ki2. By (1.1) we get v(I's(G)) >
v(Ts(G)[(H, Sol(G))\Sol(G)]) > 6, which is a contradiction. Let K be a Sylow 3-subgroup
of G. If |K| = 9 then (K, Sol(QG)) is solvable since K is solvable (by Lemma 3.1). We have
|K NSol(G)| =1 and (K, Sol(G))| = 18. So, I's(G)[(K, Sol(G)) \ Sol(G)] = Ki6. By (1.1)
we get 7(I's(G)) > v(Is(G)[(K, Sol(G)) \ Sol(G)]) = 13, which is a contradiction.

Thus |G| is a divisor of 120. Therefore, by Lemma 3.6 we have v(I's(G)) > 5, a
contradiction.

Case 4. |Sol(G)| = 1.

In this case, first we shall show that 7t |G|. On the contrary, assume that 7 | |G|. Let
n be the number of Sylow 7-subgroups of G. Then n | 23.32.5 and n =1 mod 7. If n # 1
thenn > 8. Let Hy, ..., Hg be the eight distinct Sylow 7-subgroups of G. Then the induced
subgraphs I's(G)[H; \ Sol(G)] for each 1 < i < 8 contribute v(I's(G)[H; \ Sol(G)]) =1 to
the genus of I's(G). Thus

8
1(Ts(G) =Y v(Ts(G)[H;i \ Sol(G)]) = 8,
=1

a contradiction. Therefore, Sylow 7-subgroup of G is unique and hence normal. Since we
have started with a non-solvable group, by Lemma 3.5, it follows that G has an abelian
subgroup of order at least 14. Therefore, by (1.1) we have v(I's(G)) > v(Ki3) = 8, a
contradiction. Hence, |G| is a divisor of 23.32.5.

Now, we shall show that 9 { |G|. Assume that, on the contrary, 9 | |G|. If Sylow 3-
subgroup of G is not normal in GG, then the number of Sylow 3-subgroups is greater than
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or equal to 4. Let Hi, Ho, Hs be the three Sylow 3-subgroups of G. Then the induced
subgraph I's(G)[H; \ Sol(G)] = Kg and so it contributes v(I's(G)[H1 \ Sol(G)]) = 2 to the
genus of I's(G). If |H; N Hz| = 1, then the induced subgraph I's(G)[H2 \ Sol(G)] = Ky
and so it contributes +2 to the genus I'g(G). Thus

Y([s(G)) = v(Ts(G)[(H1 U Ha) \ Sol(G)]) =4

which is a contradiction. So assume that |H; N Ha| = 3. Similarly |H; N H3| = 3 and
|Ho N H3| = 3. Let M = Hy \ Hy. Then |M| = 6. Also note that if L = Hy U Hy and
K =Hj3\ L, then |[K| > 4. Also HiNM =H NK=MnNK = 0.

If |K| > 5 then H; contribute +2 to genus of I's(G), M and K each contribute +1 to
genus of I's(G). Hence genus of I's(G) is greater than or equal to 4, a contradiction.

Assume that |K| = 4. In this case |M N Hs| = 2. Let x € M N Hs. Then H; contribute
+2 to genus of I's(G), M \ {z} and K U{x} each contribute +1 to genus of I'g(G). Hence
genus of I's(G) is greater than or equal to 4, a contradiction.

These show that Sylow 3-subgroup of G is unique and hence normal in G. Therefore,
by Lemma 3.5 and Lemma 3.6, G has an abelian subgroup A of order at least 18. Hence,

1(Ts(G)) 2 1(Ts(G)[AN\ Sol(G)]) = y(Kar) = 16

which is a contradiction.
It follows that 9 t |G| and |G| is a divisor of 120. Therefore, by Lemma 3.6 we get
v(Ts(G)) > 5, a contradiction. Hence, v(I's(G)) > 4 and the result follows. O

The above theorem gives that v(I's(G)) > 4. Usually, genera of solvable graphs of finite
non-solvable groups are very large. For example, if G is the smallest non-solvable group As
then I's(G) has 59 vertices and 571 edges. Also v(I's(G)) > 571/6 —59/2+1 = 68 (follows
from [28, Corollary 6-14]). The following theorem shows that the crosscap number of the
solvable graph of a finite non-solvable group is greater than 1.

Proposition 3.8. The solvable graph of a finite non-solvable group is not projective.

Proof. Suppose G is a finite non-solvable group whose solvable graph is projective. Note
that if T's(G) has a subgraph isomorphic to K, then, by (1.2), we must have n < 6. Let
x € G, such that z,2? € Sol(G). Then

I4(G)[2 Sol(G) U 2* Sol(G)] = Koy soi(c)|-

Therefore, 2| Sol(G)| < 6 and hence | Sol(G)| < 3.

Let p | |G| be a prime and P be a Sylow p-subgroup of G. Then I';(G)[P \ Sol(G)] =
K|p\sol(c)| since P is solvable. Therefore, |P\ Sol(G)| = |P|—|P NSol(G)| < 6 and hence
|P| < 9. This shows that |G| is a divisor of 23.32.5.7.

If 7 | |G| then Sylow 7-subgroup of G is unique and hence normal in G; otherwise, let H
and K be two Sylow 7-subgroups of G. Then |H N K| = |H NSol(G)| = |K NSol(G)| = 1.
Therefore, I's(G)[(HUK)\ Sol(G)] has a subgraph isomorphic to 2Kg. Hence, I's(G) has a
subgraph isomorphic to 2K, which is a contradiction. Similarly, if 9 | |G|, then the Sylow
3-subgroup of G is normal in G. Therefore, by Lemma 3.5, it follows that |G| < 72 or |G|
is a divisor of 23.3.5. In the both cases, by Lemma 3.6, I's(G) has complete subgraphs
isomorphic to K11, which is a contradiction. This completes the proof. O

We conclude this section, by an observation and a couple of problems regarding the
diameter and connectedness of I's(G). Using the following programme in GAP[29], we
see that the solvable graph of the groups As, S5, A5 X Zo, SL(2,5), PSL(3,2) and GL(2,4)
are connected with diameter 2. The solvable graphs of Sg and Ag are connected with
diameters greater than 2.
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g:=PSL(3,2);
sol:=RadicalGroup(g);
L:=[];

gsol:=Difference(g,sol);
for x in gsol do
AddSet (L, [x]1);
for y in Difference(gsol,L) do
if IsSolvable(Subgroup(g, [x,y]))=true then
break;
fi;
i:=0;
for z in gsol do
if IsSolvable(Subgroup(g, [x,z]))=true and

IsSolvable (Subgroup(g, [z,y]))=true
then
i:=1;
break;
fi;
od;
if i=0 then
Print ("Diameter>2");
Print(x," "y
fi;
od;
od;

In this connection, we have the following problems.

Problem 3.1. Is I's(G) connected for any finite non-solvable group G?

1961

Problem 3.2. Is there any finite bound for the diameter of I's(G) when I';(G) is con-

nected?

4. Relations with solvability degree

The solvability degree of a finite group G is defined by the following ratio
~ H(u,v) € G x G : (u,v) is solvable}|

Py(G) :

GI?
Using the solvability criterion (see [12, Section 1]),

“A finite group is solvable if and only if every pair of its elements generates a solvable

group”

for finite groups we have G is solvable if and only if its solvability degree is 1. It was
shown in [20, Theorem A] that Ps(G) < % for any finite non-solvable group G. In this
section, we study a few properties of Ps(G) and derive a connection between Ps(G) and

I's(G) for finite non-solvable groups G. We begin with the following lemma.
Lemma 4.1. Let G be a finite group. Then Ps(G) = ﬁ > | Solg(w)].
ueG

Proof. Let 8 = {(u,v) € G x G : (u,v) is solvable}. Then
({u} x{v € G : (u,v) is solvable}) = LGJG({U} x Solg(u)).

§= U
ueG
Therefore, [8| = >~ | Solg(u)|. Hence, the result follows.
uelG
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Corollary 4.2. |G|Ps(G) is an integer for any finite group G.

Proof. By Proposition 2.16 of [21] we have that |G| divides Y |Solg(u)|. Hence, the
ueG
result follows from Lemma 4.1. O

We have the following lower bound for Ps(G).

Theorem 4.3. For any finite group G,

1S0l(G)| |, 2(16] [ Sol(G))
PO="er "~ ep

Proof. By Lemma 4.1, we have

GPP(G) = > [Solg(u)|+ > [Solg(u)l

u€S0l(G) u€G\Sol(G)
=|G|ISol(G)| + > [Solg(u)l. (4.1)
u€G\Sol(G)

By Proposition 2.13 of [21], |Cg(u)]| is a divisor of | Solg(u)| for all u € G where Cg(u) =
{v € G : wv = vu}, the centralizer of u € G. Since |Cg(u)| > 2 for all u € G we have
| Solg(u)| > 2 for all uw € G. Therefore

Y. [8olg(u)] > 2(|G] — [ Sol(G))).
weG\Sol(Q)
Hence, the result follows from (4.1). O

The following theorem shows that Ps(G) > Pr(G) for any finite non-solvable group
where Pr(G) is the commuting probability of G (see [19]).

Theorem 4.4. Let G be a finite group. Then Ps(G) > Pr(G) with equality if and only if
G is a solvable group.

Proof. The result follows from Lemma 4.1 and the fact that Pr(G) = @ > [Ca(u)]
uelG
noting that Cg(u) C Solg(u) and so |Solg(u)| > |Cq(u)| for all u € G.
The equality holds if and only if Cg(u) = Solg(u) for all u € G, that is Solg(u) is a
subgroup of G for all u € G. Hence, by Proposition 2.22 of [21], the equality holds if and
only if GG is solvable. O

Let |E(T's(G))| be the number of edges of the non-solvable graph I's(G) of G. The
following theorem gives a relation between Ps(G) and |E(I's(G))].

Theorem 4.5. Let G be a finite non-solvable group. Then

2|E(L5(G))| = |G Ps(G) + | Sol(G)[* + [ Sol(G)| — |G(2| Sol(G)[ + 1).
Proof. We have
2|E(Ts(@))| = {(z,y) € (G\ Sol(G)) x (G\ Sol(G)) : (z,y) is solvable}| — |G| + | Sol(G)].
Also

8§ ={(z,y) € G x G : (x,y) is solvable}
= Sol(G) x Sol(G) UL Sol(G) x (G\Sol(G@)) U (G\Sol(G)) x Sol(G)

U {(z,y) € (G\ Sol(G)) x (G\ Sol(G)) : (z,y) is solvable}.

Therefore
8] = Sol(G) 2 + 21 Sol(@)| (1G] — | Sol(G)]) + 2 E(T,(G))] + |G| — | Sol(G)|
— [GI2P,(G) = GI(2]Sol(G)| + 1) — | Sol(G)[? — | Sol(G)| + 2/ E(T,(G))].

Hence, the result follows. O
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We conclude this paper noting that lower bounds for |E(I's(G))| can be obtained from
Theorem 4.5 using the lower bounds given in Theorem 4.3, Theorem 4.4 and the lower
bounds for Pr(G) obtained in [22].
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