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Abstract— Phonocardiography (PCG) is a method based on examination of mechanical sounds 

coming from heart during its regular contraction/relaxation activities such as opening and closing of the 

valves and blood turbulence towards vessels and heart chambers. Today there are high technology tools 
to record those sounds in electronic environment and enable us to analyze them in detail. The constraints 

such as human’s limited audible range, environment noise and inexperience of physicians can be 

overcome by the use of those tools and development of state-of-art signal processing and machine 
learning methods. In this study we examined heart sounds and classified them as normal or abnormal 

focusing on the efficiency of ensemble classifiers. Features of heart sounds are extracted by using 

Discrete Wavelet Transform (DWT), Mel-Frequency Cepstral Coefficients (MFCC) and time-domain 

morphological characteristics of the signals. As a novel contribution, Karcı entropy is derived from 
DWT of PCG signals and used for the first time as feature in heart sound classification. K-Nearest 

Neighbor (kNN), Support Vector Machine (SVM), Multilayer Perceptron (MLP) classifiers and their 

ensembles are used as classifiers. Then the ensemble classifiers’ predictions based on distinct feature 
vectors are combined and an ensemble classifier built from team of ensemble classifiers. Classification 

performances of singular classifiers, single level ensemble classifiers and final ensemble classifier are 

compared and better results are obtained by the proposed method. 
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1.Introduction and Related Work 

Heart and blood vessels related disorders are called as cardiovascular diseases (CVDs) which include 

arrhythmia, heart attacks and strokes. According to World Health Organization (WHO), CVDs are the 

most common causes of death globally and most people die due to CVDs annually than any other causes 

[1]. Even though exact causes of CVDs are not conceded clearly by authorities, there are some accepted 
risk factors such as hypertension, diabetes, obesity, smoking and family history of having CVD. People 

having the risk factors need to be more careful and concerned about their well-being. Early identification 

of heart diseases with high accuracy provides vital information and can be extremely important for 
survival of those people [2]. 

Doppler-Echocardiography, Magnetic Resonance Imaging (MRI), Electrocardiography (ECG) and 

Phonocardiogram (PCG) are effective tools for measuring dysfunctions of heart. Those methods provide 

accurate results although they require expensive equipment which can be used by expert physicians. On 
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the other hand, auscultation is a classical method which is defined as listening to the cardiac sounds with 

a stethoscope. Auscultation is simple, practical, noninvasive and cost-effective therefore it is more 

suitable for home and primary health care. A lot of cardiac diseases are identified firstly by finding 
presences of abnormalities in the heart sounds [3] however, differentiating pathological symptoms from 

normal heart sounds requires knowledge and experience. Moreover, it can be a subjective task even 

among clinicians [4, 5].  

In order to obtain more successful and objective evaluation of heart sounds, physicians make use of 

computer-based automatic systems for heart sound diagnosis in clinics. Thanks to development of 

technology, today there are portable heart sound evaluation devices corroborated with digital signal 

analysis methods. Many state-of-art methods [6-10] have been proposed to meet this need. Those tools 
can be used to educate and train cardiology students and inexperienced physicians. Also, they can be 

very helpful in rural areas and in homecare where it is not easy to reach expert consultation [2]. 

During cardiac cycle, a healthy heart generates a regular pair of sounds called S1 and S2 at each 
pulsation due to rhythmic opening and closing of heart valves [11]. S1 and S2 are also known as 

fundamental heart sounds and are described as lub-dup in layman’s terms. Variation in their durations 

and intensities are regarded as important implications of cardiac disorders [8]. The third heart sound S3, 
also known as ventricular gallop, follows S2 and in most adults it is soft and subdued. However, it can 

be loud enough to be heard among children, pregnant females and well-trained athletes without 

indicating any cardiac abnormality. On the other hand, another heart sound S4, which occurs just before 

S1, must be inaudible in healthy subjects. Moreover, in some pathological cases those sounds are 
accompanied by a noise which called as heart murmurs. Having heart murmurs is not a disease but 

obviously indicates an abnormal turbulence of blood flow either inside heart or in vessels. Sometimes, 

its presence may be normal without pointing out any cardiac pathology in which case it is called as 
“innocent murmur” [3,12]. Detecting and classifying murmurs during auscultation is an important task 

for a physician.  

Murmurs can be caused either from inborn structural defects of the heart or from physiologic 

conditions which take place subsequently. Structural defects related with heart valves include stenosis 
(heart valve flaps restrict the blood flow by fusing together), regurgitation (flaps do not close properly 

allowing back flow of blood) and atresia (valves do not develop congenitally preventing it from opening) 

[13]. On the other hand, pregnancy, fever, anemia or post-operation effects can be counted as external 
causes of heart murmurs occurring later. 

There are various types of murmurs and they can take place in different locations of a pulse 

depending on their kind. Sometimes being sub-audible notwithstanding, they can be detected and seen 
in PCG recordings [13]. As a gold standard for grading heart murmur intensity, murmurs are graded on 

a 6-point level scale (Levine scale) by clinicians [14]. Separating heart sounds from murmurs can be 

challenging since they involve low frequency components which are hardly audible [15]. Especially 

presence of environmental noise, breathing sounds, rustling of the microphone due to movement make 
it harder for naked human ear. Therefore, there is a need for developing human-machine interfaces to 

help cardiologists understand and interpret PCG outputs more accurately and easily during the diagnosis 

[16]. Actually, automated classification of heart sounds has been studied for decades however, achieving 
more accurate classification results is still attracting researchers [10].  

Munia et. al. [17] used Support Vector Machine (SVM) for classifying heart sounds into normal and 

abnormal classes by comparing five different kernel functions. Koçyiğit [18] proposed a classification 
method based on obtaining sub-bands of heart sounds by using DWT. Features are extracted from those 

sub-bands and then dimensions of feature vectors are reduced by using principal component analysis on 

them. Those features are given to Naïve Bayes and SVM classifiers to obtain fourteen different heart 

sound classes. In another study, Uzunhisarcıklı [19] examined the blood flow velocity variation due to 
mitral valve stenosis by performing an analysis on Doppler ultrasound signals and extracted nonlinear 

features from the heart sound for this purpose. 

Potes et. al. [7] proposed an ensemble classifier method combined from AdaBoost and Convolutional 
Neural Network (CNN) which are trained with time-domain and frequency-domain features. Zabihi et. 

al. [8] used an ensemble of 20 feedforward Neural Networks which are built from two hidden layers 
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containing 25 neurons. They used Linear Predictive Coefficients (LPC), entropy, Mel-Frequency 

Cepstral Coefficients (MFCC), Discrete Wavelet Transform (DWT) and Power Spectral Density (PSD) 

to extract features. In another study, Kay and Agarwal [9] proposed a Neural Network based method 
using Continuous Wavelet Transform (CWT) and MFCC for feature extraction. In feature vectors, they 

also used time-domain features obtained from the segmented signal such as mean, standard deviation 

and inter-segment ratios. 

Each regular pulse of heart generates a cardiac cycle which is created from distinct temporal regions. 

The time interval from completion of S1 to initialization of S2 is called as systole and S2 to S1 period 

is known as diastole [20]. Partitioning the signal into repeating individual segments is an important step 

of automated heart sound analysis which can be achieved by using threshold-based change point 
detection methods or probabilistic models [21]. Moreover, fundamental heart sound segmentation can 

be done by using extra reference signals such as ECG when it is recorded in parallel to PCG. Indicating 

cardiac cycles by R peaks of QRS complexes, ECG makes it easy to describe temporal segments of the 
PCG record. Segmentation can also be achieved by using different envelope extraction methods like 

Hilbert-Huang transform [22], Shannon energy [6] and autocorrelation [23]. Without using any 

reference signal, Springer et. al. [21] proposed a hidden semi-Markov model extended with logistic 
regression for determining four states of heart cycle: S1, S2, systole and diastole. However, there are 

successful heart sound analysis approaches [8, 24, 25] that do not involve segmentation at all. 

Another necessary step of heart sound classification is feature extraction. Frequency, time and time-

frequency domain features are main characteristics of heart sounds [26]. Heart sounds are observed in a 
specific frequency level. Frequency components are in the range of 10-140 Hz for S1, 10-200 Hz for S2 

and 20-70 Hz for S3 and S4 [26]. According to another study [27] fundamental heart sounds should be 

expected at the range of 20-200 Hz but this frequency spectrum can be 15-700 Hz in pathological cases. 
Murmurs, on the other hand, can have diverse frequency components up to 600 Hz [26, 28] but this level 

can increase up to 1000 Hz occasionally [28]. Time domain features include durations of segments and 

their ratio to overall signal, energy measures, zero-crossing rate, minimum, maximum, mean, variance, 

skewness, kurtosis and Lempel-Ziv complexity (LZC) [15, 29]. Lastly, time-frequency domain features 
are computed from windowed segments of the signal. By this approach it is possible to observe 

frequency features at specific time intervals. Those features are used to detect how frequency content of 

the signal changes by time. Short-Time Fourier Transform (STFT), LPC and MFCC, DWT and CWT 
are methods used to produce time-frequency domain features [8, 30]. Among those alternatives, wavelet 

transforms get upper hand because of their ability for analyzing non-stationary signals and PCG signals 

are non-stationary in nature like many other bio-signals [16, 17].   

The aim of this study is to propose a three-phase model for automatic heart sound classification to 

detect heart murmurs. MFCC, time domain morphological characteristics and entropies calculated from 

DWT details and approximation coefficients of heart sounds are used to form three different feature 

vectors in this study. Instead of merging them together, they are examined individually. For this purpose, 
classification algorithms K-Nearest Neighbor (kNN), Multilayer Perceptron (MLP) and SVM are used 

at first. During the first phase, those classifiers are run with mentioned feature vectors separately. In the 

second phase, those classifiers are combined together and their ensemble is run with those feature 
vectors one by one. Then in the third phase, ensemble classifier’s prediction decisions for individual 

feature vectors are combined constructing a single classifier from the team of the ensemble classifiers. 

In the next section, the database and the proposed method are explained. Experiment results are given 
in the Section 3. Finally, Section 4 details the conclusions of the study. 

 

2. Database and Proposed Method 

In 2016, PhysioNet/Computing in Cardiology (CinC) announced a competition challenge for 

encouraging development of heart sound classification algorithms and provided an online database of 

PCG recordings [26, 31]. Researchers used the shared database to train and test their algorithms however 
submissions were run by using a hidden database and ranked according to their performances by 

competition organizers. The public part of this challenge database is used in this study. It totally contains 

3240 wav files of which 2575 recordings are normal and 665 recordings are abnormal. Details about 
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diseases are not given and all sounds are categorized either as normal, abnormal or uncertain. The heart 

sounds are recorded with 2 kHz sampling frequency. 

The proposed method is composed of signal preprocessing, feature extraction and classification steps 
which are detailed in the following subsections. A total of 38 features extracted from each PCG record 

which are shown in the Table 1. Features based upon morphological properties, MFCC and DWT detail 

and approximation coefficients are extracted and analyzed independently. As a novel contribution, Karcı 
entropy is derived from DWT of PCG signals and used for the first time as feature in heart sound 

classification. 

The features were not combined into a single feature vector. Instead they were used to form three 

distinct feature vectors namely TD (time domain), MFCC and DWT based features. The prediction 
results of ensemble classifiers were combined further by majority voting rule to obtain a final ensemble 

classifier. 

The main contributions of our work include investigation of the effect of different features on the 
classification performance. Moreover, Karcı entropy [32] is used for the first time for heart sound 

analysis. Those features are used to train kNN, SVM and MLP classifiers. Another contribution of our 

study is three-level classification approach. Those classifiers are compared among themselves in the 
first level and their ensembles are built. In the second level ensemble classifiers are supplied with 

mentioned feature vectors and classification performances are compared. Then in the third level, final 

ensemble classifier is built from the team of ensemble classifiers and overall performances are 

compared. The general overview of the system is given in Figure 1. As it can be seen in the figure, the 
proposed method starts with preprocessing, and then extracts three different feature vectors from PCG 

signals. Those feature vectors are classified by kNN, SVM, MLP and their ensembles. 

 

Table 1. Feature sets and their elements 

Feature Set Features 

Time Domain Based Features Mean, Std, LZC, Energy, Zero-cross rate and Delta (6) 

MFCC Based Features Average (1-13), Skewness (14-26) 

DWT Based Features 5 level details (1-5), approximation (6) 

 

 

2.1. Preprocessing 

The heart sounds are recorded from distinct locations by using different acquisition techniques. In 

order to get rid of the variations in the amplitude, the data should be normalized. After calculating and 

storing the mean and standard deviation of the signal, it is normalized by subtracting its mean and 
dividing by its standard deviation (z-score normalization). For all features except delta, segmentation is 

not used and the features are extracted from whole signal during feature engineering. For delta feature 

calculation, the signal is converted to 2-dimensional input model in which frame length is kept as 1 

second. The last frames of the signals having duration less than 1 second are disposed. The remaining 
frames formed the 2-dimensional representation of the preprocessed signal. 



5 

 

 

Figure 1. General overview of the system and the proposed method 

 

 

2.2. Feature Engineering 

2.2.1. Time Domain Based Features (TDBF) 

The mean and standard deviation obtained from raw data are added to feature vector. Then Lempel-

Ziv complexity (LZC) is calculated from the signal. LZC is a non-linear feature estimating the repeating 

patterns in a signal. Non-stationary signals get higher LZC scores while periodic signals have a low 
score [29].  

To calculate LZC, a new sequence (x) denoted as x(1), x(2), …, x(n) should be created from the 

original signal (s) where n is the length of the signal. An element of x at active index i, is set to 1 if 
s(i+1) > s(i) and in other cases x(i) is set to 0. By following this way, the x sequence is used to count 

increase points of the s. The final LZC is obtained according to Equation 1. Shannon energy [6] is 

another property added to feature vector. Shannon energy of a normalized signal (snorm) is estimated 

according to Equation 2. Then the number of times the signal changes its sign from positive to negative 
or from negative to positive is counted. The sum of the changes is divided by the total length to calculate 

the zero-cross rate (ZCR). According to [33], low ZCR is expected for normal signal while high ZCR 

indicates abnormality. ZCR features can be estimated according to Equation 3. Delta score (∆) of a 
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signal is calculated by averaging the sum of differences between maximum and minimum of each frame 

of the signal, which is given in Equation 5. 

 

LZC (s) = 
∑𝑥(𝑖)∗log⁡(𝑛)

𝑛
          (1) 

E(snorm) = 
−1

𝑛
⁡* ∑ ⁡s2

norm(i) * log(s2
norm(i))       (2) 

 

ZCR(s) = 
1

2𝑛
⁡* ∑|sgn(s(i)) − sgn(s(i − 1))|      (3) 

sgn(x(n)) = {
⁡⁡⁡1, 𝑥(𝑛) ≥ 0
−1, 𝑥(𝑛) < 0

           (4) 

∆(𝑠) ⁡= ⁡
1

𝐹𝑟𝑎𝑚𝑒𝑠_𝐶𝑜𝑢𝑛𝑡
∗ ⁡⁡∑ [max⁡(𝐹) − min(𝐹)]𝐴𝑙𝑙⁡𝐹𝑟𝑎𝑚𝑒𝑠

𝐹      (5) 

 

2.2.2. Mel-Frequency Cepstral Coefficients Based Features (MFCCBF)  

Speech recognition studies widely use MFCC [34] and they are proven to be distinctive features for 

heart sound classification as well [9]. Human ear pays different levels of regard to different frequencies. 

MFCC is designed in a way to represent the sound signals as a human would represent them considering 

the frequency levels. In order to obtain the coefficients, the signal is divided into overlapping frames 
which are exposed to Hamming window minimizing the discontinuity. By applying Fourier Transform, 

they are transferred into frequency domain then they are passed from Mel-spaced filter bank. Finally, 

discrete cosine transform is applied on the result to convert it back to time domain. Depending upon the 
sampling frequency, predefined number of coefficients are obtained from each segment [35]. In this 

study, MFCCs of signals are calculated with 13 coefficient parameters. Overlap length is selected as 10 

ms and frame length is taken as 20 ms. From those sets of 13 coefficients, average values and skewness 
values are calculated. A total of 26 features are used to create MFCC based feature vectors. 

 

2.2.3. Discrete Wavelet Transform Based Features (DWTBF)  

Daubechies 4 (db4) wavelet function is applied on signals during discrete wavelet transform. Detail 
coefficients of level 1 to 5 and approximation coefficients are saved. Then those coefficients’ probability 

density functions (𝑝𝑖) are estimated. As a novel contribution, Karcı entropy is derived from those 

probability density functions and used for the first time as feature in heart sound classification.  

Karcı entropy which is given in Equation 6, is superior to widely used Shannon entropy since it is a 

larger set that contains Shannon Entropy. As it can be seen in Equation 6, there is an (α) parameter, 

which can be selected based on a fuzzy approach [36]. When its value is set to 1, it works exactly like 
Shannon entropy. This parameter is used for fine-tuning the entropy calculation and the performance of 

the overall system can show different behavior due to its value.  

In this study, we experimentally searched for best α parameter in the range of [0.5-5.5] by 0.01 

incrementations. As a result of those experiments 1.14 is selected as α value to use in the calculation of 
Karcı entropy. At the end, 6 entropy-based attributes are extracted from details 1-5 and approximation 

of discrete wavelet transform and then added to the feature vector. 

 

𝐾𝑎𝑟𝑐𝚤⁡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ |(−𝑝𝑖)
𝛼 ∗ ln(𝑝𝑖)|

𝑛
𝑖        (6) 

 

2.3. Classification 

Classification phase of the study is realized by using WEKA workbench [37]. For this purpose, 
famous classifiers kNN, SVM and MLP are supplied with the feature vectors recorded in WEKA arff 
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format. For train and test phases of classification, 10-fold cross validation strategy is followed. Each 

feature vector is separately supplied to kNN, SVM and MLP classifiers and their performances are 

compared. Then, instead of concatenating all those features and training the classifiers with it, an 
ensemble approach is proposed. An ensemble classifier can be constructed from different classifiers (or 

same classification algorithm with distinct parameters) using same input features or can also be built 

from classifiers each using its own input feature set [38].  

In this study, the both approaches are combined by developing a three-level classification phase. 

Firstly, kNN, SVM and MLP is run with same input feature vectors and their classification performances 

are recorded. Then an ensemble of those classifiers is built and run three times with three different 

feature vectors. Finally, ensemble classifier’s predictions about particular objects are improved by 
combining three classification decisions into one by using majority vote approach.   

WEKA has an effective and simple ensemble implementation, Vote1, capable of combining two or 

more classifiers. When classifiers produce models assigning probabilities to label each object, it is 
possible to get an overall prediction from those probabilities by applying different combination rules 

[39, 40]. Those rules can be maximum, minimum, median, average probability, product of probabilities 

and majority vote. In this study, majority vote combination rule is preferred and applied.  

 

2.3.1. K-Nearest Neighbor (kNN) 

kNN is an intuitive, widely used, instance based and non-parametric supervised learning algorithm. 

It is advantageous in many cases because it does not rely on an assumption about data’s belonging to a 
particular family of distribution. The algorithm classifies objects by checking the most common class 

among its k neighbors where k is a positive and generally odd integer [41]. Calculating distances 

between each pair of objects in order to determine neighbors, classification time is directly related with 
the size of the dataset. 

The value of k plays a key role in the performance of the classifier and its best value may change in 

different data sets. To determine the k value, we conducted a series of experiments and the best 

performance is obtained with k=9. Therefore, in this study all kNN classifications are done with k 
parameter as 9. 

 

2.3.2. Support Vector Machine (SVM) 

SVM is a useful tool used in pattern recognition and regression analysis. In WEKA environment, 

there exists a version of it named as SMO which implements John Platt's [42] Sequential Minimal 

Optimization algorithm for training a support vector classifier. In WEKA, there is another SVM 
implementation alternatively called as LibSVM however SMO comes built-in with WEKA framework 

while its alternative requires additional setup. In SMO, the training phase of SVM is iteratively reduced 

to smaller chunks producing an optimization problem solvable analytically [43]. Then SVM builds a 

model which assigns objects to classes aiming to keep categories as much divided as possible [44]. 
Multi-class problems are solved using one-against-one approach in this implementation [45]. 

Basically, being a linear classifier, SVM works with linearly separable features however feature 

vectors are not always linearly separable. This problem is overcome with kernel trick. SVM gives more 
successful results than other classifiers in many cases so long as proper kernels are selected [46]. By 

using kernel trick, the original input space is mapped into high dimensional space in which features are 

linearly separable. Polynomial, sigmoid, radial basis function (RBF), linear and Pearson vii function-
based universal kernel (PUK) are popular kernel types.  In this study, best performance is obtained with 

PUK and it is used as kernel function.  

 

                                                        

1 http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/Vote.html 
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2.3.3. Multilayer Perceptron (MLP) 

MLP is a class of feed-forward artificial neural network and it is useful especially for distinguishing 

data which are not linearly separable [35]. It consists of input, output and one or more hidden layers 
which are interconnected. Those layers are set with nodes called as neurons. Those neurons are 

connected with each other through certain weights and form a network topology. When a neuron is 

stimulated with an input signal bigger than threshold, it responds back by exciting its connected-
neighbors by using an activation function [46]. As training occurs, MLP learning takes place by 

changing the connection weights. The amount of the step-size weight change is determined by learning 

rate. In this study, learning rate is used as 0.3 and 3 hidden layers with 5, 10, 15 neurons in each of them 

are placed in the network. 

 

2.4. Performance Measurement 

Although the Physionet challengers defined some metrics based on defined weights for assessing 
rank of submissions [10], performance results are not computed and compared according to that scheme 

in this study. Therefore, our proposed method is not directly comparable with the competitors’. The 

performance results of classifiers, their ensembles and final combination of ensembles are shown and 
compared in the next section. 

True positive (TP) and true negative (TN) metrics are the number of correct positive and negative 

predictions respectively. False positive (FP) is the number of misclassified positive predictions and false 

negative (FN) represents the number of negative predictions which are actually positive. Those values 
are used to build confusion matrix and many other performance evaluators are extracted from them. The 

ratio of total number of correct predictions to the total number of input samples is called accuracy. Its 

formula is given in Equation 7. To get a positive assessment, accuracy is the first parameter to check 
however only using accuracy may be misleading [47]. The imbalanced data sets having significant 

disparity between distinct classes lead to deceptive conclusions about classifiers when only accuracy 

results are considered.  

Precision and recall are two metrics used to overcome class-imbalance problem. Precision, which is 
also called positive predictive value, is the ratio of number of correct predictions to the number of 

predictions. A low precision indicates high false positives with respect to true positives. On the other 

hand, recall is the ratio of number of correct predictions to the total number of the actual members of 
the class in the question. The effect of high false negative presence results in low recall scores.  

F1 score, which is also called F-measure, is used to balance between precision and recall [48] and it 

is calculated by taking harmonic mean of them. Its formula is given in Equation 10. Combining precision 
and recall into a single measure of the performance, F1 score is commonly used but those three metrics 

are criticized because of the fact that true negatives are ignored [49]. Precision, recall and F1 score are 

calculated for both normal and abnormal classes in order to pay attention to the negatives and to obtain 

a better estimation of overall performance. Weighted averages of those two measurements are also 
calculated. 

 

Accuracy⁡ =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          (7) 

Precision⁡ =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (8) 

Recall⁡ =
𝑇𝑃

𝑇𝑃+⁡𝐹𝑁
           (9) 

F1⁡Score =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
          (10) 
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3. Experiment Results 

Using heart sound database of PhysioNet/CinC 2016 challenge, a comparative study between kNN, 
SVM, MLP classifiers and their ensembles is carried out. Three kinds of feature sets are investigated 

and ten-fold cross validation is applied. The proposed final ensemble classifier is obtained by combining 

predictions of the ensemble classifiers for all feature vectors. 

Table 2 shows experiment results of kNN, SVM and MLP classifiers with three feature sets DWTBF, 
MFCCBF and TDBF. Best accuracy among them belongs to SVM using MFCCBF. Best normal class 

precision is obtained by MLP using MFCCBF while best abnormal class precision is reached by SVM 

using DWTBF. But best weighted precision score is 0.90 reached by kNN using MFCCBF and SVM 
using MFCCBF. Best normal class recall score is obtained by SVM using DWTBF however worst 

abnormal class recall is seen in this experiment as well. Best abnormal class recall is obtained by MLP 

using MFCCBF. In two experiments, kNN using MFCCBF and SVM using MFCCBF, 0.90 is reached 
for weighted recall score outperforming the rest. Finally, best normal class F1 score is obtained by kNN 

using MFCCBF and SVM using MFCCBF. Best abnormal class F1 score is reached in three different 

experiments: kNN using MFCCBF, SVM using MFCCBF and MLP using MFCCBF. Again, best 

weighted F1 score is obtained in two of those experiments: kNN using MFCCBF and SVM using 
MFCCBF. Considering the overall experiment results, the best feature set among the feature vectors is 

appeared to be MFCCBF and best classifier algorithm is seen as SVM. 

Performance results of ensemble of kNN, SVM and MLP classifiers with different feature vectors 
and proposed method are given in Table 3. According to those results, most of the criteria (accuracy, 

abnormal class precision, weighted average of precisions, normal class recall, weighted average of 

recalls, normal class F1 score, abnormal class F1 score and weighted average of F1 scores) favor the 
proposed method. Only best normal class precision and abnormal class recall scores are obtained by 

single level ensemble classifier using MFCCBF. The single level ensemble classifiers using the other 

feature vectors (TDBF and DWTBF) are left behind the one using MFCCBF. When we compare the 

performance results between the best ensemble with the best singular classifier, the overall performance 
is slightly improved. Building an ensemble from the team of ensemble classifiers improves the overall 

performance further.  

 

Table 2. Classifiers’ accuracy percent (Acc.), normal class precision (Pre.N.), abnormal class 

precision (Pre.A.), weighted precision (Pre.W.), normal class recall (Rec.N.), abnormal class recall 

(Rec.A), weighted recall (Rec.W.), normal class F1 score (F.N.), abnormal class F1 score (F.A.) and 

weighted F1 score (F.W.). Best result of each row is in bold. 

Method kNN SVM MLP 

Features: DWTBF MFCCBF TDBF DWTBF MFCCBF TDBF DWTBF MFCCBF TDBF 

Acc(%) 85.00 90.06 88.21 80.80 90.12 87.28 83.40 88.92 88.00 

Pre.N. 0.87 0.92 0.91 0.81 0.91 0.91 0.86 0.93 0.90 

Pre.A. 0.74 0.83 0.75 0.91 0.85 0.71 0.65 0.74 0.77 

Pre.W. 0.84 0.90 0.88 0.83 0.90 0.87 0.82 0.89 0.87 

Rec.N. 0.96 0.96 0.95 1.00 0.97 0.93 0.94 0.93 0.96 

Rec.A. 0.42 0.65 0.64 0.07 0.64 0.65 0.42 0.72 0.59 

Rec.W. 0.85 0.90 0.88 0.80 0.90 0.87 0.83 0.89 0.88 

F.N. 0.91 0.94 0.93 0.89 0.94 0.92 0.90 0.93 0.93 

F.A. 0.53 0.73 0.69 0.13 0.73 0.68 0.51 0.73 0.67 

F.W. 0.83 0.90 0.88 0.74 0.90 0.87 0.82 0.89 0.87 
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Table 3. Performances of ensemble classifiers with discrete wavelet transform based features 

(DWTBF), Mel-Frequency Cepstral Coefficients based features (MFCCBF) and time domain based 

features (TDBF): accuracy percent, normal class precision (Pre.N.), abnormal class precision (Pre.A.), 
weighted precision (Pre.W.), normal class recall (Rec.N.), abnormal class recall (Rec.A), weighted recall 

(Rec.W.), normal class F1 score (F.N.), abnormal class F1 score (F.A.) and weighted F1 score (F.W.). 

Best result of each row is in bold. 

 Ensemble Classifier 

with DWTBF 

Ensemble Classifier 

with MFCCBF 

Ensemble Classifier 

with TDBF 

Proposed 

Approach 

Acc.(%) 84.88  90.56 88.46 90.93 

 Pre.N. 0.86 0.92 0.91 0.91 

Pre.A. 0.77 0.84 0.76 0.89 

Pre.W. 0.84 0.90 0.88 0.91 

Rec.N. 0.97 0.97 0.95 0.98 

Rec.A. 0.37 0.67 0.65 0.64 

Rec.W. 0.85 0.90 0.89 0.91 

F.N. 0.91 0.94 0.93 0.94 

F.A. 0.50 0.74 0.70 0.74 

F.W. 0.83 0.90 0.88 0.91 

 

 

4. Conclusions 

Interpreting heart sounds and detecting murmurs accurately is a challenging and interesting task. This 

study presented an original solution for this problem by using public PCG database provided by 

Physionet/CinC 2016. The proposed method consists of signal preprocessing, feature engineering and 
classification phases. In the preprocessing phase, the PCG signals were normalized by subtracting their 

mean and dividing by their standard deviation. Then 38 features were extracted from those signals by 

using time domain statistical characteristics of the signal, MFCC and DWT detail and approximation 

coefficients. Those features were grouped into three sets in order to form three distinct feature vectors.  

As a novel contribution, Karcı entropy is used for the first time as feature in heart sound 

classification. Comprising Shannon entropy, its formula is suited for giving more successful results 

depending on its alpha parameter. When it is 1.0, Shannon entropy works exactly same as Karcı entropy. 
This parameter is calculated in a fuzzy logic approach and gets significant values depending on the 

problem set. 

The classification phase of the proposed method was based on a three-level approach during which 
effectiveness of feature vectors were compared. During the first level, well-known algorithms kNN, 

SVM and MLP were used one by one with all feature vectors. Then in the second level, ensemble of 

those classifiers was formed and tested. This ensemble classifier was run three times with three distinct 

feature vectors. Lastly, in the third level, a final ensemble classifier was built from those three trials. 
Three sets of predictions obtained from ensemble classifier at the second level were combined by using 

majority vote principle and final classification decisions were brought forward by this approach. This 

study also targeted to compare the performances of kNN, SVM and MLP. Moreover, distinct feature 
vectors’ effect on the classification performance was compared as well. Overall accuracy, precision, 

recall and f1 scores increased at each level of the classification and best results were obtained by the 

final ensemble classifier.  
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