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Abstract. The derivative concept was defined by Newton and Leipzig. After these scientists, there are many 

approaches about the order of derivative, since derivative defined by Newton and Leipzig considered as order of 

1. So, imaginary axis vanishes and the result of derivation is a real number / function. However, in case of other 

orders of derivations, the obtained results have real and imaginary axises, since complex numbers and derivative 

have directions and magnitudes. This paper includes these relationships by using fractional order derivative 

𝑲𝒇(𝒕)𝜶
𝝏  defined by Karcı. 
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1. Introduction 
The fractional calculus (variational calculus) is a three centuries old concept and one of the branch 

of the fractional calculus is fractional order derivatives. The fractional order derivative concept was 

defined by many scientists such as Euler, Caputo, Riemman-Lioville, etc. (Das,2011). There is an idea 

such that the fractional calculus may depict the behaviours of nature almost in real behaviours of nature 

(Das,2011). 

The classical approach for derivative (Newtonian Derivative) is a derivative whose result finds out 
the real axis and vanishes the imaginary axis, since derivative has direction and magnitude and complex 

number has direction and magnitude. Due to this case, the results of derivative should be complex 

numbers. 

The Fractional Order Derivative (FOD) methods in the literature can be considered as different 
approaches instead of classical derivatives. In this point of view, Karcı defined fractional order 

derivative in a different manner and gave some properties of fractional order derivative (Karcı, 2013a; 

Karcı, 2013b; Karcı, 2015a; Karcı, 2015b; Karcı, 2015c; Karcı, 2015d; Karcı, 2015e; Karcı, 2016a; 

Karcı, 2016b; Karcı, 2017). 

The definition developed by Karcı can be given as in Definition 1. 

 
 

Definition1: Assume that f(t):R→R is a function, αR and L(.) be a L’Hospital process. The 

K  of f(t) is (taken from Karcı, 2013a; Karcı, 2013b) 
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This new definition for fractional order derivative was derived due to the many deficiencies of 

definitions for fractional order derivatives in literature. The obtained derivative is equal to Newtonian 

derivative in case of =1, and in other cases, a non-linear operator exists. 

2. Relationship between K  and Complex Numbers 

It is known that derivative has direction and magnitude. The complex numbers also have 

directions and magnitudes. Due to this case, the following theorem can be derived. 

 

Theorem 1: Assume that f(t) : RR is a positive real function and f(t)=t2n, then 𝐾𝑓(𝑡)𝛼
𝜕  : RR 

is a real function for even denominator in case of 𝛼 =
𝜇

𝜏
. 

 

Proof: The FOD defined by Karcı, K has an exponent whose values can be any numbers. First 

of all, this value can be considered as a rational number. In order to verify this case, assume that  𝛼 =
𝜇

𝜏
 

and  0. Assume that f(t)0  is a non-negative function and the denominator  is an even number:  In 

this case, 

𝐾𝑓(𝑡) = (
𝑓(𝑡)

𝑡
)

𝜇

𝜏
−1 𝑑𝑓(𝑡)

𝑑𝑡
= (

𝑓(𝑡)

𝑡
)

𝜇−𝜏

𝜏 𝑑𝑓(𝑡)

𝑑𝑡𝛼
𝜕 = √(

𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜏 𝑑𝑓(𝑡)

𝑑𝑡
. 

where 
𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅. Any complex number can be illustrated as x+iy where x,yR. There are two the 

resultant number (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

𝜏 𝑑𝑓(𝑡)

𝑑𝑡
 as follow:  

a) t0 : (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

𝜏
∈ {0}𝑅+, so,  (

𝑓(𝑡)

𝑡
)

𝜇−𝜏

𝜏 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅 and y=0. 

b) t<0 : (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

∈ 𝑅−, so,  (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

𝜏 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝐶  

 

Example 1: Assume that f(t)=t2, tR. The result is shown in Fig.1 and the denominator of order of 
FOD is even. 

𝐾𝑓(𝑡) =𝛼
𝜕 (

𝑡2

𝑡
)

𝛼−1

2𝑡 = (
𝑡2

𝑡
)

𝜇
𝜏

−1

2𝑡 = 𝑡
𝜇
𝜏

−12𝑡 = 2𝑡
𝜇
𝜏  

 

 
Figure 1. The results of FOD for a positive function in case of even denominator. 
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Example 2: x,y,R, f(x,y)=x2y2+x2+y2 where x,y≥0. f(x,y) is a positive function for all values of 
positive x and y. Fig.2(a) shows f(x,y) for positive values of x and y. Fig.3(a) and Fig.3(b) show that  

𝐾𝑓(𝑥, 𝑦) =
𝐾𝑓(𝑥,𝑦)𝛼

𝜕  

𝐾(𝑥)𝛼
𝜕 = 2𝑥𝑦2 + 2𝑥𝛼

𝜕 .  Fig.3(a) and Fig.3(b) show that real parts are different from zero 

and imaginary parts are zero 𝛼 =
𝜇

𝜏
=

1

2
,   𝛼 =

𝜇

𝜏
= −

1

2
, respectively. Fig.2(b) shows f(x,y) for x,y<0. 

Fig.4(a) shows that real part of derivative is zero and imaginary part is different from zero where 𝛼 =
1

2
. 

Fig.4(b) shows the imaginary part of derivative for 𝛼 = −
1

2
 where real part is zero. Fig.4(c) shows that 

real part of derivative is zero and imaginary part is seen in figure where 𝛼 =
5

2
. Fig.4(d) shows that real 

part is zero and imaginary part is not zero for 𝛼 = −
5

2
.  This example reveals the relationships between 

derivative and complex numbers. 

 

 
(a) 

 
(b) 

 

Figure 2. , f(x,y)=x2y2+x2+y2 (a) f(x,y) for x,y≥0, (b) f(x,y) for x,y<0. 

 

 
(a) 

 
(b) 

Figure 3. Derivatives of f(x,y)=x2y2+x2+y2, x,y≥0 for 𝛼 =
𝜇

𝜏
=

1

2
 and 𝛼 =

𝜇

𝜏
= −

1

2
. 
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(a) 

 
(b) 

Figure 4. Derivatives of f(x,y)=x2y2+x2+y2, x, y<0. (a) imaginary part of derivative for 𝛼 =
1

2
 , (b) 

imaginary part of derivative for 𝛼 = −
1

2
 . 

 

 
(c) 

 
(d) 

Figure 4. Derivatives of f(x,y)=x2y2+x2+y2, x, y<0. (c) imaginary part of derivative for 𝛼 = −
1

2
 , (d) 

imaginary part of derivative for 𝛼 = −
5

2
. 

 

Theorem 2: Assume that f(t) : RR is a positive real function, then 𝐾𝑓(𝑡)𝛼
𝜕  : RR is a real 

function for odd denominator in case of 𝛼 =
𝜇

𝜏
. 

 

Proof: Assume that f(t)0  is a non-negative function and the denominator  is an odd number:  

In this case, 

𝐾𝑓(𝑡) = (
𝑓(𝑡)

𝑡
)

𝜇
𝜏

−1 𝑑𝑓(𝑡)

𝑑𝑡
= (

𝑓(𝑡)

𝑡
)

𝜇−𝜏
𝜏 𝑑𝑓(𝑡)

𝑑𝑡𝛼
𝜕 = √(

𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜏 𝑑𝑓(𝑡)

𝑑𝑡
 

 

where 
𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅 and  is an odd number so, √(

𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇

∈ 𝑅, since assume that f(t) is positive 

function and the result is also a positive. The complex number is two-tuple structure such as (x,y) 

where complex number C=x+iy where x,yR. In this case, y=0, so resultant number is equal to 

a= √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
 , not a complex number and result is positive. There are two cases: 
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a) t0  and - is even: (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

∈ 𝑅+ ∪ {0}, so, √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅+ ∪ {0}. 

b) t<0  and - is even: (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

≥ 0, so, √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅+ ∪ {0}  

 

 Example 3: Assume that f(t)=t2, tR. The result is shown in Fig.3. The denominator of order of 
FOD is odd. 

 
 

𝐾𝑓(𝑡) =𝛼
𝜕 (

𝑡2

𝑡
)

𝛼−1

2𝑡 = (
𝑡2

𝑡
)

𝜇
𝜏

−1

2𝑡 = 𝑡
𝜇
𝜏

−12𝑡 = 2𝑡
𝜇
𝜏 = 2√𝑡𝜇𝜏

 

 

 

 
Figure 5. The results of FOD for a positive function in case of odd denominator. 

 

Example 4: x,y,R, f(x,y)=x2y2+x2+y2 where x,y≥0. f(x,y) is a positive function for all values of 

x and y. Fig.6(a) and Fig.6(b) show that the imaginary parts of derivatives are zero and real parts are 

different from zero where x,y≥0,  𝛼 =
1

3
,   and 𝛼 = −

1

3
 , respectively. Fig.6(c) shows that real part 

of derivative is different from zero for 𝛼 =
1

3
, x,y<0. Fig.d(d) shows that real part of derivative is 

different from zero for 𝛼 = −
1

3
, x,y<0.  All results are real. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. f(x,y)=x2y2+x2+y2. (a) real part of derivative for 𝛼 =
1

3
, and x,y≥0, (b) real part of derivative 

for 𝛼 = −
1

3
, and x,y≥0, (c) real part of derivative for 𝛼 =

1

3
, and x,y<0, (d) real part of derivative for 

𝛼 = −
1

3
, and x,y<0. 

 

 

Theorem 3: Assume that f(t) : RR is a negative real function, then 𝐾𝑓(𝑡)𝛼
𝜕  : RR is a complex 

function for even denominator in case of 𝛼 =
𝜇

𝜏
. 

 

Proof: Assume that f(t) is a negative function and  is an even number: 

𝐾𝑓(𝑡) = (
𝑓(𝑡)

𝑡
)

𝜇
𝜏

−1 𝑑𝑓(𝑡)

𝑑𝑡
= (

𝑓(𝑡)

𝑡
)

𝜇−𝜏
𝜏 𝑑𝑓(𝑡)

𝑑𝑡𝛼
𝜕 = √(

𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
 

The even exponent of any negative number is positive. 

a) t0  and - is odd: (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

∈ 𝑅−, so, √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝐶. 

b) t<0  and - is odd: (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

≥ 0, so, √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅+ ∪ {0}  

 

 

Example 5: Assume that f(t)=-t2, tR. The result is shown in Fig.3 and 

𝐾𝑓(𝑡) =𝛼
𝜕 (

−𝑡2

𝑡
)

𝛼−1

(−2𝑡) = (
−𝑡2

𝑡
)

𝜇
𝜏

−1

(−2𝑡) = (−𝑡)
𝜇
𝜏

−1(−2𝑡) 

Fig.3 illustrates that the imaginary part is different from zero, that’s why, the resultant function is a 

complex function. 

 
Figure 7. The results of FOD for a negative function in case of even denominator. 
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Example 6: Assume that f(x,y)=-x2y2-x2-y2 is a negative functions for all values of x and y. Fig.8(a) 

shows f(x,y) for non-negative values of x and y. Fig.8(b) shows f(x,y) for negative values of x and y. 

 

 

 
(a) 

 
(b) 

Figure 8. f(x,y)=-x2y2-x2-y2 where (a) x,y≥0, (b) x,y<0. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. f(x,y)=-x2y2-x2-y2 where (a) imaginary part of f(x,y) is shown and real part is zero where 

𝛼 =
1

2
, and x,y≥0, (b) imaginary part of f(x,y) is shown and real part is zero where 𝛼 = −

1

2
, and 

x,y≥0, (c) real part of f(x,y) is shown and imaginary part is zero where 𝛼 =
1

2
, and x,y<0, (d) real part 

of f(x,y) is shown and imaginary part is zero where 𝛼 = −
1

2
, and x,y<0. 
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x,yR, f(x,y)=-x2y2-x2-y2 is a negative function. Fig.9(a) shows that the results of fractional order 

derivative is a complex number for 𝛼 =
1

2
, and x,y≥0. Fig.9(b) shows that the results of fractional order 

derivative of f(x,y) is a complex number where 𝛼 = −
1

2
 , and x,y≥0. Fig.9(c) shows that the result of 

fractional order derivative of f(x,y) is a real number where 𝛼 =
1

2
 , and x,y<0. Fig.9(d) shows that real 

part of derivative is different from zero and imaginary part is zero where 𝛼 = −
1

2
 , and x,y<0. This 

example also illustrates that complex numbers and fractional order derivatives have relationships. 

 

Theorem 4: Assume that f(t) : RR is a negative real function, then 𝐾𝑓(𝑡)𝛼
𝜕  : RR is a complex 

function for odd denominator in case of 𝛼 =
𝜇

𝜏
. 

 

a) Assume that f(t) is a negative function and  is an odd number: 

𝐾𝑓(𝑡) = (
𝑓(𝑡)

𝑡
)

𝜇
𝜏

−1 𝑑𝑓(𝑡)

𝑑𝑡
= (

𝑓(𝑡)

𝑡
)

𝜇−𝜏
𝜏 𝑑𝑓(𝑡)

𝑑𝑡𝛼
𝜕 = √(

𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜏 𝑑𝑓(𝑡)

𝑑𝑡
 

Any odd power of a negative number concludes in complex number. It can easily be seen that 
𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅, 

the Newtonian derivative of any real function is also a real function. If - is an even number, then 

(
𝑓(𝑡)

𝑡
)

𝜇−𝜏

 is positive so, √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜏

∈ 𝑅. If - is an odd number, and then (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

 is negative so, 

√(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜏

∈ 𝐶 

The even exponent of any negative number is positive. 

a) t0: (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

∈ 𝑅−, so, √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅. 

b) t<0: (
𝑓(𝑡)

𝑡
)

𝜇−𝜏

∈ 𝑅−, so, √(
𝑓(𝑡)

𝑡
)

𝜇−𝜏𝜇 𝑑𝑓(𝑡)

𝑑𝑡
∈ 𝑅  

 

Example 7: Assume that f(t)=-t2, tR. The result is shown in Fig.4 and 

𝐾𝑓(𝑡) =𝛼
𝜕 (

−𝑡2

𝑡
)

𝛼−1

(−2𝑡) = (
−𝑡2

𝑡
)

𝜇
𝜏

−1

(−2𝑡) = (−𝑡)
𝜇
𝜏

−1(−2𝑡) 

Fig.10 illustrates that the imaginary part is different from zero that is why; the resultant function is a 

complex function. 

 
 

Figure 10. The results of FOD for a negative function in case of even denominator (α=1/5). 
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The derivative of any function has magnitude and direction, and complex numbers have 

magnitudes and directions. Due to this case, there should be a relationship between derivative and 

complex numbers. 𝐾𝑓(𝑡)𝛼
𝜕   verifies these relationships. 

 

Example 8: x,yR, f(x,y)=-x2y2-x2-y2 is a negative function for all values of x and y. The 
denominator of order of derivative was selected as an odd number. Figures of f(x,y) for positive and 

negative values of x and y are seen in Fig.8(a) and Fig.8(b), respectively. 

Fig.11(a) illustrates that the real part of fractional order derivative (Karcı derivative) for 𝛼 =
1

5
 and 

x,y≥0 is different from zero and imaginary part is zero. Fig.11(b) depicts the real part of fractionalorder 

derivative for 𝛼 = −
1

5
 and x,y≥0 is different from zero and imaginary part is zero. Fig.11(c) illustrates 

that the real part of fractional order derivative for 𝛼 = −
1

5
 and x,y<0 is different from zero and imaginary 

part of derivative is zero. Fig.11(d) depicts that the real part of fractional order derivative for 𝛼 =
7

5
 and 

x,y<0 is different from zero and imaginary part of derivative is zero. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. f(x,y)=-x2y2-x2-y2 where (a) real part of derivative for 𝛼 =
1

5
 and x,y≥0, (b) real part of 

derivative for 𝛼 = −
1

5
 and x,y≥0, (c) real part of derivative for 𝛼 = −

1

5
 and x,y<0, (d) real part of 

derivative for 𝛼 =
7

5
 and x,y<0. 

 

Theorem 5: Assume that 𝐾𝑓(𝑡)𝛼
𝜕  is fractional order derivative of real function f(t), 𝐾𝑓(𝑡)𝛼

𝜕  is a 

complex function whatsoever, f(t) has single term. 

 



51 

 

Proof: It is known that any polynomial relation/function can be emphasized as an exponential 

relation/function. The Taylor series for exponential, sinus and cosinus are as follow. 

𝑒𝜃 = 1 +
𝜃

1!
+

𝜃2

2!
+

𝜃3

3!
+ ⋯ 

𝑠𝑖𝑛𝜃 = 𝜃 −
𝜃3

3!
+

𝜃5

5!
− ⋯ 

𝑐𝑜𝑠𝜃 = 1 −
𝜃2

2!
+

𝜃4

4!
− ⋯ 

So, 

𝐾𝑓(𝑡)𝛼
𝜕 = 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 = (1 −

𝜃2

2!
+

𝜃4

4!
−) + 𝑖 (𝜃 −

𝜃3

3!
+

𝜃5

5!
− ⋯ ) 

                                  =x+iy  

 
 

 

 

Miscellaneous Examples: This section includes some mixed examples for revealing the 

relationships between complex numbers and fractional order derivatives defined by Karcı ( 𝐾𝑓(𝑥, 𝑦)𝛼
𝜕 ). 

The Newtonian derivative has order as 1 and the imaginary part vanishes. When the derivative gets order 

different from 1, the imaginary part reveals. In order to illustrates these cases. Two examples for positive 

and negative functions were used and their details were given below. 

 

Example 9: x,y,R, f(x,y)=x2y2+x2+y2 where -5≤x,y≤5. f(x,y) is a positive function for all values 
of x and y (Fig.12). Fig.13(a)  and Fig.13(b) show that real and imaginary parts of derivative of f(x,y) 

for 𝛼 =
𝜇

𝜏
=

1

2
 where  𝐾𝑓(𝑥, 𝑦) =

𝐾𝑓(𝑥,𝑦)𝛼
𝜕  

𝐾(𝑥)𝛼
𝜕 = 2𝑥𝑦2 + 2𝑥𝛼

𝜕 .  Fig.13(c)  and Fig.13(d) show that real and 

imaginary parts of derivative of f(x,y) for 𝛼 =
𝜇

𝜏
= −

1

2
. Fig.13(e)  and Fig.13(f) show that real and 

imaginary parts of derivative of f(x,y) for 𝛼 =
𝜇

𝜏
=

7

2
. Fig.13(g)  and Fig.13(h) show that real and 

imaginary parts of derivative of f(x,y) for 𝛼 =
𝜇

𝜏
= −

7

2
. 

 

 
Figure 12. f(x,y)=x2y2+x2+y2 where -5≤x,y≤5. 

 

https://www.google.com/search?safe=strict&rlz=1C1CHBD_trTR874TR874&sxsrf=ACYBGNQFgiVEhYPWMjYl0DezEwdCfUFWkA:1576969750527&q=miscellaneous&spell=1&sa=X&ved=2ahUKEwjx27SO7sfmAhWYSBUIHaSjAw0QkeECKAB6BAgOECo
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Figure 13. f(x,y)=x2y2+x2+y2, -5≤x,y≤5, and its fractional order derivatives. 
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3. Conclusions 

𝐾𝑓(𝑡)𝛼
𝜕  is a non-linear operator, since most of the events in nature are not linear in their nature, 

so this derivative can model events more realistic than Newtonian derivative. In this paper, the aim is to 

finds out the relationships between FOD and complex numbers. It is a natural logic, since complex 
numbers and derivative are vectorial magnitudes. 
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