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Abstract— We propose a real-time image matching 

framework, which is hybrid in the sense that it uses both hand-

crafted features and deep features obtained from a well-tuned 

deep convolutional network. The matching problem, which we 

concentrate on, is specific to a certain application, that is, 

printing design to product photo matching. Printing designs are 

any kind of template image files, created using a design tool, thus 

are perfect image signals. For this purpose, we create an image 

set that includes printing design and corresponding product 

photo pairs with collaboration of an actual printing facility. 

Using this image set, we benchmark various hand-crafted (SIFT, 

SURF, GIST, HoG) and deep features for matching performance. 

Various segmentation algorithms including deep learning based 

segmentation methods are applied to select feature regions. 

Results show that SIFT features selected from deep segmented 

regions achieves up to 96% product photo to design file matching 

success in our dataset. We propose a framework in which deep 

learning is utilized with highest contribution, but without 

disabling real-time operation using an ordinary desktop 

computer.  
· 

Index Terms— image matching, hand-crafted features, deep 

features, semantic segmentation, product image processing 

 

I. INTRODUCTION 

MAGE MATCHING is a broad title that covers or partially 

relates  to various topics among a number of different 

computer vision problems, namely image-based localization, 

multi-view 3D reconstruction, structure-from-motion, image 

retrieval, tracking, just to name a few. This title may refer to 

finding a transformed version of an image [1], or may refer to 

a different version of the problem, such as finding an image 

with a similar semantic context [2]. Regardless of the problem 

definition, image matching boils down to a simple statement: 

finding a similarity model between (at least) two images, 

which would satisfy the pairings for a given image set. 

The algorithms proposed under this title in recent years can 
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be mainly split into two principle categories. The first 

category consists of approaches that utilize hand-crafted 

representations. Among these methods, the bag-of-visual-

words (BoVW) algorithm [3] proved to be very successful, 

irrespective of the type of the hand-crafted feature used, and is 

still the state-of-the-art approach due to its flexibility, 

compactness and speed. 

However, as a part of the growing wave of interest on deep-

learning-based methods, a second category of approaches 

recently focus on image matching using convolutional neural 

networks (CNN) [4]. The strength of these methods comes 

from the abstract features that merge at the deeper layers of 

CNNs [5]. The earlier approaches of this category [6-9] 

performs particularly good at problems like image category 

classification, object detection and/or localization, mainly 

because of their capability to convolve abstract features into 

image categories or object definitions. There are also attempts 

with promising results, which aim at transferring pre-trained 

and well-tuned CNNs into image retrieval frameworks [10, 

11]. Nonetheless, these network structures are not well-suited 

to match a given image to its pair, since they use fully 

connected layers that lead to a classification layer (such as 

soft-max). This final layer is used to classify the extracted 

abstract features into object categories. Therefore, their 

structure is not designed with the purpose of finding pairs. 

Very recently a new CNN structure, namely the Siamese 

network (SN), has been proposed specifically for the problem 

of image matching [12]. SNs can learn feature spaces that map 

similar image pairs close to each other and dissimilar image 

pairs with a selective distance, by using labelled pairs. This 

approach has also been successfully applied to similar 

problems that require an image-to-image matching, such as 

face recognition [13] or aerial-to-ground image matching [14]. 

SNs improve matching performance dramatically, however 

they come up with two main drawbacks. Firstly, they 

necessitate the creation of a large-scale image set, because in 

order to span the entire space of possible transformations from 

the original image to the image to be matched, a massive 

number of image pairs are required. Such an image set 

collection and annotation effort is extremely expensive and 

usually, industrially impracticable. Secondly, these networks 

make a separate full forward deep CNN run for each candidate 

image in the image set, thus are slow even with dedicated 

hardware, such as a GPU. 

Deep learning is a powerful tool. In less than a decade, 

nearly all vision problems shifted to CNN domain. 
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Nevertheless, it still comes with a price. As the layers of a 

CNN get deeper, the hardware requirements for real-time 

operation become more and more expensive. We still don’t 

have a mobile solution, which may replace the high-cost and 

power-hungry GPUs that allow real-time deep learning 

operations. And when it comes to the problem of image 

matching, our best solution yet, namely the Siamese networks 

architecture, require massive training sets and forward-run for 

all possible candidate images. In conclusion we still need 

ingenious solutions for real-time, operation-specific and 

affordable image matching frameworks. 

A. Problem Definition and the Proposed Solution 

In this paper, we study a particular version of the image 

matching problem, in which we match printing design files to 

product photos. Printing designs are any kind of template 

image files, created using a design tool and used as templates 

for printing a flyer, banner, poster, etc. These files are 

computer generated, thus they possess no signal-based 

deficiencies like noise or optic blur. Most of them are in 

vector format, hence, are resolution-free. 

On the other hand, photographs of a printed product suffer 

many unwanted effects, such as uncontrolled shooting angle, 

uncontrolled illumination, occlusions, printing deficiencies in 

colour, camera noise, optic blur, etc. Matching them to their 

original design files requires learning the unknown 

transformation that the photographing action creates. This 

transformation is not deterministic by nature and is affected by 

predominant uncontrolled factors, such as the photographer, 

the camera or the background. 

A pictorial representation of our problem definition and 

system framework is depicted in Figure 1. In a sample 

scenario of our problem definition, an operator (or an 

automatic visualization system) shoots the photographs of 

some printed products by using a computation-limited device 

(such as a mobile phone, etc.). Then this device sends the 

product photo to a server machine, in which the photo is 

matched to its design file pair, in real-time. 

In order to solve this problem, we propose a real-time image 

matching framework, which is hybrid in the sense that it uses 

both hand-crafted features and deep features obtained from a 

well-tuned very deep CNN [6]. The hand-crafted or deep 

features are extracted only from a region that is designated by 

a fine-tuned deep CNN. In our framework, this feature region 

segmentation operation is the only “deep” operation that is 

applied on the product photo, thus we avoid running a deep 

CNN for each possible pair in the image set, as it is done for 

Siamese networks. This also prevents us from using expensive 

deep learning hardware (a GPU), but still permits us to 

provide real-time operation. By using the hand-crafted or deep 

features extracted from the deep segmented region, a BoW 

framework is utilized in order to find the correct image pair. 

In following section, we provide the details of the image set 

that includes printing design files and corresponding product 

photo pairs. Section 3 explains the deep learning experiments, 

which aim at solving feature region segmentation problem. 

Section 4 represents the BoVW framework, in which different 

hand-crafted and/or deep feature extraction, and product 

segmentation methods are benchmarked for optimal 

performance. Section 5 presents the experimental results, 

whereas the final section concludes the paper and gives 

directions for future work. 

 

II. DESIGN FILE - PRODUCT PHOTO PAIRS IMAGE SET 

The existing image sets [15-18] prepared for matching or 

retrieval problems in the literature are very diverse in 

category. They deal with different problems such as retrieving 

RAW images, medical images, outdoor images, or even 

satellite images. Consequently, for each image set the problem 

definition is different. That’s why, in order to provide a 

solution for our specific problem definition, we need to create 

a specific image set that includes printing design files and 

corresponding product photos. 

As a consequence, an image set creation effort was carried 

out. To this end, an operator took the photographs of 2000 

products at the production line. Product photos are images of a 

sample product (e.g. a flyer) usually stitched over a cargo box, 

which carries the other printed samples (Figure 2). The idea is 

to recognize this product (i.e. its ID) by matching the image of 

the sample on the cargo box with the design file at the server. 

 

Fig.1. Pictorial representation of our operational problem definition 
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For some of the products, there exists more than a single 

design file. A good example is a business card (Figure 1), 

which usually has information on both sides, and thus has two 

separate design files. In these cases, the problem definition is 

to match the product photo (which could be any face of the 

card) to one of the design files in the image set. Consequently, 

for the photographed 2000 product samples, 3458 design files 

were added to the image set. The operators were advised to 

shoot the product with a perpendicular angle so that the 

product (usually, but not necessarily rectangular in shape) 

would fit the image with uniform margins. However, this 

weak protocol was not successfully applied to all images, 

mainly because of human-errors, and it is difficult to say that 

the image set is rotation or scale controlled (please see Figures 

1 and 2).  

In addition to the product shooting and design file labelling 

efforts, an annotation effort was also carried out. For each 

photographed product the rectangle that encapsulates the 

product sample was annotated on the images (depicted as blue 

rectangles on Figure 2). These annotations will later be used as 

ground truth to our deep learning framework in the following 

section. 

In Figure 2, several examples from the image set are 

provided. As it can be seen from this figure, the set includes 

various types of background clutter, occlusions caused by 

packaging (tapes, chords, etc.), unwanted flash light 

reflections, non-uniform illumination, folding of the sample 

product and such. Thus, it is important that the matching 

solution we propose, must be robust to these types of effects. 

III. DEEP PRODUCT SEGMENTATION 

As mentioned in the introduction section, we apply a deep-

segmentation supported bag-of-visual-words method to match 

product photos to design files. This framework, with rigorous 

benchmarking, is provided in the next section. However, 

before we get into the details of our matching framework, in 

this chapter we present some methods for segmenting the 

product region in product photos using different deep CNN 

(DCNN) architectures. 

Finding the pixels that belong to a specific object category is 

known as semantic segmentation in the literature. The reader 

may refer to various surveys on this problem [19-26]. The 

literature involves hundreds of different approaches to 

semantic segmentation. The most common component among 

these approaches is undoubtedly the utilization of the abstract 

features of pre-trained DCNNs, by fine-tuning or transfer 

learning. 

In this paper, in order to segment the pixels of a product 

photo using deep learning, we adapt three different 

architectures: “FCN32s”, “FCN8s” and finally the proposed 

“VGG-Regression-Net”, as we name it. 
 

TABLE I 

VGG-REGRESSION-NET ARCHITECTURE 

Input Layer 224×224×3 RGB Image.  
(VGG default input image size) 

VGG Layers Pre-trained VGG layers (1 to N) 

New Layers (all fully connected) 

layer no. Number of Weights  Activation Vector Size 

N+1 j×k×d×256 1×1×256 

N+2 1×1×256×256 1×1×256 

N+3  1×1×256×900 1×1×900 

Output 900x1 vector (30x30 Segmentation Result) 

 

FCN32s and FCN8s are well-known fully convolutional 

semantic segmentation networks, designed specifically for this 

problem [27]. They are originally trained for 21 different pixel 

labels. The only difference between these two architectures is 

that FCN8s includes skip connections that allow feature 

concatenation between different hierarchies within the DCNN. 

In order to adapt these networks to our problem, the final 

deconvolutional layers are set to 2 labels depth (as “product” 

and “background”), and while this layer is being learned from 

scratch, all other convolutional layers in the networks are fine-

tuned during training. 

 

Fig.2. Sample product photos from the image set 
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A. VGG-Regression-Net Architecture 

In addition to these fully convolutional architectures, a 

regression network is also proposed for the same problem. To 

that end, the convolution layers of a pre-trained deep network, 

namely VGG-VD-19L [6] are transferred to the VGG-

Regression-Net (VGGRN) architecture. In VGGRN, fully 

connected layers are replaced and retrained. The aim is to 

assess whether a DCNN with fully connected layers, this time 

trained for regression of the segmentation mask, performs 

better than fully convolutional architectures, such as FCN32s 

or FCN8s. We hypothesize that the fully connected layers can 

provide inference for a global composition of the image, in 

which the FCNs could fail to achieve. 
TABLE II 

VGG-REGRESSION-NET EXPERIMENTS 

Layer NCC 
mean 

NCC 
std. 

VGG-Regression-Net Layer 09: Conv41 0.84 ±0.11 

VGG-Regression-Net Layer 10: Conv42 0.85 ±0.12 

VGG-Regression-Net Layer 11: Conv43 0.87 ±0.15 

VGG-Regression-Net Layer 12: Conv44 0.87 ±0.13 

VGG-Regression-Net Layer 13: Conv51 0.92 ±0.06 

VGG-Regression-Net Layer 14: Conv52 0.91 ±0.09 

VGG-Regression-Net Layer 15: Conv53 0.90 ±0.14 

VGG-Regression-Net Layer 16: Conv54 0.89 ±0.12 

VGG-Regression-Net Layer 16: Conv54 0.89 ±0.12 

FCN32s 0.87 ±0.10 

FCN8s 0.85 ±0.09 

 

The detailed architecture of the VGG-Regression-Net is 

provided in Table 1. Selected N number of pre-trained 

convolutinoal layers of VGG-VD-19L are transferred to this 

new architecture. The input layer of the original VGG-VD-

19L receives 244×224 pixels RGB images. So any product 

photo that is fed to this DCNN is first down-sampled into 

244×224 pixels resolution. 

In order to find the most suitable layer, multiple transfer 

learning experiments are run. Each separate experiment 

corresponds to creating a new DCNN by transferring “some” 

VGG-VD-19L layers and replacing new fully connected 

decision layers, so that we create the segmentation mask for 

the product in the product image. The weights of  the 

transferred layers are frozen during training. 

The ground truth of these masks are obtained by using the 

annotation mentioned in the previous section (please see the 

blue rectangles in Figure 2). For each product photo, a ground 

truth mask for which the pixels inside the rectangle region are 

1 and the rest (i.e. the background) 0, is created and used for 

training. The output of the final fully-connected layer consists 

of 900 components, which is actually the 30×30 pixels-sized, 

down-sampled version of the segmentation mask.  

B. Training the Deep Segmentation Architectures 

Although training the FCNs is a subject of semantic 

segmentation, training the proposed VGG-Regression-Net 

architecture is a regression problem. In order to train this 

DCNN, L1-norm operator is implemented as a loss function. 

Stochastic gradient descent (SGD) with momentum is utilized 

and a batch size of 16 images1 is used for batch normalization. 

 
1 Stochastic Gradient Descent (SGD) algorithm with momentum is employed, 
Initial Learning rate: 0.001, Weight Decay: 0.0004, Momentum: 0.91. 
MatConvNet [28] library is used for training the VGG-Regression-Net, while 
MATLAB Deep Learning Toolbox is utilized for training the FCNs. 

 

Fig.3. Segmentation results for VGG-Regression-Net Layer 13, namely Conv51 are depicted. For four different samples, the image (left), the annotated ground 
truth (middle) and the DCNN output (right) are shown. 

  

Fig.4. Segmentation results, as blue regions over the image, for FCN8s (leftmost three images) and FCN32s (rightmost three images) are depicted. FCNs may 
create segmentation regions with disconnected blobs, since their fully convolutional nature has no means to prevent such an output 
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For all architectures, data augmentation is applied by 

mirroring (×2), zooming (×2) and rotating (×4) the product 

photos, thus enlarging the image set by 16. For training the 

architectures 75% and for validation 15% of the image set are 

used. For this reason, each experiment is run 10 times, using a 

different subset for testing, which contains a separate 10% of 

the whole image set. 

Regarding the VGG-Regression-Net architecture, in order 

to find the layer that provides the best abstract features for 

segmentation, 8 different structures are trained, by cutting the 

VGG-VD-19L at 8 different layers, namely conv41, conv42, 

conv43, conv44, conv51, conv52, conv53 and conv54, which 

are the 9th to 16th layers of VGG-VD-19L. Thus for 8 layers 

of VGG-Regression-Net, FCN32s and FCN8s, separately for 

10 test sets, a total of 100 learning experiments are run. 

In order to benchmark the success of different VGG-

Regression-Nets and the FCNs architectures, normalized-

cross correlation (NCC) of the test results with the ground 

truth are calculated and averaged over the entire set, 

respectively for each experiment. In Table 2, for each 

experiment the mean and the standard deviation of the 

segmentation accuracy (i.e. normalized-cross correlation of 

test results with the ground truth) are calculated. The best 

results are obtained using the 13th layer of VGG-VD-19L for 

fine-tuning experiments, with an average of 0.92 normalized 

cross-correlation. FCNs both perform poor. 

We believe that this is mainly because of the fact that, the 

problem we solve here is not exactly semantic segmentation. 

The product photo to be segmented, a poster, a flyer et cetera 

is a composition of objects, not a single object. Our problem 

is about learning the pixels of a product inside an image, as a 

composition of objects. We believe that the reason why the 

VGG-Regression-Net architecture performed better compared 

to FCNs is mainly because, fully connected layers can learn 

the global composition of abstract features, whereas FCNs, 

with limited receptive fields, search for objects in local 

regions. Therefore, as seen in Figure 4, even disconnected 

blobs as segmentation results can be obtained for FCNs. 

In the rest of this paper, we examine the effect of these 

three different segmentation methods to our matching 

performance. For this purpose, each matching method is deep 

segmented by the two adapted FCNs and the best VGG-

Regression-Net experiment, which is obtained by using the 

abstract features from layer 13 (namely conv51). 

 

IV. IMAGE MATCHING FRAMEWORK 

As previously mentioned in the introductory sections, the 

aim of this study is to find a real-time solution to product 

photo and design file matching problem. For this purpose, we 

propose a framework with various benchmarking 

experiments. The proposed framework is hybrid in the sense 

that it fuses a conventional pattern recognition method that 

uses hand-crafted features with a deep segmentation 

technique. And while doing this, the study presents 

benchmarking of different methods, in order to correctly 

acknowledge the best performance for the given framework. 

In Figure 5, the high level depiction of our framework can 

be seen with the benchmarking processes we utilize. The 

matching is accomplished by using the BoVW method [3] 

together with a Naïve Bayes classifier. The main advantage of 

using BoVW is that it provides a fixed-length representation 

of the image, regardless of the number or type of features 

obtained from that image. Moreover, BoVW + Naïve Bayes 

online operation (testing) is extremely fast. It requires a 

relatively slower offline training phase, in which the features 

obtained from training set is clustered into N sets. But 

needless to say, this does not affect the real-time operation in 

our framework. Within the BoVW framework, two principle 

benchmarking efforts are carried out, first being the 

benchmarking for selection of the hand-crafted or deep 

features of BoVW and second being the benchmarking for the 

optimal number of clusters for BoVW. 

BoVW relies on the features obtained from a test image, 

which is a product photo in our case. The product photo does 

not only include the “product” but considerable background as 

well; ergo, it may be crucial to select the features only from 

the product region in the photo. For this purpose, as seen in 

Figure 5, another benchmarking effort for finding the product 

region is also carried out, using different segmentation 

 

Fig.5. The overall matching framework is depicted. The framework consists of four main blocks, namely segmentation, feature extraction, clustering and 
classification. 
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methods including the deep segmentation techniques 

explained in the previous section. 

In the following subsections, we explain each 

benchmarking effort separately, following their process order 

in the framework. Thus, we start with the segmentation 

benchmark. Then we delve into our results and carry out 

discussions on the optimum method. 

A. Segmentation Benchmark 

As mentioned above, selecting the features only from the 

product regions may dramatically affect the matching 

performance of a BoVW model. For this reason, in our 

experiments we utilize five product segmentation methods out 

of three categories and compare their results within the 

complete framework. We also include the case where no 

segmentation is carried out, so that we can clearly assess the 

contribution of a tested segmentation method. 

We categorize our tested segmentation strategies in three 

titles, namely manual segmentation, unsupervised 

segmentation and supervised segmentation. 

 

1) Manual Segmentation 

Manual segmentation is accomplished by the operator. As 

seen in Figure 1, the operator shoots the products with a 

mobile device and at this very moment, can manually segment 

the product region in the photo using the same mobile device. 

This is an unwanted scenario because it increases the 

operation time, which contradicts with the general purpose of 

the proposed system. However, we still choose to utilize this 

segmentation method in our framework, so as to see the effect 

of “perfectly” segmenting the product in a photo to our overall 

matching success and we regard this method as a ground truth 

for the segmentation step. In our image set we already have 

these manual annotations (please see Section 2 and Figure 2). 

 

2) Unsupervised Segmentation: Visual Saliency 

The first automatic segmentation method we utilize is an 

unsupervised method to find the product region in a photo. 

Unsupervised segmentation had been a very hot topic [29] 

before deep learning overwhelmingly manipulated the field 

with the idea of employing large-scale data to any problem. 

Since, for the sake of cheap and fast operation, we try to avoid 

deep operation as much as we can, we select a visual saliency-

based method as our unsupervised segmentation method. 

For this purpose, we use Graph-based Visual Saliency 

(GBVS) method, which is a bottom-up visual saliency model. 

By creating Markov chains among image pixels, the GBVS 

algorithm calculates saliency values from equilibrium 

distributions over pixel map locations [30]. Although it is not 

a direct segmentation technique, visual saliency is being used 

as an objectness measure and is utilized for segmenting 

objects in an image [31]. In Figure 6, a sample result on a 

product photo can be seen. Firstly, the saliency heat map is 

calculated. Then by using a constant threshold (0.11 in our 

experiments), the object region is segmented. In the same 

figure, the segmented object can be seen in the rightmost 

image. 

There are various methods to segment an object from an 

image without any prior information, in other words in an 

unsupervised manner. The reason we choose to use GBVS is 

simply because of its speed-accuracy trade-off [31]. In an 

extended study, it is possible to search for the most optimum 

method to segment an object in an unsupervised manner, 

however we find this effort beyond the scope of this study. 

 

3) Supervised Segmentation: Deep Learning 

Supervision is simply utilizing domain-specific data. Thus, 

compared to any unsupervised method, it is more susceptible 

to over-fitting. However, if there is sufficient training data, 

supervised methods are preferable most of the time. In order 

to segment the product in a supervised manner, we utilize the 

three deep segmentation methods, as explained in Section 3. 

B. Image Features Benchmark 

The general idea of BoVW is very simple: “representing an 

image as a fixed-length set of features”. The so-called features 

consist of keypoints and descriptors. Keypoints denote the 

salient locations in the image, ideally invariant to 

transformations. Descriptor is the description “around” the 

keypoint. BoVW use both keypoints and descriptors to 

construct vocabularies and represent each image as a 

frequency histogram of features that are in the image. 

Similarity measures to a test image can be calculated using 

these frequency histograms, and thus a classification can be 

performed. 

For a BoVW framework, the most important question is 

obviously “which feature/descriptor to use”. Depending on the 

problem definition, imaging modality, performance 

requirements and computational budget, different methods 

can be used. For a comparison of local feature detectors and 

descriptors for visual object categorization, the reader may 

refer to [32]. In this study we employ 5 popular features, 

namely, GIST [33], histogram of gradients (HoG) [34], SIFT 

[35], SURF [36], and deep features, which are obtained using 

a special CNN layer, namely the Spatial Pyramid Pooling 

(SPP) Layer [37]. 

Among the aforementioned five features types, SIFT [35] 

and SURF [36] are, by definition, local; thus they are well-

suited for BoVW. For HoG [34], the locality should be pre-

defined, i.e. provided by the user for local a region with a 

fixed area. We use blocks of 16x16 on a uniform grid and 

obtain HoG features individually from each block. 

GIST [33], on the other hand, is a global descriptor, more 

than a feature. It literally catches a “gist” of the scene by 

using multi-scale low level features. Hence it is incompatible 

for a BoVW model, and accordingly it is implemented out of 

the BoVW framework. We calculate the GIST descriptors for 

each training and test data. In consequence, by calculating the 

Euclidean distances between the GIST descriptors, we match 

a product photo to an image design file. 

175

http://dergipark.gov.tr/bajece


BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 8, No. 2, April 2020                                                 

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece        

Similarly, to GIST descriptor, the output of an SPP layer 

[37] does not need a histogramisation effort. This layer’s 

output is already fixed-length. SPP collects activations from 

layers of different hierarchies, and concatenates them in a 

single fixed-length vector. For this purpose, we have utilized 

combinations of activations from different layers of the 

FCN32s network as an input to the SPP layer. By calculating 

the (weighted2) Euclidean distances between these vectors, 

matching is performed. 

C. Hyper-Parameter Optimization 

The proposed framework includes different methods with 

benchmarking of various intermediate steps (segmentation, 

feature extraction etc.). Thus there are many hyper-parameters 

that may affect the system performance. In this study, we 

optimize only the cluster number of the BoVW framework. 

We believe that this is the most important hyper-parameter, 

mainly because it is independent of the utilized segmentation, 

feature extraction or the classification steps. The number of 

clusters is the vocabulary size and thus the heart of a BoVW 

model. Accordingly, in the next section, we also provide 

results for different cluster numbers, thus showing the effect 

of vocabulary size on performance. 

D. Classifier 

The final block of the proposed framework is classification. 

BoVW provides a fixed length histogram representation for 

any image, and classification within this vector space is 

another step, which serves as the final decision of the system. 

In our framework, the final goal is to find the design file that 

matches the given product photo. Various classification 

methods can be employed for a BoVW system and the reader 

may refer to [38] for a detailed comparison. 

BoVW concept is an adaptation of the bag of words (BoW) 

idea from natural language processing. In BoW, the so-called 

words are calculated by clustering the entire training set 

features into K number of subsets. Then, the number of each 

“word” in a document is counted, and a frequency histogram 

is created by using the word occurrences. We have the same 

concept in BoVW, but instead of words, we use image 

features. Image features can be anything, like salient regions 

in an image. We normalize frequency histograms to obtain 

probability distribution functions that represent the possibility 

of having a given visual word in an image. At this point we 

utilize Naïve Bayes algorithm. Occurrence of a word is 

 
2 In an SPP layer [37], the activations are weighted by the size of the pooling 
layer. 

assumed as an independent event (which is the Naïve part) 

and all feature probabilities are multiplied to find the 

matching probability of an image to another.  

We have chosen Naïve Bayes algorithm as our classifier 

mainly because of two reasons. Firstly, it is fast and 

compatible with real-time processing. And secondly training 

requires a small amount of samples to estimate the model 

parameters. This is why it has always been an optimal [39] 

partner for BoVW. We believe that with another, maybe 

mathematically more complex classifier, our results may 

further be improved. For the sake of computation speed we 

employ Naïve Bayes for all BoVW experiments in this study, 

and leave the benchmarking of different classifiers to a future 

study. 

V. EXPERIMENTAL RESULTS 

Before we present our comparative results with rigorous 

discussions in this section, the details of the experimental 

parameters are provided below. 

A. Experimental Setup 

The main objective of our experiments is to find an optimal 

method to product photo and design file matching. The 

absolute value of matching success depends on the number of 

design files to be compared in the image set. If there are only, 

for example, 10 design files to match, regardless of the 

benchmarked methods, the success would be relatively higher 

compared to a case in which thousands of possible design file 

candidates exist. 

In our experiments, we have selected the number of product 

photos to match as 603. Moreover, we have selected the 

number of design files as 100, so that the 60 product photos 

will match some of the design files in this 100 element set, 

whereas the rest are just fillers4. 

 
3 This parameter can be optimized with further experimentation. However, 
this would require running thousands of experiments with 26 different 
methods, which we have chosen leave to a future study. 
4 As explained in Section 2, the number design files that match a set of 60 
product photos vary. A single page flyer has a single corresponding design 
file, whereas a two-sided business card has two design files matches for both 
sides. Thus the exact number of fillers (i.e. randomly selected non-pair design 
files) in a set of 100 design files changes according to the set of product 
photos.  

 

Fig.6. The objects in the product photos are segmented using the GBVS algorithm [30], which is selected as the unsupervised segmentation method for our 
segmentation benchmark. 
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Accordingly, we have created 1000 different randomly 

selected 60 product photo - 100 design file sets, using the total 

2000 product photos and 3458 design files. For each 

benchmarked method, 1000 experiments are run using these 

1000 different test cases. At each experiment, for each 

product photo, the order of match is recorded. For this 

purpose, when a product photo is matched to 100 design files 

for an experiment, the Naïve Bayes probabilities (or the 

Euclidean distances) are calculated and sorted. The rank of the 

probability of the corresponding design file is recorded as the 

order of that product photo’s matching performance5. 

B. Results 

For benchmarking, we employ 26 different methods using a 

combination of 6 different segmentation methods and 5 

different features as presented in Section 4. For instance, the 

case in which SIFT features, that are obtained from only the 

product region segmented using VGG-Regression-Net, is 

referred to as “sift-deep”. Or, the case, in which GIST global 

features are obtained from a manual segmented object region 

in a product photo, is called “gist-manual”. 

All 26 methods are tested for the same 1000 experiment 

sets and for each product photo in each experiment, the order 

of match is recorded. Using this order measure, we also 

calculate the average order of being matched. For example, 

 
5 For example, for a single product photo, we check the similarities to the 
given 100 design files in that experiment. The actual design file that matches 
the given product photo has the order 4, when all Naïve Bayes probabilities 
(or the Euclidean distances) are sorted. Then the order for this product photo 
in this experiment is simply 4. 

for a specific method, the percentage of product photos that 

have smaller or equal order “k” is recorded as the top-k 

accuracy. For example, if the top-k accuracy for order k=10 is 

95%, this shows that by only checking best 10 possible match 

results, it is possible to match the correct design file with 0.95 

probability. 

In Figure 7.a, the top-k accuracy for all methods are 

depicted. The numerical values are provided in Table III. The 

best accuracy is obtained with “sift-deep” method, for which 

SIFT features that are obtained from only the product region 

segmented via the VGG-Regression-Net, are fed to the BoVW 

framework. The sift-deep method also slightly outperforms 

sift-manual method, for which the segmentation is performed 

by the human operator. This indicates that human operators 

can make mistakes in product region annotation, whereas 

deep learning-based segmentation method can generalize 

these errors and perform much better. 

After observing the success of SIFT, we have applied 

another version of the SIFT descriptor, namely the “Dense 

SIFT” (DSIFT) [40]. DSIFT is the same algorithm as the 

SIFT but it is run on a denser grid of locations. That is why 

DSIFT provide, on average, 10 times higher number of 

keypoints, compared to SIFT. In Figure 7.a, the performance 

of DSIFT, which is quite poor, can also be seen. This is, we 

believe, because of the fact that, increasing the number of 

keypoints does not support representation, but conversely 

creates more false alarm matches between feature clusters. 

 

 

Fig.7. Top-k accuracy curves are depicted. In these curve x-axis denotes the order of match, i.e. the order of similarity of the actual pain in the training set. The 
y-axis denotes the average success for that order value. a) (left) Top-k accuracy curves for all method. b) (right) Top-k accuracy curves for sift-deep under 
varying number of clusters in BoVW. 
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TABLE III 

NUMERICAL RESULTS FOR EACH METHOD 

Method / Order 1st 5th 10th 15th 20th 

gist-manual 50.0% 66.7% 78.3% 81.7% 86.7% 

gist-none 23.3% 43.3% 55.0% 63.3% 65.0% 

gist-gbvs 33.3% 60.0% 68.3% 73.3% 75.0% 

gist-deep 45.0% 65.0% 71.7% 80.0% 88.3% 

gist-fcn32s 36.7% 60.0% 73.3% 76.7% 80.0% 

gist-fcn8s 40.0% 70.0% 76.7% 76.7% 78.3% 

hog-none 13.3% 28.3% 46.7% 50.0% 55.0% 

hog-manual 15.0% 31.7% 41.7% 51.7% 58.3% 

hog-gbvs 16.7% 31.7% 46.7% 50.0% 58.3% 

hog-deep 11.7% 28.3% 40.0% 45.0% 55.0% 

hog-fcn32s 8.3% 26.7% 36.7% 45.0% 53.3% 

hog-fcn8s 16.7% 35.0% 41.7% 46.7% 50.0% 

sift-manual 61.7% 83.3% 91.7% 95.0% 95.0% 

sift-none 36.7% 53.3% 65.0% 76.7% 83.3% 

sift-gbvs 53.3% 71.7% 86.7% 88.3% 90.0% 

sift-deep 60.0% 88.3% 91.7% 96.7% 96.7% 

sift-fcn32s 26.7% 48.3% 56.7% 65.0% 80.0% 

sift-fcn8s 26.7% 45.0% 51.7% 66.7% 80.0% 

dsift-deep 8.3% 26.7% 31.7% 45.0% 45.0% 

surf-none 40.0% 55.0% 60.0% 66.7% 70.0% 

surf-manual 56.7% 68.3% 70.0% 71.7% 71.7% 

surf-gbvs 46.7% 65.0% 70.0% 76.7% 76.7% 

surf-deep 55.0% 66.7% 71.7% 73.3% 76.7% 

surf-fcn32s 41.7% 55.0% 63.3% 63.3% 63.3% 

surf-fcn8s 45.0% 58.3% 66.7% 70.0% 73.3% 

deepspp-manual 18.3% 26.7% 35.0% 40.0% 43.3% 

 

The “deepspp” method, in which deep CNN features are fed 

to a SPP layer, performs poor, even with manual (perfect) 

segmentation of the product. Deep features carry abstract 

information, which may fill the semantic gap of any vision 

problem. Consequently, this poor performance of deep 

features was intriguing for us. For this reason, we have carried 

out extensive deep visualization experiments to uncover this 

issue. SPP creates activations from all (thousands even when 

only the deepest layer is used) neurons from the selected 

layers, most of which are unfortunately noise and are usually 

dropped out within the deep CNN. An SPP layer does not 

have the ability to select deep features according to their 

quality. That is why this method performs unsurprisingly poor 

within a BoVW framework, compared to a more selective and 

scale-invariant descriptor method, such as the SIFT. We have 

utilized different combinations of activations from various 

layers of the FCN32s network. The best performance was 

obtained when only the activations from the final max-pooled 

convolutional layer (pool5 - 13×13×512) was utilized. Only 

the resulting curve for this case is depicted in Figure 7.a. Our 

visualisation experiments clearly show that, regardless of the 

layer the deep features are obtained, selective activations are 

always overwhelmingly outnumbered by noisy, unselective 

and insignificant activations, which cannot lead to any 

semantic decision. 

Consistent with our observations presented in Section 3, 

segmenting with FCN32s and FCN8s does not contribute the 

BoVW matching success positively. Semantic segmentation 

of product photos as if they are plain objects, is apparently not 

helping the feature selection operation enough. 

In Figure 7.b, a parameter optimization effort for cluster 

numbers is depicted. As the number of clusters in BoVW 

increases, so as the success rates. In our tests, we tested up to 

2000 clusters, which is the best case. This number can further 

be increased for higher success with a price of dramatically 

increasing our training time. The top-k accuracy for all 

methods that utilize BoVW in Figure 7.a are calculated using 

2000 clusters, which is our optimal case. 

In Figure 8, some sample results for the sift-deep method 

can be seen. The three samples on the top row are found with 

order 1, i.e. with a perfect hit. The samples in the bottom row 

are matched with orders 8, 70 and 11 from left to right, 

respectively. The mismatch cases are usually because of 

strong clutter or impaired design files. 

The actual implementation of the system shows that the 

average “end-to-end” matching time for a product photo, 

using the sift-deep method in a regular, no-GPU desktop 

computer is less than 4 seconds, including communication 

delays6. This is a feasible duration for the operation 

considering that it is much faster than the operator manually 

searching for the product id, which takes about a minute for a 

single product photo. Still, the computation duration is open 

 
6 Image upload: 0.65s) + (deep segmentation: 2.15s) + (SIFT extraction: 
0.69s) + (matching 0.23s) + (downloading the results 0.025s) = (TOTAL 
3.74s on average). Feature extraction for design files are performed offline. 

 

Fig.8. Sample results for the sift-deep method are seen. The samples on the top row are found with a perfect hit. The samples in the bottom row are matched 
with orders 8, 70 and 11 from left to right, respectively. 
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to improvement with better hardware and further software 

optimization. 

VI. CONCLUSIONS 

The real-time image matching framework we propose in 

this paper is hybrid in the sense that it uses both hand-crafted 

features and deep features obtained from a well-tuned DCNN. 

We concentrate on a specific application, that is to say, 

printing design to product photo matching. Since photographs 

of a printed product suffer many unwanted effects, such as 

uncontrolled shooting angle, uncontrolled illumination, 

occlusions, printing deficiencies in color, camera noise, optic 

blur, et cetera, we benchmark different hand-crafted and deep 

features to choose an optimal performance and propose a 

framework, in which deep learning is utilized with highest 

contribution. 

Our results show that a deep segmentation supported 

BoVW method gives satisfactory results for the proposed 

operational concept. What is more, hand-crafted features, 

when deep segmented from a region of interest may lead to 

better results, compared to deep features, which may include 

overwhelming number of noisy and unselective activations. 

Like all current problems in computer vision, image 

matching problem is also moving to the DCNN domain. On 

the other hand, DCNNs require millions of data and expensive 

hardware. That’s why we still need ingenious, practical and 

cheap industrial solutions until deep CNN hardware becomes 

standard in the following years. 

In the meantime, we continue our studies on deep CNN 

structures, specifically on Siamese networks. We are currently 

building a Siamese network which can learn similarities 

between a product photo and design file pair. In order to train 

such a Siamese network, our analyses show that the current 

dataset must be significantly larger, compared to the dataset 

utilized in this study.  Thus, we first focus our studies on 

enlarging our image set for training of such a system. 

Furthermore, a Siamese network will bring higher 

computation burden. For that matter, we are also studying 

embedded deep learning solutions that will utilize system-on-

chip solutions for real-time operations.  
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