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 Optimum management of water and water bodies is crucial in ensuring and maintaining 
the natural ecosystem cycle. Benefits from wetlands in the world and in our country keep 
humanity alive. Resources that are of vital importance should be monitored and changes 
should be observed. Thanks to the science of remote sensing, researchers in many parts 
of the world can monitor changes in the waters of the earth through satellite imagery 
and terrestrial supporting studies. The main component of change detection in remote 
sensing is the classification process. Nowadays, the Classification process has reached 
different dimensions with the contributions of artificial intelligence and machine 
learning algorithms. The emergence of different classification algorithms also affected 
the results obtained from the analyzes. In this study, the change occurred between 1990-
2000-2010-2019 in Karakaya Dam Lake, which is included in the borders of Malatya - 
Elazığ provinces, was observed. In this context, supervised classification processes and 
change detection analyzes were performed using Landsat satellite data with maximum 
likelihood, artificial neural network, support vector machine and decision tree 
algorithms. For detecting the change analysis, the lake boundaries obtained from official 
sources were used and compared. The data obtained as a result of the study were 
compared for each algorithm and the amount of change was interpreted. 

 
 
 

1. INTRODUCTION 
 
Water is an important component in ensuring 

the life cycle on Earth. It is important to monitor the 
wetlands around the world and protect them in 
order to obtain optimum benefit from them (Lu et al., 
2011). At the same time, water is an indispensable 
strategic element for human survival and social 
development (Ridd and Liu, 1998). Wetlands are 
actively used in our country and over the world both 
for energy production and for the maintenance of 
natural activities. Studies such as evaluating the 
status of existing water resources and examining 
their future status, mapping, monitoring their 
changes, and taking wetland inventory are critical in 
many disciplines (Rokni et al., 2014). 

In particular, changes related to water emerging 
in terms of global climate change raise concerns in 
many countries of the world (Calò et al., 2018). 
Temporal climate changes and drought are seen as 

the main reason for the change and decrease of 
wetlands (Orhan et al., 2017). Remote sensing 
methods, which are engaged at this stage, have a 
large share in monitoring climate changes and 
changes in water areas. 

Satellites with different spectral and spatial 
resolution used in remote sensing provide a high 
amount of data for detecting wetlands. The 
determination of wetlands with remote sensing 
methods has been studied for more than two 
decades (Sun et al., 2012; Kaplan et al., 2019). Since 
the launch of the Landsat-1 satellite in 1972, efforts 
have been made to identify the water on the image 
(Work and Gilmer, 1976).    

The process of collecting objects with similar 
spectral reflectance values on the ground under the 
same group is called classification in remote sensing 
(Torun, 2015). Classification process can be done by 
many mathematical and statistical methods. Thanks 
to the renewed and developing technology, artificial 
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intelligence and machine learning algorithms are 
also included in these techniques. Scientists have 
studied and compared the accuracy of these methods 
in many studies (Lu and Weng, 2007; Colkesen, 
2009; Fuping et al., 2011). As a matter of fact, that the 
more accurate you classify, the better quality 
analysis you will get. 

In this study, it is aimed to observe the change 
in the coastal boundaries of Karakaya Dam lake, 
which is the feed factor of Karakaya dam, by using 
different classification algorithms. For this reason, 
satellite images of 1990-2000-2010 and 2019 years 
were provided. Training and test areas were 
determined to be used in classifications over the 
image and classifications were made using Maximum 
Likelihood, Artificial Neural Network, Support 
Vector Machine and Decision Tree algorithms. The 
coastline of lake produced as a result of the 
classifications has been compared with the limit 
obtained from official sources. In addition, as a result 
of the classifications, the 30-year change in the lake 
area has been revealed on areal basis. 

 
2. METHODS 

 
2.1. Maximum Likelihood 

 
The Maximum Likelihood method, one of the 

most used image classification methods in remote 
sensing, is also extensively in the detection of 
changes in wetlands (Munyati 2000; Frazier and 
Page 2000; Zhang et al., 2009). In this method, the 
variance and covariance values are evaluated 
quantitatively in the classification of each unknown 
pixel. With the help of probability functions 
calculated for each pixel, it is determined which class 
a pixel is closer to (Mather, 1987; Kavzoglu and 
Colkesen, 2010). After this process is completed, the 
candidate pixel is assigned to the class with the 
highest probability value. If this value is below the 
threshold value determined by the user, the pixel is 
considered as indefinite (Lilesand et al., 2008). 

Since the ML method calculates the probability 
of each pixel belonging to any class, it performs a lot 
of mathematical operations and therefore runs 
slightly slower than other methods. Also, since this 
method does not use textural and structural 
information in the image but only uses spectral 
information, it is more limited than object-based 
methods (Zhou and Robson, 2001; Dean and Smith, 
2003; Pizzolato and Haertel, 2003). 

 
2.2. Support Vector Machines 

 
Support Vector Machines (SVM) is a 

classification algorithm widely used for the 
classification of remotely sensed images and high 
classification accuracy of the SVM has been revealed 
in many studies (Huang et al., 2002; Foody and 
Mathur, 2004; Kavzoglu and Colkesen, 2009; 
Mountrakis et al., 2011; Dixon and Candade, 2008). 
SVM is the first non-parametric, supervised 

classification method based on statistical learning 
theory, proposed by Vapnik. The main purpose of 
this method to separate two classes optimally based 
on the determination of the decision function 
(hyperplane) (Vapnik, 1995). 

In cases where it is not possible to define 
hyperplanes with linear equations, kernel functions 
are used. With the help of the kernel functions, data 
that cannot be separated linearly in the input space 
is displayed in a higher dimensional space and in this 
high dimensional space, the data is linearly 
separated. It is thought that the polynomial and 
radial-based kernels are widely used in remote 
sensing studies and the better results obtained with 
the use of radial-based kernels (Melgani and 
Bruzzone, 2004; Foody and Mathur, 2004; Pal and 
Mather, 2005; Mathur and Foody, 2008b, Kavzoglu 
and Colkesen, 2009). 

 
2.3. Artificial Neural Networks 

 
Artificial Neural Networks (ANN) can be defined 

as a branch of artificial intelligence developed to 
imitate the human brain (Viotti et al., 2002; Sahin 
2012). ANN has many uses such as remote sensing 
modeling, stereo mapping and image compression 
(Goung, Zheng 1992; Lee et al., 1994; Pierce et al., 
1994; Walker et al., 1994; Foody and Arora 1997). A 
typical ANN consists of an input layer, an output 
layer, and usually one or two hidden layers (Jensen 
et al., 1999). The purpose of ANN is to calculate the 
output values from the input values (Nasr et al., 
2012). The neurons in the input layer take the 
information from outside and transfer it to the 
hidden layers. The information from the input layer 
is processed in the hidden layer and transferred to 
the output layer. Neurons in the output layer, on the 
other hand, process the information from the 
intermediate layer and obtain the output that must 
be produced for the input set presented from the 
input layer of the network (Oztemel, 2016). The 
system learns by estimating the output data from a 
series of input training data so that the result of any 
given data set can be estimated (Ingram et al., 2005). 
ANN, which are frequently used in Remote Sensing, 
are also used extensively in matters related to 
wetlands (Augusteijn and Warrender,1998; Ghedira 
et al., 2000; Berberoglu et al., 2004). 

 
2.4. Decision Tree 

 
A decision tree, having its origin in machine 

learning theory, is a classification and pattern 
definition algorithm. Unlike other classification 
approaches that use a number of features (or bands) 
to perform the classification in a single decision step, 
the decision tree is based on a hierarchical decision 
chart or tree-like structure (Xu et al., 2005). Decision 
trees are frequently used in many applications due 
to the high classification procedures that tree 
structures and established rules are simple and 
understandable (Simard et al., 2000; Huang and 
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Yang, 2001; Pavuluri et al., 2002). The basic 
structure of a decision tree consists of a root node, a 
set of internal nodes and a set of terminal nodes. In 
this tree structure, each attribute information is 
represented by a node. The basic principle in 
creating a decision tree structure by using the 
attribute information of the education data can be 
expressed as asking a series of questions regarding 
the data and acting in line with the answers obtained, 
and getting the results as soon as possible (Kavzoglu 
and Colkesen, 2010). Due to the high accuracy it 
provides, the decision trees method, which has been 
used successfully in remote sensing, is also 
frequently used in wetlands (Wei et al., 2008; 
Berhane et al., 2018; Baghdadi et al., 2001). 

 
3. STUDY AREA AND MATERIALS 

 
Karakaya Dam Lake, which borders Malatya and 

Elazığ provinces, has been selected as a pilot area. 
The lake, the second largest dam on the Fırat River, 
which provides a significant part of Turkey's 
hydroelectric energy production, which feed the 
Karakaya Dam. Karakaya Dam Lake, which has an 
area of approximately 250 km2, makes important 
contributions to the region in the fields of tourism, 
fishing and agriculture. In 2013, The Council of 
Ministers of Republic of Turkey declared the 
Karakaya Dam Lake as the Culture and Tourism 
Conservation Development area (T.C Resmi Gazete, 
4153, 20 January 2013). Figure 1 shows the study 
are map. 

 
 
Figure 1. Study area map 

 
Satellite images from 1990, 2000, 2010 and 

2019 were obtained from the USGS data provider for 
use in the study. Landsat 5 TM for 1990 and 2010, 

Landsat 7 ETM for 2000 and Landsat 8 OLI-TIRS 
satellite images were used for 2019. Red, Green, Blue 
and Near Infrared bands are used for all images. The 
data is 30 m spatial resolution and has UTM WGS-84 
coordinate system and datum. Date and satellite 
information of the data are given in the Table 1. 

 
Table 1. Satellite data dates and specifications 

Satellite Date Path/Row 
Landsat 5 TM 15.08.1990-

22.08.2010 
173/33 

Landsat 7 
ETM 

18.08.2000 173/33 

Landsat 8 
OLI-TIRS 

31.08.2019 173/33 

 
4. RESULTS 

 
In this article, it is aimed to monitor the coastal 

changes in Karakaya Dam Lake by using different 
image classification algorithms of Machine Learning. 
In this context, satellite images are classified using 
Maximum Likelihood, Artificial Neural Network, 
Support Vector Machine and Decision Tree 
algorithms. Environment for Visualizing Images 5.3 
(ENVI 5.3) and ArcGIS software were used for 
classification and thematic mapping.  For each image, 
the classification process was made on the basis of 
water bodies, pastures, continuous urban fabric and 
non-irrigated arable land classes in CORINE-2018 
classification system.  

Images are classified using four different 
algorithms. Then, except for the water bodies, the 
other classes were combined and the class that 
would allow the lake boundaries to be achieved was 
left alone. Used machine learning algorithms have 
revealed different results for different years. Figure 
2 show that the results of different classification 
algorithms for different years related to the lake 
area. And the overall accuracies of classifications are 
given Table 2. 

 
Table 2. Classification overall accuracies 
                        Year 

Method 
1990 2000 2010 2019 

Maximum 
Likelihood 

0,82 0,84 0,87 0,85 

Artificial Neural 
Network 

0,88 0,88 0,93 0,88 

Support Vector 
Machine 

0,89 0,87 0,91 0,89 

Decision Trees 0,88 0,84 0,90 0,89 
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Figure 2. Classified lake coastline and area changes classified by different algorithms 

 
With the data obtained as a result of 

classifications, 30-year change analyzes were 
applied for the lake area. As the basic data in change 
analysis, official coastline and lake area obtained 
from the 1/100000 scaled Environmental Plan 
which completed by the General Directorate of 
Spatial Planning on 19.02.2020 was used. Figure 3 
shows the coastline obtained from the classifications 
and satellite data 10 years ago. 

Thanks to the lake boundary obtained by the 
classification results, the change that occurs every 
ten years has been observed. Classification 
techniques were analyzed among themselves and 
also compared with the basic data and their 
differences from the basic data were calculated. 
Figure 4 shows the spatial change data of the 

classification methods by years. Table 3 shows the 
spatial change that occurs when the data obtained as 
a result of classifications are compared with the 
basic data. 

 
Table 3. Change detection analysis rates against 
master lake area respect years (%) 

           Year 
Method 

1990 2000 2010 2019 

Maximum 
Likelihood 

-%16 -%36 -%12 -%13 

Artificial Neural 
Network 

-%13 -%33 -%8 -%12 

Support Vector 
Machine 

-%12 -%32 -%9 -%11 

Decision Trees -%13 -%36 -%11 -%13 

 
Figure 3. Produced lake boundaries - satellite image before a decade
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Figure 4. Spatial change detections analysis via different classification algorithms 

 
5. DISCUSSIONS AND CONCLUSIONS 

 
In this study, the coastline of Karakaya Dam 

Lake between 1990-2000-2010 and 2019 was 
determined by using different classification 
algorithms using Landsat TM, ETM and OLI images. 
For this purpose, thematic maps were produced and 
spatial change analyzes were made. 

Primarily, it is understood from the sources in 
the article that changes in wetlands have a great 
connection with global climate change. While 
selecting the data used in this study, attention was 
paid to have the same seasonal data on different 
dates. It is thought by the authors that changes in the 
lake area are influenced by climatic effects as well as 
opening the dam covers. Different classification 
techniques were used in order to observe the 
accuracy rates during the classification processes. 
When the classification accuracy given in Table 2 is 
examined, it can be seen that the Support Vector 
Machines method gives the highest accuracy rate 
compared to other methods. The reason why each 
method gives different accuracy for different years is 
that different test data are selected for each year. 
Land use changes have shown that it is not 
appropriate to use the same test data for each year. 

Water fields were separated from the classified 
data obtained and vector data was obtained for each 
year. Vector coastline produced in Figure 3 and 
satellite data 10 years ago are indicated by overlap. 
When the figure is examined, it is understood that 
the change that occurred between 1990 and 2000 
clearly appeared. In addition, the change in water 
level from 2000 to 2010 is also noticeable. 

If the values given in Figure 4 are examined, the 
data of area changes can be seen for each method. In 
this context, it can be said that each method gives 
close values for the water area. As can be seen from 
the chart, the negative change that occurred between 

1990-2000 left its place to a positive growth 
between 2000-2010. However, it is understood that 
no major changes occurred between 2010 and 2019. 

The results shown in Table 3 are based on the 
area designated by the General Directorate of Spatial 
Planning as the official coastal border. When the 
table is analyzed, it is seen that the difference 
between the classification results and official border 
data reached the highest point in 2000. In addition, it 
is observed that there was not a big change between 
2010 and 2019. 

In the study, the change detection analysis of 
Karakaya Dam Lake was made using different 
classification techniques. It was observed that the 
most influential situation on the study results was 
the opening times of the dam hatch fed by the lake. 
This dam, which was built for the first time in 1987, 
reached the filling level in 2004 according to official 
sources and the dam hatch were opened. When 
results analyzed, it is seen that lake water decreased 
in 2000 due to agricultural activities, precipitation, 
drought etc.  In addition, during these periods of 
decline, old settlements, which were flooded by the 
lake and evacuated before the dam was built, also 
emerged. 

This study showed how different classification 
algorithms affect the classification result in water 
areas. The accuracy of each classification algorithm 
used is considered to be of usable level. It is believed 
that new techniques and analysis that will emerge 
thanks to the developing and renewed technology 
will further strengthen the studies. 
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