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Rotational Hypersurfaces in Euclidean 4-space with Density

Highlights
Rotational hypersurfaces in Euclidean 4-space with density have considered.

«  Weighted minimal and weighted flat rotational hypersurfaces in Euclidean 4-space with density have
obtained.

¢ Some examples for these hypersurfaces have constructed.

Graphical Abstract

In the present study, Euclidean 4-space with a positive density function eX*+¥*+2%+t* have studied. In this context, the
weighted mean and weighted Gaussian curvature functions of a rotational hypersurface in 4-dimensional Euclidean
space with density have obtained.
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Figure. Some projections of the rotational hypersurface.

Aim
The aim of this study is to study the rotational hypersurface in 4-dimensional Euclidean space with density.

Design & Methodology
The theoretical methodology of mathematics has used to obtain the results.

Originality
All obtained results in this study are original.

Findings
The weighted mean and weighted Gaussian curvature functions of a rotational hypersurface in 4-dimensional
Euclidean space with density e**+¥*+2*+t* have obtained and some examples for these hypersurfaces have given.

Conclusion

In this paper, we consider the rotational hypersurfaces in Euclidean 4-space with density ex +y*+z"+t* gnd obtain
the weighted minimal and weighted flat rotational hypersurfaces in this space. We think that, the results which are
obtained in this study are important for differential geometers who are dealing with weighted surfaces.
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Yogunluklu Oklidyen 4-Uzayinda Déonel
Hiperyiizeyler

Arastirma Makalesi / Research Article
Mustafa ALTIN"

Technical Sciences VVocational School, Bingol University, Bingol, Turkey
(Gelis/Received : 20.05.2020; Kabul/Accepted : 01.09.2020 ; Erken Gortiniim/Early View : 27.10.2020)
oz
Bu c¢alismada, pozitif yogunluk fonksiyonu e olan 4-boyutlu Oklid uzay: ele alinmustir. ilk olarak, yogunluklu 4-
boyutlu Oklid uzayimda bir dénel hiperyiizeyin agirhkl ortalama ve agirhkli Gauss egrilik fonksiyonlari elde edilmistir. ikinci
mertebeden lineer olmayan adi diferansiyel denklem olarak elde edilen bu fonksiyonlarin ¢dziilmesiyle donel hiperyiizeyler insa

edilmistir. Ayrica, yogunluklu E* uzayinda, agirhikli Gauss egriligi ve agirlikli ortalama egriligi yardimiyla donel hiperyiizey
ornekleri verilmistir.

x2+y2+z2+t?

Anahtar Kelimeler: Yogunluklu 4-boyutlu Oklidyen uzay, agirhkh ortalama egrilik, agirhkli Gaussian egriligi, donel
hiperyiizeyleri.

Rotational Hypersurfaces in Euclidean 4-Space with
Density

ABSTRACT

In this paper, the Euclidean 4-space with a positive density function e* v 2" +t? s stydied. Firstly, the weighted
mean and weighted Gaussian curvature functions of a rotational hypersurface in 4-dimensional Euclidean space with
density are obtained. The rotational hypersurfaces are constructed by solving these obtained functions which are
second-order non-linear ordinary differential equations. Besides, the examples of rotational hypersurfaces are given

with the aid of the weighted Gaussian and weighted mean curvatures in E* with density.

Keywords:
curvatures.

1. INTRODUCTION

Minimal and flat surfaces are the significant study areas
for mathematicians, engineers, and other scientists.

The studies focus on the minimal and flat surfaces in 4-
dimensional spaces that can be listed as follows: Moore
has studied rotational surfaces with constant curvature in
four-dimensional space and some relations have been
given for them in the 1900s [1,2]. Ganchev and
Milousheva have examined the Moor’s studies in
Minkowski 4D-space and some relations have been
expressed in [7]. Complete hypersurfaces in R* with
constant mean curvature and scalar curvature have been
classified in [3]. In [5,6], the generalized rotational
surfaces and translation surfaces in 4-D Euclidean
surfaces have been studied. The curvature properties of
the surfaces have been investigated and some examples
for them have given. Besides, it is shown that the
translation surface is flat if and only if it is a hyperplane
or a hypercylinder. Moruz and Mounteanu have studied
Minimal translation hypersurfaces in [8]. The rotational
surfaces with finite type Gauss map in Euclidean 4-space
have been investigated in [4]. It is shown that the Gauss
map is a finite type if and only if the rotational surface is

*Sorumlu Yazar (Corresponding author)
e-posta : maltin@bingol.edu.tr

Rotational hypersurfaces, Euclidean 4-space with density, weighted mean curvatures, weighted Gaussian

a Clifford torus [4]. Dursun and Turgay have studied
general rotational surfaces in E* whose meridian curves
lie in 2D planes. They also have found all minimal
general rotational surfaces by solving the differential
equation that characterizes minimal general rotational
surfaces. Besides, they have determined all pseudo-
umbilical general rotational surfaces in E* [9]. Kahraman
and Yaylh have studied Bost invariant surfaces with
pointwise 1-type Gauss map in Ef and they have
generalized rotational surfaces of pointwise 1-type Gauss
map in E5 [10,11]. Giiler and et al. have defined
helicoidal hypersurface with the Laplace-Beltrami
operator in four-space [12]. Also, Giiler and et al. have
studied Gauss map and the third Laplace-Beltrami
operator of the rotational hypersurface in 4-space [13],
second Laplace-Beltrami operator of the rotational
hypersurface in 4-space [32] and Cheng-Yau operator
and Gauss map of the rotational hypersurface in 4-space
[33]. Yiice has studied Weingarten Map of the
Hypersurface in Euclidean 4-Space [34]. Since the
Gaussian curvature and the mean curvature of an n-
dimensional hypersurface are important invariants to
characterize the hypersurface, many authors have studied
these notions for different types of hypersurfaces for a
long time in different spaces, such as Euclidean,
Minkowski, Galilean, and pseudo-Galilean spaces.
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Furthermore, recently, the notion of the weighted
manifold which is an important topic for geometers and
physicists has been studied by many scientists. Firstly,
Gromov has introduced the notion of weighted mean
curvature (or @-mean curvature) of an n-dimensional
hypersurface as
H,=H - _1 de ,
(n—1) dN

where ¢ is density function, H and N are respectively the
mean curvature and the unit normal vector field of the
hypersurface [14]. A hypersurface is named weighted
minimal (or ¢@-minimal) if its weighted mean curvature
vanishes.

Also, Corvin and et al. have introduced the notion of
generalized weighted Gaussian curvature on a manifold
as

Gp=G—Lo, (1.2)

where A is the Laplacian operator and G is Gaussian
curvature of the hypersurface. Also, they have given a
generalization of the Gauss-Bonnet formula for a 2-
dimensional differentiable manifold with density [15]. A
hypersurface is called weighted flat (or -flat) if its
weighted Gaussian curvature vanishes.

After these definitions, the differential geometry of the
curves and hypersurfaces on manifolds with density in
Euclidean, Minkowski, and Galilean spaces has been
started to be an important topic for geometers, physicists,
economists, etc. For instance, in [20, 21, 29], F. Morgan
and others have studied the manifolds with density,
provided the generalizations of the theorem of Myers to
Riemannian manifolds with density and the Perelman’s
proof of the Poincare conjecture, respectively.

The classification of constant weighted curvature curves
in a plane with a log-linear density has been done by Hieu
in [17]. Furthermore, some results on curves in the plane
with log-linear density have been given by Nam in [22].
In [28], Lopez has studied the minimal surfaces in
Euclidean 3-space with a log-linear density ¢(x, y, z) =
ox+py +yz, where «, B, and y are real humbers not all-
zero. Also, Belarbi and et al. have studied the surfaces in
R? with density and they have given some results in a
Riemannian manifold M with density in [16] and [26].
Next, ruled minimal surfaces in R3with density eZ;

helicoidal surfaces in R3® with density e=**=v* and
weighted minimal affine translation surfaces in
Euclidean space with density have been studied in [27,
23, 24], respectively. Also, some types of surfaces have
been studied by geometers in other spaces such as
Minkowski 3-space and Galilean 3-space with density.
For instance, a helicoidal surface of type I* with
prescribed weighted mean curvature and Gaussian
curvature in Minkowski 3-space and weighted minimal
translation surfaces in Minkowski 3-space with density
e” have been constructed in [25] and [30], respectively.
In [31], weighted minimal translation surfaces in the
Galilean 3-space with log-linear density have been
classified and in [19], weighted minimal and weighted

1.1

flat surfaces of revolution in Galilean 3-space with
density e®***b¥**+¢z* haye been investigated. Also, Altin
and his friends have studied ruled surfaces and rotational
surfaces in different spaces with density, in recent years
(see [18, 35-38]).

In the present study, after giving some basic notions
about hypersurfaces in Euclidean 4-space in the
Preliminaries section; in the third section, we give the
solutions of Gaussian curvature and mean curvature of
rotational hypersurfaces in Euclidean 4-space. Also, we
give some results and examples of the rotational
hypersurfaces in this section.

In the fourth section of this paper, we obtain the weighted
mean and weighted Gaussian curvatures of a rotational
hypersurface in E* with density. Then, we solve these
curvature functions which are second-order non-linear
ordinary differential equations. Furthermore, we give
some examples of a rotational hypersurface with
different weighted Gaussian and weighted mean
curvatures in E* with density.

2.PRELIMINARIES

In this section, some fundamental notions used in the
following sections will be given.

Let X = (x1,¥1,21,t1), ¥ = (X2,¥2,22,t;) and Z =
(x3,¥3, 23, t3) be three vectors in E*. Then, the inner
product and vector product of these vectors are given by

(X,9) = x1%;, + Y1Y + 212, + it (2.1)

and

53, X1 Y1z 4

XXy XxXzZ=det Xy Vo 7, b | (2.2)
X3 Y3 Z3 U3

respectively. If

X:E® — E*

(ur, up, uz) — X(uy, up, uz) (2-3)

= (X1 (ug, ug, uz), X5 (Ug, Up, Usz), X3 (Uq, Up, Uz), X4 (Uq, Uz, U3))
is a hypersurface in Euclidean 4-space E*, then the
normal vector field, the matrix forms of the first and
second fundamental forms are

Xuug XXy X Xuuyg

N= (| Xy X Xusy XX || (24)
(911 J12  Y13]

gij =921 Y22 Y23 (2.5)
1931 Y932 Y33l

and
ICTRCYRCEY

hij =|hz1 haz has|, (2.6)
lh31  hsz  hssl

respectively. Here, g;; = (Xui,Xul_), hij = (Xul_uj,N),

X a%x ..
Xui = B_ul , Xuiuj = Wiuj' {l,]} € {1,2,3}

Also, the shape operator of the hypersurface (2.3) is

S = (aij) = (gij)_l'(hij)'

27)
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where (g;;)" " is the inverse matrix of (g;;).
On the other hand, from (2.5)-(2.7), the Gaussian and
mean curvature of a hypersurface in E* are

_ det(hy;)

det(gj)

and
3H = tr(S),
respectively.
Lety(x) = (x,0,0, f(x)) be a profile curve in xt-plane
defined on any open interval I c R. Then, the rotational
hypersurface M in E* is given by

(2.8)

(2.9)

M:X(x,vy,2) = (xcosycosz, xsinycosz, xsinz, f (x))
(2.10)
where f : I ¢ R — {0} — R isa C* function for all x €
land 0 < y,z < 2m.
The Gaussian curvature G and the mean curvature H of

rotational hypersurface are obtained as follows [13, 32,
33].

___ @)
= " Ras @1
" )3 !
H = _ o2 @) r2r () (2.12)

3x(1+f(x)2)3/2
Also, the unit normal vector N of the rotational
hypersurface is

_ (cosycoszf' (x),sinycoszf' (x),fsinzcoszf' (x)—1)

N 1+ (2)?

(2.13)

3. ROTATIONAL HYPERSURFACES IN E*

In this section, the solutions of (2.11) and (2.12) will be
given. Furthermore, some results and examples of the
rotational hypersurfaces will be given.

3.1. The solution of Gaussian curvature of rotational
hypersurface

To solve Eqg. (2.11) which is a second-order nonlinear
ordinary differential equation (NODE), we assume

_ )3
A= X6(1+f'(x)2)3/2" (3-1)
From equations (2.11) and (3.1), we have
6A 3G(x
b3
X X

Itis a first-order linear ordinary differential equation with
respect to A and its general solution is computed as

c1-3 ] G(Ot2dt

x6

A= : (3.2)

where c¢; € R. Also, the equations (3.1) and (3.2) imply

@+ '@ - 3 [, G@)t2de) = f'()3. (33)
Thus, the general solution of Eq. (3.3) is

—3(%¢ 24 /3
fO) = & [ gr s,
1-(c1-3 [ G(te2an) /3

2
where c; is constant and (¢, — 3 [ G(¢t) t2dt)s < 1.

Conversely, let G(x) be a smooth function defined on an
open interval I c R. Then, for any x, € I, there exist an
open subinterval I; ¢ R of x, (I; €) and an open
interval I, of R containing

c1, = B[, G (D)t2dt)(xo)
such that function

F(x,c) = 1—(01—3f

forany (x,¢;) € I; x I,. In fact, because of
F(xo, ¢1,) =1 >0, by the continuity of F, it is positive in
a subset of I, x I, c R?. Therefore, for any (x,c,) €
I, X I,, c, € R and any given smooth function G(x), we
can define the two-parameter family of curves
(=3[ G tzdt)1/3 \
dx +c,

y(x,G,ci,c0) =
x,0,0, + .
x %/3
\ \/1—(c1—3f1 G(t) t2dt) /

By performing the one-parameter subgroup on these
curves, the two-parameter family of rotational
hypersurfaces with the Gaussian curvature G(x) can be
obtained.

X

2/3
G(t) tzdt> >0

Theorem 3.1. Let y(x) = (x,0,0,f(x)) be a profile
curve of the rotational hypersurface (2.10) with the
Gaussian curvature at the point (x,0,0, f(x)) given by
G(x) in the Euclidean 4-space. Then, for some constants
c; and c, there exists the two-parameter family of
rotational hypersurface generated by plane curves

Y(x' G(x)' C]_; CZ) = (x: 0; 0; i
1
i (c1-3f; G(p)e2at) /s

. s
1-(c1-3 [7 6(D)e2at)

Let G(x) be a smooth function. The two-parameter family
of curves y(x, G(x), ¢y, c,) can be constructed and the
two-parameter families of rotational hypersurfaces with
the Gaussian curvature can be given by

X;(x,v,2) = (xcosycosz, xsinycosz, xsinz,

+ [

dx +c,) . 3.4

c1-3 [FG(t)t2at s
GRIA )

dx + c;). (3.5)

1—(c1—3 I 6oyt2at) /3

Corollary 3.1. Let M be the rotational hypersurfaces in
E* with constant Gaussian curvature (G(x) = d, € R).
Then M can be parameterized by

X;(x,v,2) = (xcosycosz, xsinycosz, xsinz,

g3 Y3
T G )
1-(c1—d1x3+dq) /3

2
where c;,c, € Rand 1 > (¢; — dyx3 + d,)5.
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Corollary 3.2. Let M be a flat rotational hypersurfaces in
E*. Then M can be parameterized by

Xe(x,y,2) =

1
. , (c1) /3
(xcosycosz, xsinycosz, xsinz, ————

J1-(e™3

where ¢;, ¢, € Rand 1 > (¢;)*/3 [13,32,33].

Example 3.1. If the Gaussian curvature of rotational
hypersurfaces (3.5) in the Euclidean 4-space is G(x) =

3;—12, then it can be parametrized

x+cy),

X;(x,v,2) = (xcosycosz, xsinycosz, xsinz,

H(=1- (= 152 + (x — D),

wherec; = 0,c, =0and 1 > (x — 1)5.

Figure 1 show the projections of the rotational
hypersurface X with G(x) = 3;—12 andz = g into yzt, xzt,
xyt and xyz-spaces in (a), (b), (c) and (d), respectively.

Figure 1. Projections of the rotational hypersurface for
G(x) a) yzt-spaces, b) xzt-spaces, c) xyt-spaces, d) xyz-
spaces

3.2. The solution of mean curvature of rotational
hypersurface

To solve Eq. (2.11) which is a second-order nonlinear
ordinary differential equation, we take

__f'm
B = Yo (3.6)
From the equations (2.11) and (3.6), we have
B =-Z_¥& (3.7)
X X

The solution of first-order linear ordinary differential
equation (3.7) is

c3-3 [ H(Dt?at

o (38)

where c; € R. Also, from equations (3.6) and (3.8), we
get

JA+F()2)(e; =3 [ H (©)t2dt) = x*f'(x). (3.9)

So, the general solution of (3.9) is

c3-3 [FH()t%dt
fO) =+ —=
Jx4—(c3—3 Ji H(H)t2at)?

B =

dx + ¢y,

where c, is constant and (c; — 3 [;" H (£)t?dt)? < x*.

Conversely, let H(x) be a smooth function defined on
an open interval I ¢ R and

F(x,c;) =x4—(c3—3f

be a function defined on I; X R < R2. Forany x, € I,
there exists

c3, = (3 [ H (D)t2dt)(xq).

So, we can find an open subinterval x, € [; I and an
open interval c; | € I, < R. That is the function F (x, c3)
forany (x,c3) € I; X I,. In fact,

F(xo, c3,) = xo* > 0, by the continuity of F, it is
positive in a subset of I, x I, ¢ R%. Therefore, for any

(x,¢c3) € I; X I, c, € R and any given smooth function
H(x), we can define the two-parameter family of curves

X

2
H (t)tzdt) >0

)/(x, H! C3, C4—) =

c;— 3 [ H (Ot?dt

x,0,0,iJ dx + ¢,
S

— (e =3 [FH (e?dr)”

Consequently, we can obtain a two-parameter family of
rotational hypersurfaces with the mean curvature H(x).

Theorem 3.2. Let y(x) = (x,0,0,f(x)) be a profile
curve of the rotational hypersurface (2.10) with the mean
curvature at the point (x, 0,0, f(x)) given by H(x) in the
Euclidean 4-space. Then, for some constants ¢; and c,
there exists the two-parameter family of rotational
hypersurface generated by plane curves

y(x, H(x),¢3,¢0) =

c3=3 [ H®)t2at
\/x4—(c3—3f1xH(t)t2dt)z

Let H(x) be a smooth function. The two-parameter family
of curves y(x, H(x),c3,¢,) can be constructed and the
two-parameter families of rotational hypersurfaces with
the mean curvature can be given by

x,0,0, £ [

dx+c, |- (3.10)

Xy (x,y,2z) = (xcosycosz, xsinycosz, xsinz,
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c3-3 [ H{Ot2at

dx + cy). (3.11)

=if\/

x*—(c3-3 [ H(t)t2dt)?

Corollary 3.3. Let M be the rotational hypersurfaces in
E* with constant mean curvature (H(x) = d, € R). Then
M can be parameterized by

Xy (x,y,2z) = (xcosycosz, xsinycosz, xsinz,

c3—dzx3+d2
) e Xt ),
where c3, ¢, € R and x* > (c; — d,x3 + d;)2.
Corollary 3.4. Let M be a minimal rotational

hypersurfaces in E*. Then M can be parameterized by

Xy(x,y,2) =

(xcosycosz, xsinycosz, xsinz, + f dx + ¢4),

C3
\/x4—(c3)2
where ¢; and ¢, € R [13,32,33].

Example 3. If the mean curvature of rotational
hypersurfaces (3.11) in the Euclidean 4-space is H(x) =

zsm(xz;iws(x), then it can be parametrized

Xy(x,v,2) = (xcosycosz, xsinycosz, xsinz,
+(—In(cos(x)))), (3.12)

where ¢; = sin(1),¢, = 0 and g >x > _Z—n

Figure 2 show the projections of the rotational

hypersurface X,; with H(x) = %Szm(x)

into yzt, xzt, and xyt-spaces in _(a), (b) and (c),
respectively.

(Here, we take " + " in the equation (3.12) as “+.)

10

Figure 2. Projections of the rotational hypersurface for H(x) a)
yzt-spaces, b) xzt-spaces, ¢) xyt-spaces

4, ROTATIONAL HYPERSURFACES IN E*
WITH DENSITY

In this section, the weighted mean and weighted
Gaussian curvatures of a rotational hypersurface in 4-D
Euclidean space with density will be given. Also, these

andz =2
6

curvatures which are the second-order non-linear

ordinary differential equation will be solved. Besides, the

examples of a rotational hypersurface with different

weighted Gaussian and weighted mean curvature in E*

with density will be given.

4.1. Weighted Gaussian Curvatures of Rotational
Hypersurfaces in E* with Density
eax2+by2+czz+dt2

From (1.2), (2.10) and (2.11), the weighted Gaussian

curvature of the rotational hypersurface in Euclidean 4-

space with density e +b¥*+cz*+dt® is ohtained as

/2
P+t (atbrerd) (14 (0)2)°

G(p(x) - ( x2(1+f’(x)2)5/2 )’ (41)

where a,b,c and d are not all zero constants. When

calculations similar to ones in the subsection (3.1) are

carried out, the following theorem is obtained.

Theorem 4.1. Let y(x) = (x,0,0,f(x)) be a profile
curve of the rotational hypersurface (2.10) with the
weighted Gaussian curvature at the point (x,0,0, f(x))
given by G,(x) in the Euclidean 4-space with density
eax*+by*+cz*+dt® Then, for some constants ¢ and cg
there exists the two-parameter family of rotational
hypersurface generated by plane curves

Y(xl G(p (X), Cs, CG) =

-3 flx(G(P(t)+2(a+b+c+d))t2dt)1/3

7 dx +cg) .

x,0,0, + [
1-(cs=3 [ (Gp(t) +2(a+b+c+d))t2dt)

(4.2)
Conversely, let G,(x) be a smooth function. Two-
parameter family of curves y(x, G,(x),cs,cs) can be
constructed and so the two-parameter families of
rotational hypersurfaces with the weighted Gaussian
curvature can be given by
XG(,, (x,v,2) = (xcosycosz, xsinycosz, xsinz,

1

(c5=3 [ (Gp(O)++2(a+b+c+d))t?dt ) /s

%/3

+ [

dx + cg)

\]1—(65—3 I (G () ++2(atb+c+d))t2at)
(43)

where c5 and ¢, is constant and

(cs = 3 [F(G,(®) +2(a+ b + ¢ + d)t2de) /3 < 1.

Corollary 4.1. Let M be the rotational hypersurfaces in

E* with density e®*”+b¥*+cz*+dt?yjth constant weighted
Gaussian curvature (G,(x) = d3 € R). Then M can be
parameterized by

XGw (x,v,2) = (xcosycosz, xsinycosz, xsinz,

_ 3_n/3
if (cs—[2(a+b+c+d)+d3](x3-1)) _ dx + ¢o),
\/1—(c5—[2(a+b+c+d)+d3](x3—1)) /3

where cg, ¢, € R and

1> (cs—[2(a+b+c+d)+ds](x* — 1)
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Example 4.1. Consider rotational hypersurfaces with the
weighted Gaussian curvature
sin(x) _

Gy,(x) = o’ 2(a+ b+ c+ d), in the Euclidean 4-

space with density e@**+by*+ez®+dt* gg \we get the
rotational hypersurfaces in equation (3.5) as

XG¢ (x,v,2) = (xcosycosz, xsinycosz, xsinz,

+ % (3 arcsinh (ﬁvﬁ) ++/3(n (1 — (cos(x))g) —In(3+

3(cos(x)) + 2\/ 3(1 + (cos(x))s + (cos(x))))),
where ¢s = cos(1),cg = 0.
Figure 3 show the projections of the rotational

hypersurface X6, with the
G,x) =20 _oa+b+c+d) and z = Z into yzt
@ 3x2 6 yzt,

xzt, and xyt-spaces in (a), (b) and (c), respectively.

05 F

710
715

(©
Figure 3. Projections of the rotational hypersurface for G, (x)
a) yzt-spaces, b) xzt-spaces, c) xyt-spaces

4.2. Weighted Mean Curvatures of Rotational
Hypersurfaces in E* with Density e®*"+by*+cz*

From (1.1), (2.12) and (2.13), the weighted mean
curvature of the rotational hypersurface in Euclidean 4-

. . 2 2 2 . -
space with density e®*”"+bY"+¢2” is obtained as

Af' GO +Haxf" () +Af (x)3
12x(1+£'(x)2)3/2 ), (4.4)

where a, b, ¢ are not all zero constants and
A=8 + 2ax? + 2bx? + 4cx? + 2(a — b)x%cos[2y]
+(a — b)x%Cos[2(y — z)] + 2ax?cos[2z]
+2bx?cos[2z] — 4cx?cos[2z]
+ax?cos[2(y + z)] — bx?cos[2(y + z)].

Hy = —(

Especially, if we take a=b=c in the weighted mean
curvature (4.4) of the rotational hypersurface in
Euclidean 4-space with density e®*“+a¥*+az* then we
obtain

_ 2(1+ax?)f () +xf" () +2(1+ax?)f’ (x)3
Hy = —( 3x(1+f'(x)2)3/2 ). (4.5)

where 0 # a € R.

To solve the second-order nonlinear ordinary differential
eqg. (4.5), let take

f'x

From equations (4.5) and (4.6), we have
r_ 4 3Hyp (%)
¢'=—(2+2ax)c - 222, 4.7)

The solution of first-order linear ordinary differential
equation (4.7) is

2
c7=3 [ e Hy(t)t2dt

C = et \ (4.8)

where ¢, € R. Also, from equations (4.6) and (4.8), we
get

JAFGOD(e; -3 [ e H, (0)t2de) = x2e% f'(x)
(4.9)

So, the general solution of equation (4.9) is

f) =+

2
c7=3 ] e Hy()t2at

dx + cg,

Jx4eza"z—(c7—3 J7 et Hy(t)t2de)?
where cg is constant and

(c; =3[ €% H, (Ht?dt)? < x*e®".
Conversely, let H, (x) be a smooth function defined on
an open interval I ¢ R and

X
F(x,c;) = x*e2™" — (¢, — 3[ e‘”qu, (H)t2dt)?> >0
1

be a function defined on I, X R < R?. For any x, € I,
there exists

2

c7, = (3 [ e H, ()t2dt))( x).

So, we can find an open subinterval x, € I; c I and an
open interval ¢, € I, < R. That is the function F (x, c;)
for any (x,c;) € I; X I,. In fact, because

F(xo, ¢7,) = x*e™ > 0, by the continuity of F, it is
positive in a subset of I, x I,  R?. Therefore, for any
(x,¢c;) € I; X I, c, € R and any given smooth function
H, (x), we can define the two-parameter family of curves

y(x, Hy, ¢, C8) =

¢, —3 [ H, (Ot2dt
x,0,0, + P23, 0

dx +cg |-

xte2@® —(c, —3 [Te’H, (®ezdt)’

Consequently, we can obtain a two-parameter family of
rotational hypersurfaces in E* with density e*” +av*+az*
with the weighted mean curvature Hy(X).
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Theorem 4.2. Let y(x) = (x,0,0,f(x)) be a profile
curve of the rotational hypersurface (2.10) with the
weighted mean curvature at the point (x,0,0, f(x))
given by H,(x) in the Euclidean 4-space with density
eax’+ay’+az’ Then for some constants ¢s,¢g , there
exists the two-parameter family of rotational
hypersurface generated by plane curves

Y(x' Hy(x), 7, Cs) =

2
c7-3 [} e Hy(O)t2at

(x,0,0, £ dx + cg).

\/x‘*ez‘“‘2 —(c7-3 flx eat2H<p (H)t2dt)?
(4.10)

Conversely, let H,(x) be a smooth function. Then, we can
construct the two-parameter family of curves
y(x, Hy (x), c3,¢,) and so the two-parameter families of
rotational hypersurfaces in E4 with density e®*”+a»*+az*
with the weighted mean curvature can be given by

XH(p (x,v,2) = (xcosycosz, xsinycosz, xsinz,

2
c7=3 [} e Hy(H)t2at
|

dx + cg)
8 .
\/x4e2a"2—(c7—3 flxe“tzH(p(t)tZdt)Z

(4.11)

Corollary 4.2. Let M be the rotational hypersurfaces in
E* with density ea*”+av*+az*\ith constant weighted
mean curvature (H, (x) = d, € R). Then M can be obtain
by using Mathematica, as follows

XH(‘, (x,y,z) = (xcosycosz, xsinycosz, xsinz,

a | — 2 _dx+ Cs),
x*e2ax?_(pp)2
where c,, cg € R, x* > (M)? and
+ 3d4(2va(e® — e%’x) + Vr(—Erfi[Va] + Erfi[vax]))

M=c, 232

Example 4.2. Consider a rotational hypersurfaces with
2

the weighted mean curvature H,(x) = P:Zif in the

Euclidean 4-space with density e%**+av*+az* 5o we get
the rotational hypersurfaces in equation (4.11) as

XH(,, (x,v,2) = (xcosycosz, xsinycosz, xsinz,

i(l n(x +Vx? — 1)),

where c; = e% cg=0and x = 1.

Figure 4 show the projections of the rotational
2
hypersurface X, with the H, (x) = “:zz;‘

and z = % into yzt, xzt, and xyt-spaces in (a), (b) and (c),
respectively.

(©

Figure 4. Projections of the rotational hypersurface for
H,(x) a) yzt-spaces, b) xzt-spaces, ) xyt-
spaces

5. CONCLUSION

The surface theory has an important place in 4-
dimensional spaces as in 3-dimensional spaces. So, in the
study, we consider the rotational hypersurfaces in
Euclidean 4-space with density and obtain the weighted
minimal and weighted flat rotational hypersurfaces in
this space. We think that the results which are obtained
in this study are important for differential geometers who
are dealing with weighted surfaces. In fact, the results
which are stated in this study better be handled in
different four or higher dimensional spaces.
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