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ABSTRACT 

Artificial neural networks are commonly accepted as a very successful tool for global function 

approximation. Because of this reason, they are considered as a good approach to forecasting chaotic 

time series in many studies. For a given time series, the Lyapunov exponent is a good parameter to 

characterize the series as chaotic or not. In this study, we use three different neural network 

architectures to test capabilities of the neural network in forecasting time series generated from 

different dynamical systems. In addition to forecasting time series, using the feedforward neural 

network with single hidden layer, Lyapunov exponents of the studied systems are forecasted. 

Keywords:   Chaos, Artificial Neural Networks, Lyapunov Exponents, time series forecasting 

ÖZ                    

  Yapay sinir ağları global fonksiyon tahmininde genel olarak kabul görmüş başarılı bir araçtır. Bu 

nedenle, kaotik zaman serisi tahmininde şarılı bir yaklaşım olarak bir çok çalışmanın konusu 

olmuşlardır. Verilen bir zaman serisi için, Lyapunov üsteli, verilen serinin kaotik olup olmadığını 

karakterize etmekte iyi bir parametredir. Bu çalışmada,  üç değişik yapay sinir ağı mimarisini, 

değişik dinamik sistemlerden türetilmiş zaman serilerini tahmin etmede kullandık. Zaman 

serilerinin tahminine ek olarak, çalışılan sistemlerin Lyapunov üstellerini tek gizli katmanlı 

ileribeslemelisinir ağı kullanarak tahmin ettik. 

Anahtar Kelimeler: Kaos, Yapay Sinir Ağları, Lyapunov üsteli, zaman serisi tahmini. 

1. Introduction 

In many scientific study fields, estimation of future values of a system of interest is a very 

important topic to understand its dynamical evolution. The physical systems, which are 

governed by a set of equations of motion, are commonly investigated by integrating them 

forward in time and thus the evolution of the system is studied. In chaos theory, for a given 

time series originating from a dynamical system, it is important to understand that the time 

series is chaotic or not which means that there is a sensitive dependence on initial conditions 

or not. One of the most commonly accepted parameters that characterize the existence of 

chaos in given time series is its Lyapunov exponent which gives the rate of convergence (or 

divergence) of nearby trajectories in state space. For a time, series, positive Lyapunov 

exponent is indicator of chaos. In addition to this, Lyapunov exponents are used to calculate 

important measures of a dynamical system. Dimension of the attractor is calculated by the 
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Kaplan-Yorke conjecture using Lyapunov exponents: Kolmogorov-Sinai entropy can be 

related to Lyapunov Exponents as well. 

However, in most cases, governing equations of motion for a given time series is unknown, 

such as stock market indices in economics. To forecast chaotic time series, there are many 

methods other than neural networks such as Taylor series expansion, radial basis functions, 

and nonparametric kernel regressions. These methods are based on interpolation and 

approximation of unknown function by use of scattered data points. In Taylor series 

expansion approach the main disadvantage is rapidly increasing order of expansion and 

according to Casdagli (Casdagli, 1989), there is no guaranteed order of convergence for 

dimension n>1, and higher polynomial degrees has a wide oscillation tendency. 

Nonparametric kernel regression is a method that depends on estimating probability density 

function from observed time series, but it has some drawbacks mentioned in (Gencay & 

Tung, Nonlinear modelling and prediction with feedforward and recurrent networks, 1997). 

On the other hand, in literature, there are many studies which demonstrate the capabilities of 

neural networks in forecasting chaotic time series. For example, two-layered feedforward 

neural networks are used in (de Oliveira, Vanucci, & da Silva, 2000), it gives promising 

results in estimation of chaotic time series generated from the Lorenz system, Henon and 

Logistic maps. In another study (Gencay,1994), Gencay demonstrates that nonlinear noisy 

time series can be modelled quite accurately by single-layer feedforward neural networks.  

For a given sets of dynamical system, Lyapunov exponents can be calculated using a 

Jacobian algorithm (Wolf, Swift, Swinney, & Vastano, 1985).. That’s why, numerical methods 

are studied to find Lyapunov exponents based on Taken’s embedding theorem (Takens, 

1980) such as the Ruelle-Eckman algorithm (Eckman & Ruelle, 1985). 

     In this study, we use three different neural network architectures to test capabilities of 

neural networks in forecasting time series generated from different dynamical systems. This 

study is organized as follows: in the second section, we give summary of neural networks’ 

working mechanism and define feedforward and recurrent networks. In the third section, 

chaotic systems that we use in this study to test performance ANNs are defined. In the 

fourth section, we present the performance of each network in terms of forecasting. In 

addition to forecasting time series, using the feedforward neural network with single hidden 

layer, Lyapunov exponents of the studied systems are calculated with the algorithm 

developed in (Gencay,1995). In the last section, the final discussion is given.  

2. Artificial Neural Networks 

Neural Networks are the mathematical model which tries to imitate the working mechanism 

of neurons in our brain. Earliest form of neural networks, called perceptrons were developed 

in the 1950s and 1960s by the scientist Frank Rosenblatt. Yet, they do not share completely 

same mechanism with biological neurons. They are very commonly used tools in many 

science fields: such as image recognition, classification, time series forecasting, pattern 

recognition etc... 
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  Working mechanism of artificial neuron is actually very simple. To understand this 

mechanism, we need to define basic components of artificial neuron: Input weights and 

biases are Wij and bj. Weigths Wij define rate of effect for input xi from neuron i to neuron j. 

Biase value bj  allows you to shift the activation function to the left or right, which may be 

critical for successful learning. Another important parameter of artificial neuron is the 

activation function Ψ. Activation function has the role of threshold in biological neuron.  

    Networks are composed of neurons which are stored in layers li. The first layer that the 

data enters is called the input layer. The layer that the prediction or result is given is called 

the output layer. The layer(s) that actual computation or approximation occur is called as 

hidden layer(s). In a layer li, there can be one or many neurons which are connected neurons 

in li-1 and li+1  layers. 

Artificial neurons create an output by the following way: 

Suppose n input values xi are coming to neuron j in lth layer from (l-1)th layer. Then in a 

neuron all inputs are summed with following way: 

𝑦𝑗,𝑡 = 𝑏𝑗 + ∑ 𝑊𝑖𝑗𝑥𝑖
𝑛
𝑖=1                                                       (1) 

Then, yj,t passes through the activation function Ψj and output of jth is �̂�𝑗: 

�̂�𝑗 = Ψ(𝑦𝑗,𝑡)                                                           (2) 

Where wij, bj are learned or estimated parameters through learning process in learning 

cycles or epochs. At this step it is important to mention about the role of the activation 

function. Purpose of the activation function is to convert the input signal of a node, which is 

then used as an input in the next layer. Activation function should be applied, otherwise the 

output will be linear function. Since neural networks are used to work with nonlinear or 

complicated data sets, such as images, videos, audio, speech, time series, nonlinear activation 

functions are used. The most commonly used are: sigmoid, hyperbolic tangent, ReLu -

Rectified linear units. 

Another important feature of artificial neural networks is their ability of learning. In general, 

there are two general types of learning algorithms: supervised and unsupervised learning. 

Since we are interested in time series forecasting, we use supervised learning. Role of 

weights and biases are already discussed previously and learning in neural network is 

related to updating connection weights and biases in neuron. That’s why after many training 

weights and biases are updated according to these weights and biases in neurons that’s why 

network gives true prediction for given input values. But the question is how to update the 

weights and biases. 

The answer is Error (or Cost) Function E: 

𝐸(𝑦, �̂�) =
1

𝑛
∑ (𝑦 − �̂�𝑖)

2𝑛
𝑖=1                                                   (3) 
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Where y is target variable. Then the weights are adjusted by the following way: 

𝑊𝑖𝑗
𝑛𝑒𝑤 = 𝑊𝑖𝑗

𝑜𝑙𝑑 − 𝛼
𝜕𝐸

𝜕𝑤𝑖𝑗
                                                   (4) 

Where 0 < 𝛼 < 1 learning rate which is generally chosen as 0.01. At this point, it is 

understood that activation function should be differentiable. This learning schema is called 

as backpropagation. The significance of backpropagation is that it enables us to 

simultaneously compute all the partial derivatives ∂E/∂wij in just one pass so the total cost of 

backpropagation is roughly the same as making just two forward passes through the 

network. 

The learning rate is a relatively small constant that indicates the relative change in weights 

and biases if the learning rate is too low, the network will learn very slowly. If the learning 

rate is too high, the network may oscillate around overshooting the lowest point with each 

weight adjustment, but never actually reaching it. Some modifications to the 

backpropagation algorithm allow the learning rate to decrease from a large value during the 

learning process. 

In this study, two types of neural networks are used: Feedforward Neural Network and 

Recurrent Neural Network. Feedforward neural networks are the networks where 

connections between neurons in layers do not form a cycle. Which means the input 

propagates only in the forward direction (from input layer to output layer). If the network 

composed of more than one hidden layer they are called as multilayer feedforward neural 

networks (multilayer perceptrons). When feedforward neural networks are extended to 

include feedback connections, they are called recurrent neural networks. Since neuron’s in 

layer has self-connection, they are considered as networks with a memory. Schematic 

diagram of both network types is given in Fig.1. 

 

Figure 1.a: Schematic diagram of feedforward neural 
Network 

 

 

   

                                                                                                
Figure 1.b: Schematic diagram of recurrent neural network 

 

There are some tricky points about neural networks. There is no general solution to decide 

how many hidden layers and how many neurons in networks in deep learning community.  

34 
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But in general, to approximate more complicated dynamics, we need more hidden layers. 

Although, we mentioned about backpropagation learning algorithm, there many variants of 

it, so choice of learning algorithm is not unique and depends on the problem on hand. 

3. Chaotic Dynamical Systems 

In order to compare the capability of neural networks in forecasting chaotic time series, two 

systems are used: Duffing oscillator, Rössler System. In the following subsections, the 

mentioned systems are defined: 

 

3.1.  Duffing Oscillator 

The chaotic dynamics of Duffing oscillator has been studied in many works in literature. The 

Duffing equation that is used in this study is:  

�̈� + 𝛿�̇� + 𝛽𝑥 + 𝛼𝑥3 = 𝛾sin (𝑤𝑡)                                          (5) 

The given system displays chaotic behavior with for parameter values 𝛾 = 0.42, 𝛿 = 0.5, 𝛼 =

−1, 𝛽 = 1, 𝑤 = 1 and initial conditions (x0, y0)=(0.5021,0.17606) and trajectory of the system is 

given in the Fig. 1. 

 

Figure 2: Duffing oscillator with chaotic behavior 

 

3.2.  Rössler System   

35 



AJIT-e: Online Academic Journal of Information Technology 
2019 Bahar/Spring– Cilt/Vol: 10 ‐ Sayı/Num: 37 
DOI: 10.5824/1309‐1581.2019.2.002.x 

  

 

http://www.ajit‐e.org/?menu=pages&p=details_of_article&id=431 

 
 

32 

The second system we are interested in is the Rössler system or attractor: 

𝑑𝑥

𝑑𝑡
 =  −𝑦 –  𝑧 

 
𝑑𝑦

𝑑𝑡
= 𝑥 +  𝑎𝑦                                                (6) 

𝑑𝑧

𝑑𝑡
 =  𝑏 +  𝑧(𝑥 −  𝑐) 

Where a, b, c are real constant parameters of the system. For a = b = 0.2, c = 5.7, the system 

has corresponding Lyapunov exponents: (0.0714, 0, -5.3943). Since there exists a positive 

Lyapunov exponent the system displays chaotic behavior. (see Fig. 3)  

 

Figure 3: Rössler Attractor for given set of initial conditions and parameters 

4. Prediction of Chaotic Time Series with Neural Networks 

The systems that we are going to use for comparing the capability of neural networks in 

forecasting chaotic time series were defined in the third section, In this section, we compare 

the performance of three different neural networks: multilayer feedforward neural network, 

single layer feedforward and single layer recurrent neural network.   

In this study, we have used firstly, feedforward neural network with one hidden layer with 

m number of input units.  Duffing oscillator is two-dimensional system (d=2). According to 

Taken’s theorem, an embedding dimension must be less than or equal to 2d+1. We choose 

embedding dimension m=4. Then we use multilayer feedforward neural with the following 

architecture (m: 2m: m: 1) which is the same architecture used in (de Oliveira, Vannucci, & 

36 
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da Silva, 2000). As a third architecture we use Elman’s recurrent neural network with one 

hidden layer. 

In our simulations, performances of the three mentioned neural networks are compared 

using data with and without additive noise. For performance comparison of neural network 

without noise case we let 𝑦𝑡 = 𝑥𝑡 where yt  is our target variable. For the noisy data 

generation, we add noise to our data in the following way: 

𝑦𝑡 = 𝑥𝑡 + 𝑢𝑡                                                                (7) 

Where ut represents the noise component and 𝑢𝑡 = 𝜂𝜎𝑔𝑡 where σ is sample standard 

deviation of xt and 𝜂 is noise level which takes different values between 0 < 𝜂 < 1and gt is 

standard normal random variable. 

 In the result, for forecast performance of each network root-mean-square error (rmse) is 

used as performance criteria. Using the multilayer feedforward neural network (MFN) with 

architecture (4:8:4:1), the neural network predicts the actual time series perfectly with 

rmse=3.003x10-5 for Duffing oscillator (without noise) and predicted and original time series 

are plotted in Fig. 4.a. For Duffing system, we use the MFN with architecture (4:8:4:1) and for 

without noise, the network is very efficient. In Fig 4.b, predicted and original time series are 

for Rössler system without noise case is given. 

 

Figure 4.a: Prediction of Duffing oscillator  time series 
without noise for  MFFN(4:8:4:1) 

 

Figure 4.b: Prediction of Rössler time series without noise for 
MFN(6:12:6:1) 

For the same data set we have used Elman’s recurrent neural net in predicting Duffing 

oscillator, which is very similar to single hidden layer feedforward neural network, but it 

also uses previous estimation value as an input which makes it a neural network with a 

memory. For single hidden layer we try to choose optimal number of neurons. We choose 

optimum number of neurons as 8 which is two times the embedding dimension m=4. For 

forecasting result, Elman network display performance as good as multilayer feedforward 

neural network. Elman’s neural network gives rmse=3.349x10-5. Estimation of Elman’s 

neural network and original data is plotted in Fig. 5. It is also important to note that with the 

37 
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given architectures of networks, Elman’s network gives results for smaller number of epochs 

than the multilayer feedforward one. 

 

Figure 5: Elman's neural network prediction of Duffing oscillator 

Finally, for the Duffing oscillator without noise, we test the performance of feedforward 

neural network with single hidden layer. For the single hidden layer, number of neurons is 

chosen as again 2m which is same as Elman’s recurrent network. With single hidden layer 

neural network, performance of forecast is slightly increasing with compared to recurrent 

one with rmse=3.328x10-5 but it is worse than the multilayer neural network. In addition, the 

speed of convergence of single hidden layer feedforward neural network is higher than the 

recurrent one. 

After forecasting the Duffing data set without noise, we test the noise filtering capabilities of 

these three types of neural networks. For η=0.01, multilayer neural network, forecast 

performance is good but as it is expected it is worse than without noise (with rmse=0.059). 

Estimated and original data is plotted in Fig. 6. For η=0.1, performance of multilayer 

feedforward decrease as expected compared to previous case (Fig. 7). It gives rmse=0.5755. 

For η=0.2, rmse increases to 0.765(see Fig. 8).   

 

38 
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Figure 6: Duffing system prediction of MFFN with error rate η=0.01 

 

Figure 7: Duffing system prediction of MFFN with error rate η=0.1 

 

Figure 8: Duffing system prediction of MFFN with error rate η=0.2 

To increase the forecasting performance of MFFNN, we increase neuron numbers in layer 

from 4 to 5. With this change, we train the network and make prediction for data with error 

39 
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rate η=0.2. Neural network gives better estimate with rmse=0.6635 and forecast of modified 

MFFNN is plotted in Fig. 9. 

 

Figure 2: Duffing system prediction of MFFN with error rate η=0.2 where network with network architecture (5:10:5:1) 

After analyzing noise filtering performance of MFN, we apply same tests to Elman type 

recurrent network. In (Gencay &Tung, 1997), they demonstrated that recurrent neural 

networks are more accurate than single layer feedforward neural networks. In our analysis, 

we observe that for η=0.01, it performs a little bit better than MFN but there is no significant 

improvement (with rmse=0.053). When we increase the error rate to η=0.1, performance of 

recurrent network is again close to MFN (with rmse=0.5498). For η=0.2, performance of 

recurrent network clearly better than MFN with rmse=0.6487. Prediction of recurrent 

network with error rate η=0.2, is plotted in Fig. 10. 

 

Figure 10: Duffing system prediction of recurrent network with error rate η=0.2 

Single layer feedforward network, for time series with error rate η=0.01, performs as well as 

both of the other two neural nets. For η=0.1, performance of this network is worse than both 

recurrent and multilayer feedforward one. Finally, for η=0.2, forecast performance is getting 

40 
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worse than previous cases as it is expected. In Table 2, rmse values are given for prediction 

performance of each neural network with and without noise.  

 

Figure 3: Duffing system prediction of single layer feedforward network with error rate η=0.2 

 

It can be seen in previous analysis results, as it is mentioned in (Gencay &Tung, 1997), RN is 

better predictor model than FN in noisy time series. For higher noisy level (η=0.2) 

interestingly performance of MFN is not as good as RN and FN. In Table 1, rmse values of 

each prediction for Duffing system is given.  

For the Rössler system, we test each network architecture. In summary Rössler system also 

can be estimated very efficiently by described network architecture in Table 2. Similar to 

Duffing oscillator, when we increase the noise level, prediction error rates increase. In Table 

2, rmse error values for each prediction of Rössler system are given. 

As final numerical study, we test the performance of one hidden layer feedforward neural 

network in estimating Lyapunov exponents. In general, if the system has a positive 

Lyapunov exponent, the system can be classified as chaotic. To test neural networks for 

estimation of Lyapunov exponents of chaotic time series, R.Gencay (Gencay & Dechert, 1992) 

developed an algorithm which is mainly based on the Ruelle-Eckman algorithm (Eckmann, 

1987). In his study, they test many chaotic systems such as Lorenz system, they obtain great 

accuracy in their estimation. In this study, we extend their test by testing their routines using 

Rössler and Duffing oscillator. In Table 3, network estimates for Rössler and Duffing 

oscillator is given. As it can be seen, single layer neural network is very efficient in 

esittmation of Lyapuonv exponents. 

Table 1: rmse values of each network with respect to changing error rate η for Duffing oscillator 

Network Model rmse  

η =0 (no noise) 

41 
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MFN(4:8:4:1) 3.003x10-5 
RN(8) 3.349x10-5 

FN(8) 3.328x10-5 

η =0.01 

MFN(4:8:4:1) 0.059 
RN(8) 0.053 

FN(8) 0.058 
 η =0.1 

MFN(4:8:4:1) 0.5755 
RN(8) 0.5498 
FN(8) 0.5997 

η =0.2 

MFN(4:8:4:1) 0.7650 

RN(8) 0.6487 

FN(8) 0.6766 

 

 

 

Table 2: rmse values of each network with respect to changing error rate η for Rössler System 

Network Model rmse  

η =0 (no noise) 

MFN(6:12:6:1) 3.3625x10-5 

RN(12) 3.399x10-5 

FN(12) 3.388x10-5 

η =0.01 

MFN(6:12:6:1) 0.048 

RN(8) 0.053 

FN(8) 0.054 

η =0.1 

MFN(4:8:4:1) 0.8755 

RN(8) 0.7498 

FN(8) 0.8997 

η =0.2 

MFN(4:8:4:1) 0.9650 

RN(8) 0.8487 

FN(8) 0.9887 
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Table 3: Lyapunov Exponent prediction values by feedforward neural network 

Network Rössler System 

 Lyapunov exponents Estimated exponents 

FN(6) (0.0714, 0, -5.3943) (0.0796,0.0021,-5.5223) 

 Duffing Oscillator 

 Lyapunov exponents Estimated exponents 

FN(8) (0.3675, 0.4256) (0.3254, 0.4613) 

 

5. Conclusion 

In this study, we compare and test the performance of three neural network architecture for 

prediction of chaotic time series generated form dynamical system. We observe very simple 

network structures are very efficient estimation of nonlinear phenomena compared to other 

well-known technics such least square estimates. According to our observations, their success 

originated from their ability in nonlinear function estimation. They are also very trustful tool 

prediction of chaotic parameters such as Lyapunov exponents as we reported.  
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