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FORECASTING MORTALITY RATES WITH A GENERAL
STOCHASTIC MORTALITY TREND MODEL

ETKIN HASGÜL, A. SEVTAP KESTEL, AND YELIZ YOLCU-OKUR

Abstract. This paper presents a model, which can closely predict the fu-
ture mortality rates whose effi ciency is performed through the comparisons
with respect to Lee-Carter and mortality trend models. This general model
estimates the logit function of death rate in terms of general tendency of the
mortality evolution independent of age, the mortality steepness, additional
effects of childhood, youth and old age. Generalized linear model (GLM) is
used to estimate the parameters. Moreover, the weighted least square (WLS)
and random walk with drift (RWWD) methods are employed to project the
future values of the parameters. In order to ensure the stability of the outputs
and construct the confidence intervals, Monte Carlo simulation is used. The
impact of the proposed model is implemented on USA, France, Italy, Japan
and Israel mortality rates for both genders based on their ageing structure. A
detailed comparison study is performed to illustrate modified mortality rates
on the net single premiums over mortality trend model and Lee-Carter model.

1. Intoduction

Having well-constructed mortality tables and accurate future mortality rate pro-
jections are important in many areas. In the case of under or over estimation of
the rates, unpredictable losses can be experienced, especially, by the life and pen-
sion companies. For this reason, modeling mortality rates accurately has gained
importance in recent decades, and been used especially to measure the longevity
risk. The future values of the mortality rates are projected by many methods. The
main idea of these studies is to model or systematize mortality rates from the past
to the future so that the actuarial calculations become proper for both present
and the future. In the literature, Lee and Li (2005) proposed a multi-population
mortality modeling as an extension of Lee-Carter method which is accounted as a
stochastic model [10]. Also, Jarner and Kryger (2011) studied a multi-population
mortality model which includes long-term trend and short- to mid-term deviations
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using time series model [8]. An application of Canada and US female mortality has
been conducted by Li and Hardy (2011) with respect to basis risk in longevity index
hedges [9] incorporating four extensions to the Lee-Carter model. Börger (2010)
proposed one-year period longevity risk by considering the adequacy of Solvency
II scenarios [1]. The adequacy of longevity shock has been analyzed by comparing
the resulting capital requirement to the Value-at-Risk (VaR) based on a stochastic
mortality model. On the other hand, Plat (2011) modeled the changes of long-term
mortality trend from the aspects of mortality and longevity risk proposing one-year
VaR measure which aims at covering the risk of the variation in the projection year
as well as the risk of changes in the best estimate projection for future years [11].
Another remarkable study was conducted by Richards et al. (2014) using different
methods like Lee-Carter and Cairns-Blake-Dowd in order to determine one-year
period longevity risk [12]. Börger et al. (2014) proposed a new mortality trend
model, which contributed to a better quantification of mortality and longevity risk
over time, under modern solvency regimes [2]. In their work, mortality trend model
represents young and old age effects more precisely: They use three variables sep-
arately for each group of age. The outputs of this model are employed to compare
the capital requirements with respect to Solvency II standard formula.
Constructing a model that includes additional effects of specific age groups is

crucial for many pension systems, since different age groups have different effects
on the trend. If the parameters of specific age effects are not used, the model
becomes less sensitive to inner trends of each age groups. As the proportion of
a specific age group whose inner trend is not well represented increase, the gap
between installments and the compensations increase, too. For this reason, in this
paper, we aim (i) to create a mortality trend model which includes both stochastic
and deterministic terms to project future mortality rates accurately; (ii) to propose
a modified trend model which includes the impact of young ages which is crucial,
especially for populations having higher proportions at younger ages; (iii) to incor-
porate more stochastic structure to capture the stylized facts of mortality trend
by modifying the model proposed by Börger (2014). We show the effect of these
models on the valuation of net single premiums. The inclusion of the childhood ef-
fect parameter as modification to the linear model having the impact of old, center
and young ages on mortality rates is expected to give more sensitive estimation of
mortality rates. In this aspect, to our best knowledge, this study contributes to the
literature of the quantification of influence of childhood effect by determining the
threshold age to describe the childhood based on population dynamics. Validation
of modified mortality trend model is performed using Mean Absolute Percentage
Error (MAPE), R-Squared and applied to mortality tables from selected national-
ities: USA, France, Italy, Japan and Israel. The choice of these countries is made
according to their ageing structure such as young, middle and elderly populations.
The results of the mortality trend model, the modified mortality trend model and
Lee-Carter model are compared to demonstrate the effi ciency on predictions.
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This paper is organized as follows: Trend and modified trend models are pre-
sented in Section 2 along with the outline of the proposed model. Section 3 includes
the application of the modified model on the mortality tables of the selected coun-
tries. Parameter estimation, projection of future mortality rates and comparison of
the methods are also performed. The impact of the models on net single premium
valuations is determined in Section 4. Last section concludes the paper.

2. Trend Models

The popularity of the trend models has been increased during the last decades
with the Lee-Carter model [3]. There are also other trend models such as Heligman-
Pollard [6], Cairns-Blake-Dowd (CBD) [14] which have significant contributions in
this field. In this study, Lee-Carter is taken as benchmark model for the comparison,
as it is the most commonly used method in the literature and practices.

2.1. Lee-Carter (LC). An extended version of the LC mortality rate model pro-
posed by Girosi & King (2007) is [4]:

log[qxt] = αx + βxκt + εxt, (1)

where qx,t is the central rate of mortality at age x and in year t, αx is the general
tendency in the trend of mortality rates which depends on age, βx explains the
rate of decline in response, κt is a level of mortality index and the random error
εxt follows a Normal distribution with mean 0 and variance σ2ε with the following
restrictions ∑

βx = 1 and
∑

κt = 0. (2)

Here, x and t are age and time components, respectively. Singular Value Decom-
position (SVD) is used in order to estimate βx and κt parameters.

2.2. Mortality trend model (MTM). The mortality rate, qx,t, is expressed as
[2]:

logit qx,t = αx+κ
(1)
t +κ

(2)
t (x−xcenter) +κ

(3)
t (xyoung−x)++κ

(4)
t (x−xold)++γt−x

(3)
where logit(qx,t) = ln(

qx,t
1−qx,t ) and x+ = max{x, 0}. Here, αx is the location

parameter, κ(1), κ(2), κ(3) and κ(4) are time dependent parameters, which represent
the trend of ages, and γ is a normally distributed random error.
Börger (2014) states that including ages smaller than 20 disturbs the general

trend of the mortality rate evolution and it leads to an increase in the empirical
errors of the model, since mortality rates decreases over years at the childhood ages
contrary to the rest of the ages [2]. Hence, small ages are generally not taken into
account in the most of the similar studies. In order to increase the sensitivity to
younger ages, we propose adding another additional effect parameter: childhood
effect. Therefore, modified mortality trend model (M-MTM) should include the
ages smaller than 20 in the analysis preventing such disturbance.
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2.3. Modified mortality trend model (M-MTM). The model with childhood
effect parameter is given as:

logit qx,t = αx + κ
(1)
t + κ

(2)
t (x− xcenter) + κ

(3)
t (xchild − x)I(x<xchild)

+κ
(4)
t (xyoung − x)I(xchild<x<xyoung) + κ

(5)
t (x− xold)I(x>xold) + γt−x (4)

M-MTM includes another time dependent parameter κ(5) at which, indicator
functions, I, are used to define valid ranges for κ(3), κ(4), and κ(5). Having these
parameters specified for the age ranges is crucial to express the special effects of the
age intervals. This model is expected to incorporate the impact of young ages into
the estimation and projection of the mortality rates with more precision especially
for the countries having high rate of birth and young population. Moreover, since
the age boundaries such as xchild, xyoung, xcenter and xold can be rearrangeable
based on mortality breaks, the model is also applicable for the countries having
dominancy on elderly people which is shown by Hasgul (2015) [5].
The M-MTM requires certain steps to estimate the parameters based on time-

varying structured data. Following algorithm illustrates that the parameter estima-
tion is the first performed by conditional GLM with respect to the age constraints
on parameters κ(3), κ(4), and κ(5). After estimation of κ(.) parameters, the fu-
ture values of the parameters are projected using WLS and RWWD methods. The
future mortality rates are obtained by substituting the projected κ(.) parameters
into the mortality trend model. Finally, a Monte Carlo algorithm is employed to
resemble the predictions.
Let the mortality rates be defined as qx,t at age x and in year t. The steps of
the algorithm:

(1) Apply the logit transformation to qx,t as log(qx,t/(1− qx,t))
(2) Apply GLM to the transformed mortality rates in given intervals as in

Eqn[4]
(3) Test if WLS model for κ(1) is significant
(4) Test if κ(2), κ(3), κ(4), κ(5) are stationary
(5) Apply WLS model for prediction of κ(1)

(6) Apply appropriate time series model for forecasting κ(2), κ(3), κ(4), κ(5)

(7) Find future prediction of mortality rates via future parameters
(8) Resemble the predictions of m-simulations by MC

The parameters in Eqn.(4), κ(1), κ(2), κ(3), κ(4) and κ(5) represent general ten-
dency, mortality steepness, additional effects of childhood, young and old ages,
respectively.
The estimation of constant parameter, αx for a fixed x defined by

αx =
1

tmax − tmin + 1

tmax∑
t=tmin

logit qx,t, (5)



914 ETKIN HASGÜL, A. SEVTAP KESTEL, AND YELIZ YOLCU-OKUR

where tmin and tmax are starting and ending year of the time span of the data,
respectively.
Estimation of κ(.) is performed through a GLM, which enables more flexible

fitting and compatibility with non-normal distribution of errors. By employing
GLM, κ(.)t are estimated in the interval [tmin, tmax]. The GLM equation of the
M-MTM is given as follows

logit(qxmin,t)− αxmin

logit(qxmin+1,t)− αxmin+1

...
logit(qxmax,t)− αxmax

 ≈M

κ
(1)
t
...

κ
(5)
t

 ,

where M is the coeffi cient matrix of the mortality trend model.
After the estimation process the next step is the projection of the future model

parameters, coeffi cients and the future mortality rates.
The mortality tendency κ(1) is forecasted by employing WLS method which

advantageously reflects the behaviour of the random errors and can be used with
either linear or non-linear functions.
The first step of projection process is fitting a weighted least square model to

κ
(1)
t . The weights (wt) are given as:

wt =

(
1 +

1

h

)t−tmax

; for h > 0. (6)

Note that the weights are chosen in such a way that the last years of the data has
more contribution to the model than the earlier years in the projected model with
the help of weight factor, h [2]. As t gets close to tmax, wt gets larger with an
increasing momentum for all h greater than zero.
We add a stochastic term to the best fitted regression line ltmax , where t ∈

[tmin, tmax]. Hence, the forecast for κ(1)t is obtained as follows:

κ
(1)
t = lt−1(t) + ε

(1)
t (σ(1) + σ̄(1)), (7)

where ε(1)t ∼iid N (0, 1) for all t ∈ [tmin, tmax]. The volatility, σ(1), is the standard
deviation of the empirical errors (κ(1)t − lt−1(t)) for [tmin + 2, tmax] obtained from
the WLS estimation and the term σ̄(1) is optional volatility which is assumed as
zero [2]. The projection of κ(1)t over time is done iteratively by including each new
element of projection in the following forecast.
As experienced from the literature, κ(2), κ(3), κ(4) and κ(5) parameters are gen-

erally non-stationary and have trends over time. Thus, RWWD is proposed to
capture this stochastic pattern. In RWWD, the mean and standard deviation dif-
ferences between κ(.)t and κ(.)t−1 are assumed to be the drift, µ

(.)
t , and the volatility,
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σ(.), respectively. The dynamics of each parameter are given as follows:

κ
(i)
t = κ

(i)
t−1 + µ

(i)
t + ε

(i)
t ; for i = 2,3,4,5 (8)

with ε
(.)
t ∼ N (0, σ(.)).

Finally, the future mortality rate projections are determined by Monte Carlo
simulations. In addition, standard deviation of the generated samples are used in
the construction of the confidence intervals (CI) for projections.

3. Implementation of the Model

MTM, M-MTM and LC Model are applied to the mortality rates of selected
countries over years and the results are compared in order to test whether pro-
posed model illustrates significancy with respect to age, time and country specific
characteristics.
The reliability of the model should be examined through a validation process in

order to apply the model to the selected data. Throughout the validation process,
mortality rates corresponding to the last 8 years of each country are employed
as in-sample justification and compared with projections. MAPE and R-Squared
statistics are used in the comparison of the observed rates versus projections, and
95% confidence interval is constructed. Depending on the accuracy of in-sample
forecast process, 10 years of projections are made on gender base for the selected
countries.
The projections are made with the help of ’demography’package of R-code which

uses the time series forecasts.

3.1. Description of the data. Five countries are selected with respect to their
ageing structure. The main indicator for the classification of age structure is the
median age. Italy (IT) and Japan (JPN) are supposed to have elderly popula-
tions with median ages 44.5 and 46, respectively. France (FR) and the United
States of America (USA) are supposed as middle-aged countries having median age
around 39, whereas Israel represents a young age population with median age of
30. Mortality rates are retrieved from Human Mortality Database [7]. The longest
possible common (joint) time span (1960-2012) is selected. However, since Israel
(ISR) mortality rates on the data sources are found to be available only after 1983,
this country’s mortality is studied within the years 1983-2014. Mortality rates for
the ages 10 and 100 are taken into account in the study.

3.2. Parameter estimation. GLM has the advantage on relaxing normality as-
sumption on dependent variable. Having two outcomes as being alive or dead in
defined period allows us to assume that the distribution of mortality rates are
Bernoulli distributed with the probabilities px and qx, respectively. Thus, the logit
function can be used as a link in order to transform response variable, qx,t, into
normal distribution which enables us to employ GLM and the parameters of the
trend model in Eqn (4) are estimated. The dependence between mortality rates and
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Table 1. The median ages and the selected time frame

Country Group Years Child* Young* Center* Old* Median
Italy Old 1960-2012 30; 30 55; 55 60; 60 85; 85 44.5
Japan Old 1960-2012 30; 30 55; 55 65; 65 85; 85 46.1
France Middle 1960-2012 35; 42 60; 55 67; 65 85; 85 40.9
USA Middle 1960-2012 27; 25 55; 55 60; 60 85; 85 37.6
Israel Young 1983-2014 40; 40 55; 55 60; 60 85; 85 29.9

*Age boundaries for genders (Male; Female)

its regressors are quantified (Table 2) and the correlations indicate that the general
mortality trend, κ(1), has strong positive correlation to the corresponding mortal-
ity rates for all countries. On the other hand, old age effect, κ(5), expose negative
correlations for all countries. Japan female (F) and France (F) cases yield the most
significant correlations with the response for each parameter (old age parameter is
in negative direction) compared to the others.

Table 2. Correlation coeffi cients between response variable and
regressors in M-MTM

MALE IT JPN USA FR ISR
general (κ(1)) 0.9835 0.9967 0.9944 0.9903 0.9845
center (κ(2)) -0.4786 0.8148 0.6722 0.686 0.4841
child (κ(3)) 0.2978 0.8523 0.8041 0.9749 0.6438
young (κ(4)) -0.6998 0.1016 -0.5707 0.0994 -0.6241
old (κ(5)) -0.7027 -0.8527 -0.9246 -0.8354 -0.6139

FEMALE IT JPN USA FR ISR
general (κ(1)) 0.9916 0.9979 0.9961 0.9868 0.9906
center (κ(2)) 0.7347 0.9616 0.1592 0.9437 0.5068
child (κ(3)) 0.8278 0.897 0.8884 0.979 0.6371
young (κ(4)) 0.1404 0.9689 0.3562 0.6889 -0.245
old (κ(5)) -0.8931 -0.9455 -0.8584 -0.9526 -0.7567

The parameter estimates are obtained according to the proposed algorithm.
Findings for some selected years are illustrated for USA male (M) data for a slice
of the time span in Table 3. We see that the change in parameters over years is
recognizable, especially in κ(3), κ(4) and κ5 which correspond to childhood, young
and old ages, respectively. Even if the changes in κ(3), κ(4) and κ5 are greater than
in κ(1) proportionally, it is important to note that κ(1) is the leading variable which
has major effect on the mortality rate and makes it dramatically decrease over time
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Table 3. Estimated κ(.) parameters for USA (M) mortality rates

Parameter 1960 1961 1962 . 2010 2011 2012
κ(1) -3.7819 -3.8041 -3.7866 . -4.4662 -4.4751 -4.4866
κ(2) 0.0851 0.0852 0.0851 . 0.0805 0.0804 0.0799
κ(3) 0.0053 0.0044 0.0028 . -0.0221 -0.0212 -0.0244
κ(4) -0.0064 -0.0064 -0.0068 . 0.0024 0.0030 0.0032
κ(5) -0.0280 -0.0304 -0.0234 . 0.0422 0.0419 0.0452

(Figure 1). In other words, mortality rates generally decrease with respect to the
major effect of κ(1).
In order to compare the parameters of different populations with each other, some

transformations on the parameters should be conducted. Hence, some adjustments
on κ(1) and κ(2) are done as follows [2] :

κ
(2)
t ⇐= κ

(2)
t + ϕ1,

αx ⇐= αx − ϕ1(x− xcenter),

ϕ2 = αcenter,

αx ⇐= αx − ϕ2,

κ
(1)
t ⇐= κ

(1)
t + ϕ2,

where ϕ is the slope of the fitted regression line of αx for x ∈ {xchild, ..., xold}. These
adjustments do not detort the results. However, they bring the parameters onto a
comparable scale so that the explanation on the parameters become legitimate. κ(.)

estimates for the selected countries (M, F: 1960-2012) are illustrated in Figures 1-5.
These graphs depict that the mortality rates of all countries in the study decrease
over time and females generally tend to live longer compared to males which can
be inferred from general tendency parameter (κ(1)). While childhood parameter
(κ(3)) decreases over time, the old age parameter (κ(5)) increases. In other words,
these graphs shows us that the mortality rates of people aged below the boundary
of childhood parameter (κ(3)) decrease more than the amount the general tendecy
(κ(1)) proposes. However, the mortality rate of people aged above the boundary of
old age parameter (κ(5)) decreases less than the amount general tendency proposes.
This illustrates even though the mortality trend model has a decreasing pattern,

the contribution of each age class may differ in the amount of the decay keeping up
the pace of the decay based on mortality structure.
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Figure 1. Estimation of general tendency parameter (κ(1))

Figure 2. Estimation of slope in the logit parameter (κ(2))

3.3. Projection of future mortality rates. A future time frame of 2013-2022 is
achieved by estimating κ(.). A validation period 2005-2012 is taken into account to
determine the estimation power of M-MTM. Projection of κ(1) is performed based
on WLS as presented in earlier sections. Whereas, for the projections of κ(2), κ(3),
κ(4) and κ(5), a stochastic modeling approach, RWWD is employed.



FORECASTING MORTALITY RATES 919

Figure 3. Estimation of childhood parameter (κ(3))

Figure 4. Estimation of young age parameter (κ(4))

WLS method is applied with five different values of weight factor h in order to
detect the best choice. κ(1) projection values with the weight factors h = 1, h = 2,
h = 5, h = 10 and h = 20 are shown in Figure 6. Small h values leads to less
constribution of previous years. From Figure 6, we see that the projections with
h = 5, h = 10 and h = 20 appear to have more stable paths than the projections



920 ETKIN HASGÜL, A. SEVTAP KESTEL, AND YELIZ YOLCU-OKUR

Figure 5. Estimation of old age parameter (κ(5))

with h = 1 and h = 2 considering the estimated κ(1) values. Hence, it can be
inferred that the contribution of past years are important.
The linear model of years and κ(1) is significant (p-value < 0.001) and has R2 =

98%. Residuals also follow normal distribution (p-value of 0.9933).

Figure 6. Effect of choice of h on κ(1) trend

The sequential estimation of κ(1) requires the following steps:
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Figure 7. Projections of κ(2), κ(3), κ(4) and κ(5) for the test and
the forecast periods

(i) Apply WLS to n-estimated κ(1)’s to predict (n+ 1)th value of κ(1),
(ii) Apply WLS to (n+ 1)-estimated κ(1)’s to predict (n+ 2)th value of κ(1),
(iii) Continue until k projected (n+ k in total) κ(1) values are obtained.

Since the data of κ(2), κ(3), κ(4) and κ(5) are non-stationary processes and have
drifts, RWWD method is used to model future values of κ(2), κ(3), κ(4) and κ(5).
Average and standard deviation of differences between nth and (n + 1)th values
in each series of κ(.)’s correspond to drift and volatility, respectively, given by the
following equation.

κ̂
(.)
t+1 = κ

(.)
t + µ(.) + ε

(.)
t , (9)

where µ(.) is drift, σ(.) is standard deviation and it is assumed that εt ∼ N (0, σ(.)).
The trends of κ(2), κ(3), κ(4) and κ(5) for a time interval between 1960-2022

are shown in Figure 7. While interpreting the projections of κ(4) (additional effect
of young ages) and κ(5) (additional effect of old ages) parameters, the sustainable
decrease in κ(1) parameter should be considered as well. Although, an increase
in the projections of parameters is observed, it does not necessarily indicate the
increase in the mortality rates of specific age groups, such as young and old ages.
Since κ(1) has a linear decrease as shown in Figure 6, we infer that the rate of
reduction in mortality rates of young and old ages decreases over time as values of
κ(4) and κ(5) increase (Figure 7).
Based on the forecasts of κ(1), κ(2), κ(3), κ(4) and κ(5), mortality rates corre-

sponding to the period of 8 years are projected by employing Monte Carlo simula-
tion with m = 104 trials for the random components for USA (M) case. To justify
the precision and accuracy of the model, MAPE, R2-values and 95% confidence
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interval of projected mortality rates are determined. Table 4 shows that MAPE
values are smaller than 10%. The range of error is between 4.7% and 8% and the
average of all errors is found to be 6.4%. Moreover, R2-values are considerably high
which indicate the accuracy of the proposed M-MTM.

Table 4. MAPE and R2-values for USA (M) between 2005-2012

% 2005 2006 2007 2008 2009 2010 2011 2012 Average

MAPE 4.75 5.43 5.60 5.63 7.47 8.00 6.89 7.65 6.43

R2 99.99 99.98 99.95 99.97 99.93 99.94 99.98 99.94

Figure 8. In-sample estimates of USA (M) mortality rates (α =
5%, M, x=55)

For the illustration purposes and space limitations, the predicted mortality rates
of age 55 for USA (M) are exibited with 95% confidence interval based on the mean
and standard deviation of estimates obtained from Monte Carlo simulation for years
2005-2012. As it is seen in Figure 8, all the observed mortality rates remain within
the confidence interval of in-sample estimates.
The high values of R2 (>99%) are also the indication to a systematic risk which

is presumed to arise from the high proportion of variance in the dependent variable
explained by independent variables in the M-MTM.
Henceforth, we predict future 10-years (2013-2022) mortality rates with 95%

confidence band using M-MTM whose outcomes are plotted in Figure 9 and 10 for
M and F, respectively. We see that the pattern of mortality rates in USA at age
55 is consistent for both genders.
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Figure 9. Projection for USA mortality rates and 95% CI (x=55, M)

Figure 10. Projection for USA mortality rates and 95% CI
(x=55, F)

3.4. Comparison of models. The comparison of three models, MTM, M-MTM
and LC, is carried out for each country on gender base for the years 2005-2012
except for Israel whose time frame is taken as 2007-2014. MAPE values are shown
in Table 5. The average of the values are taken as indicators of performance of the
models. The MAPE values for years between 2005 and 2012 yield an average of
value ranging between 4.69% and 20.78% for old and middle age countries. However,
MAPE averages for young age country (Israel) are around 17% and 20%. The best
performance is marked by bold font for each case in Table 5. It is observed that
the minimum average error is achieved by M-MTM, except Italy (M) where LC
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model outperforms compare to the others. It is also interesting to note that Italy
(F) results do not show any superiority in any model. It can be concluded that
M-MTM estimation carries almost the majority in good performance compared to
the other two. To determine if the MAPE values of each model are statistically

Table 5. MAPE values for old and middle-aged countries (in %)

GROUP DATA GND MODEL 2005 2006 2007 2008 2009 2010 2011 2012 Mean
MTM 16.56 19.59 18.33 17.37 20.54 26.00 23.24 27.38 21.13

OLD ITA M M-MTM 15.18 17.33 16.96 14.29 19.65 24.76 22.68 25.83 19.59
LC 8.36 9.21 10.14 9.40 13.37 15.45 16.36 18.45 12.59
MTM 8.42 8.42 8.84 8.45 8.54 9.74 8.06 7.66 8.52

OLD ITA F M-MTM 7.48 7.14 8.58 7.63 7.61 9.75 8.23 9.25 8.21
LC 8.64 5.64 8.38 8.45 9.62 10.34 10.94 11.68 9.21
MTM 11.04 9.03 9.28 10.04 9.53 12.09 17.24 11.98 11.28

OLD JPN M M-MTM 8.01 5.70 6.13 7.15 6.92 9.44 14.01 8.99 8.30
LC 9.13 7.54 8.24 8.67 9.13 10.81 14.34 11.06 9.87
MTM 13.21 14.06 14.12 16.42 17.15 19.25 29.18 21.90 18.16

OLD JPN F M-MTM 10.77 11.59 11.79 13.85 14.83 16.70 27.15 19.32 15.75
LC 16.49 17.39 17.37 19.10 20.19 21.45 30.63 23.62 20.78
MTM 8.85 10.92 12.86 13.50 12.47 13.82 15.57 18.50 13.31

MIDDLE FR M M-MTM 8.59 11.15 12.92 13.10 12.27 13.53 14.63 17.53 12.96
LC 9.10 9.72 11.48 12.28 12.29 13.85 14.74 17.52 12.62
MTM 8.51 7.53 6.51 7.85 8.88 8.65 7.58 10.16 8.21

MIDDLE FR F M-MTM 6.72 6.93 7.14 7.52 8.31 9.94 9.23 11.64 8.43
LC 10.30 10.86 11.18 11.59 11.39 13.05 13.15 14.32 11.98
MTM 5.43 6.37 6.96 7.88 9.41 10.78 9.60 10.01 8.31

MIDDLE USA M M-MTM 4.76 5.47 5.50 5.99 7.49 8.48 7.35 7.74 6.60
LC 6.04 6.85 7.43 7.54 9.01 9.55 9.86 10.29 8.32
MTM 7.42 7.61 7.22 8.06 7.88 8.56 9.07 9.37 8.15

MIDDLE USA F M-MTM 4.70 3.69 3.78 4.29 5.08 5.03 5.30 5.69 4.69
LC 6.60 7.62 7.60 8.76 9.54 10.59 11.07 11.37 9.14

2007 2008 2009 2010 2011 2012 2013 2014
MTM 15.69 15.26 19.21 19.10 22.13 26.42 28.15 24.69 21.33

YOUNG ISR M MMTM 14.55 13.07 14.70 16.08 18.05 22.73 23.60 20.01 17.85
LC 16.48 15.86 17.45 17.83 23.60 28.49 25.03 24.39 21.14
MTM 14.86 18.50 17.51 17.44 17.91 17.49 22.07 18.78 18.07

YOUNG ISR F MMTM 13.72 18.88 17.06 19.13 20.06 20.53 24.92 21.93 19.53
LC 16.44 19.29 19.48 19.26 18.45 17.88 25.52 20.38 19.59

different from each other, t-test is performed for each population considered (Table
6). The results of comparison tests indicate that the M-MTM generally has a
better precision than MTM and LC. For Italy (M) which is in old group, LC has
a better precision compared with M-MTM and MTM. It can be generalized that
M-MTM performs better than Lee Carter for the rest of the cases. MTM is found
to be preferable for some cases such as Israel (F) mortality rates. This can be
distinguished in pairwise comparisons which are also differentiated by colors (Table
6). As blue color refers to M-MTM is preferable, green to MTM and red color
stands for superiority of LC to the others. Black color shows no favoration on the
model choice.
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Table 6. MAPE comparisons via p-values of t-tests

DATA GND MMTM&MTM MMTM&LC MTM&LC
USA M 0,00012* 0.00005* 0.94370

F <0.00001* 0.00002* 0.03590*
FR M 0.05530 0.25270 0.01760*

F 0.62840 <0.00001* 0.00005*
ITA M 0.00091 <0.00001* <0.00001*

F 0.37610 0.08410 0.37480
JPN M <0.00001* 0.00020* 0.00100*

F <0.00001* <0.00001* 0.00002*
ISR M 0.00016* 0.00018* 0.11270

F 0.00310* 0.8754 0.02430*
*statistically significant at 5% level

4. Performance of the Models on the Net Single Premium
Calculations

In order to illustrate the impact of the models on the valuation of NSP, we
assume a hypothetical term life insurance scenario with the following assumptions:
(i) a constant annual interest rate of 10%, (ii) an 8-year term life insurance for
ages 25, 35, 45 and 55. The risk premium corresponding to one unit benefit of life
insurance payment for aged x, which covers next n years [13].

A1
x:n| =

n−1∑
k=0

vk+1kpxqx+k; (10)

where v denotes discount factor, kpx is the probability of living k years at age x
and qx+k stands for the probability of death in one year between age (x + k) and
(x+ k + 1).
Table 7 demonstrates the values of NSP under three models and the original

mortality rates (between 2005-2012) and depicts the best model yielding the closest
NSP to the one obtained with respect to the original. Moreover, Table 7 shows
that MTM gives the closest values to original NSP for age 25, whereas, M-MTM
outperforms the other two models for the ages, 35, 45, 55 for the term life insurance
of 8 years.

5. Conclusion

The prediction of future mortality rates using proposed model (M-MTM) in-
corporates the childhood effect into the mortality trend model (MTM) [2] and the
stochastic approach to estimate its parameters are found to yield remarkable re-
sults. Since the mortality trend of young people has a different slope than the rest
of the population, forecasts including younger ages, such as 5-20 and 10-20, have



926 ETKIN HASGÜL, A. SEVTAP KESTEL, AND YELIZ YOLCU-OKUR

Table 7. The impact of models on NSP of 8-year Term Life insurance

Age Country Gender M-MTM MTM LC Original Best
USA M 0.008287 0.008302 0.008182 0.008561 MTM

F 0.003286 0.002875 0.003235 0.003530 M-MTM
FR M 0.005655 0.005223 0.006684 0.005179 MTM

F 0.001987 0.001790 0.002190 0.001855 MTM
25-33 ITA M 0.004739 0.003997 0.004964 0.003912 MTM

F 0.001407 0.001330 0.001400 0.001280 MTM
JPN M 0.003565 0.003613 0.002969 0.003874 MTM

F 0.001551 0.001616 0.001173 0.001996 MTM
ISR M 0.003750 0.004143 0.004262 0.003676 M-MTM

F 0.001554 0.001414 0.001533 0.001399 MTM
USA M 0.012007 0.012344 0.012515 0.011400 M-MTM

F 0.006408 0.006022 0.006347 0.006580 M-MTM
FR M 0.010960 0.009764 0.010964 0.009125 MTM

F 0.004422 0.004099 0.004697 0.004385 M-MTM
35-43 ITA M 0.007123 0.006334 0.006067 0.005757 LC

F 0.003176 0.003003 0.002924 0.003065 MTM
JPN M 0.006319 0.005884 0.005558 0.006762 M-MTM

F 0.003098 0.003271 0.002572 0.003709 MTM
ISR M 0.005950 0.005785 0.007240 0.005901 M-MTM

F 0.003413 0.003030 0.003306 0.003256 LC
USA M 0.026204 0.027077 0.023213 0.026604 M-MTM

F 0.015079 0.015142 0.014813 0.016409 MTM
FR M 0.026190 0.026482 0.025168 0.024169 LC

F 0.011161 0.010772 0.010458 0.011906 M-MTM
45-53 ITA M 0.016626 0.017518 0.013139 0.014356 LC

F 0.008301 0.008529 0.007575 0.008677 MTM
JPN M 0.015239 0.014135 0.015901 0.016220 LC

F 0.007166 0.006875 0.006604 0.008543 M-MTM
ISR M 0.015268 0.015095 0.013805 0.014885 MTM

F 0.008291 0.008404 0.008285 0.008333 M-MTM
USA M 0.060004 0.061893 0.051921 0.055702 M-MTM

F 0.033970 0.035285 0.037536 0.032919 M-MTM
FR M 0.057042 0.061561 0.049459 0.053340 M-MTM

F 0.020789 0.022280 0.019778 0.023075 MTM
55-63 ITA M 0.045992 0.050541 0.038009 0.037771 LC

F 0.020042 0.021421 0.018474 0.019912 M-MTM
JPN M 0.037035 0.034616 0.038211 0.040878 LC

F 0.015273 0.013961 0.013958 0.017944 M-MTM
ISR M 0.042078 0.043441 0.032790 0.040081 M-MTM

F 0.021520 0.023886 0.020389 0.021706 M-MTM

always been challenging in the mortality trend modeling. However, we show that
M-MTM handles this problem with a better accuracy in predictions. The imple-
mentation and illustration of the proposed model are done on the mortality rates of
5 countries in order to determine the effect of demographic structure (old, middle



FORECASTING MORTALITY RATES 927

and young age). Monte Carlo simulation is used to generate possible projections
and construct confidence interval for these projections. Comparison of the proposed
model is done with respect to MTM and LC model where the performance is exam-
ined via effi ciency indicators. In most of the cases, our proposed model performs
more accurate results than the other two models. In other words, in the case that
these three models are conducted in a wider range of ages including childhood ages,
modified model projects the future mortality rates with less margin of errors. Ad-
ditionally, projections performed by M-MTM generally have narrower confidence
intervals and more precise forecasts compared to MTM and LC model. For this
reason, the future mortality projected by M-MTM would be more contributing.
For a term life insurance, net single premium (NSP) estimation by M-MTM for
the ages over 35 generally gives closest results to realized NSP compared to the
estimations by other two models. The outcomes of this study show that M-MTM is
advantageous in mortality modeling since the opportunity of changing age bound-
aries including the childhood makes M-MTM applicable for all types of different
age-level populations.
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